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Introduction

General idea: optimise a linear function under inequality constraints

Ω=∑
i

N

ci⋅xi

Variables: xi , i=1...N

Objective:

Constraints: l i≤x i≤ui
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Application to metabolic networks

Variables:

Objective:

Constraints:

FLUXES vi , i=1... R

?

?



  

A metabolic system is defined by 
internal reactions and exchange fluxes

The temporal change of the concentrations is given by dX
dt

=N⋅v

N⋅v=0Steady state is characterised by
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Other constraints

Because of thermodynamic reasons, some reactions can only proceed in
one direction
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Other constraints
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= 23000
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(pure water has 55.5 M)



  

Other constraints

Some process have upper bounds

Constraints #3directionality implies v j≤v j
max

● maximal uptake rates
● known maximal enzyme activities



  

What is constraint based modelling?

Fluxes in metabolic networks are subject to constraints

●  Thermodynamic (directionality)

●  Enzyme concentrations

Constraint based models analyse steady state solutions which
fulfill the given constraints.

Find a solution vector                                   such thatv=v1 , ... ,vr 
T

N⋅v=0 and aiv ibi

v i≥0

v i≤v i ,max

flux cone



  

Example: constraint based model

constraints

v3=0 (thermodynamic)

0≤b1≤1 ⇒ 0≤v1v2≤1

0≤b2≤2 ⇒ 0≤v1v4≤2

0≤b3 ⇒ 0≤v2−v4

Solution space

In general, the solution
is a convex cone:

flux cone

(Kauffman et. al, 2003)



  

Which solution?



  

Application to metabolic networks

Variables:

Objective:

Constraints:

FLUXES vi , i=1... R

Stationarity, maximal rates

?

N⋅v=0, 0≤v i≤vi
max



  

Application to metabolic networks

Variables:

Objective:

Constraints:

FLUXES vi , i=1... R

Stationarity, maximal rates

?

N⋅v=0, 0≤v i≤vi
max

The whole purpose of linear programming is to 
find one flux distribution from the solution cone 
which is “optimal” 



  

What is optimal?

No general answer!

Plausible assumptions:

● maximal growth / biomass production

● most 'economic' solution (minimal enzyme usage)

Even if the objective is not 'correct', the computation is useful:

We can investigate the question “what if...?”



  

A typical LP problem maximising biomass

● assemble r x n stoichiometry matrix N (r reactions, n metabolites)

● identify irreversible reactions

● define boundary fluxes

● define “biomass reaction” vbiomass : ∑
i

αi⋅S i→biomass

(54.613) cpd00001 + (59.98) cpd00002 + (0.001787) cpd00003 + (0.000045) cpd00004 + (0.000335) cpd00005 + (0.000112) cpd00006 + (0.000168) cpd00010 + (0.01128) cpd00013 + (0.000223) 
cpd00015 + (0.000223) cpd00016 + (0.000223) cpd00017 + (0.000279) cpd00022 + (0.2557) cpd00023 + (0.000223) cpd00028 + (0.003008) cpd00030 + (0.5953) cpd00033 + (0.003008) cpd00034 
+ (0.4991) cpd00035 + (0.2091) cpd00038 + (0.3334) cpd00039 + (0.2342) cpd00041 + (0.000223) cpd00042 + (0.00376) cpd00048 + (0.2874) cpd00051 + (0.1298) cpd00052 + (0.2557) cpd00053 
+ (0.2097) cpd00054 + (0.000223) cpd00056 + (0.003008) cpd00058 + (0.1493) cpd00060 + (0.1401) cpd00062 + (0.004512) cpd00063 + (0.05523) cpd00065 + (0.18) cpd00066 + (0.134) 
cpd00069 + (0.000031) cpd00070 + (0.000098) cpd00078 + (0.08899) cpd00084 + (0.000223) cpd00087 + (0.004512) cpd00099 + (0.4378) cpd00107 + (0.02481) cpd00115 + (0.03327) cpd00118 
+ (0.0921) cpd00119 + (0.000223) cpd00125 + (0.2148) cpd00129 + (0.2342) cpd00132 + (0.003008) cpd00149 + (0.1542) cpd00155 + (0.4119) cpd00156 + (0.2465) cpd00161 + (0.000223) 
cpd00166 + (0.000223) cpd00201 + (0.1692) cpd00205 + (0.000223) cpd00216 + (0.000223) cpd00220 + (0.02561) cpd00241 + (0.007519) cpd00254 + (0.006744) cpd00264 + (0.2823) cpd00322 
+ (0.000223) cpd00345 + (0.02561) cpd00356 + (0.02481) cpd00357 + (0.000223) cpd00557 + (0.000055) cpd02229 + (0.000223) cpd03453 + (0.006767) cpd10515 + (0.006767) cpd10516 + 
(0.000223) cpd11313 + (0.003008) cpd11574 + (0.000223) cpd15353 + (0.002944) cpd15428[p] + (0.00229) cpd15429[p] + (0.00118) cpd15431[p] + (0.008151) cpd15432[e] + (0.000223) cpd15499 
+ (0.001345) cpd15501[p] + (0.000605) cpd15503[p] + (0.005381) cpd15505[p] + (0.005448) cpd15506[p] + (0.000673) cpd15508[p] + (0.0318) cpd15531[p] + (0.02473) cpd15532[p] + (0.01275) 
cpd15534[p] + (0.004897) cpd15538[p] + (0.003809) cpd15539[p] + (0.001963) cpd15541[p] + (0.000223) cpd15561 => (59.81) cpd00008 + (58.8062) cpd00009 + (0.7498) cpd00012 + (59.81) 
cpd00067 + cpd11416

Example from E.coli model (Feist et al, 2007)

● define upper bounds for uptake rates (boundary fluxes):

R⊂{1. .. r }

B⊂{1... r }

vi≤v i
max for i∈B

The LP-problem: vbiomass

N⋅v=0

maximise

under the constraints
vi≤v i

max for i∈B
v j≥0 for i∈R

Result:

Flux distribution v



  

Optimality studies in E. coli
●  E. coli was grown on succinate 

●  Optimal growth rates were predicted as extreme fluxes

●  Oxygen and succinate uptake rates were measured

(Edwards and Palsson, 2000)



  

A typical LP problem minimising costs

● assemble r x n stoichiometry matrix N (r reactions, n metabolites)

● identify irreversible reactions

● define boundary fluxes

● define “biomass reaction”

● Fix biomass (e.g. from experiments)

vbiomass : ∑
i

αi⋅S i→biomass

R⊂{1. .. r }

B⊂{1... r }

The LP-problem: ∑
i

r

wi⋅v i

N⋅v=0

minimise

under the constraints

v j≥0 for i∈R

vbiomass=vbiomass
exp

vbiomass=vbiomass
exp



  

Variation of constraints to query the model
Objective: study how optimal fluxes change upon perturbation of external conditions

Example: impose additional ATP demand (reflecting e.g. external stress conditions)

Additional constraint vATPdemand=γ

(Additional ATP consuming process: ATP+H2 O→ADP+Pi )

tunable parameter
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Additional constraint vATPdemand=γ

(Additional ATP consuming process: ATP+H2 O→ADP+Pi )
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(Poolman et al, 2009)


