

Linear programming applied to genome-scale metabolic network models

Oliver Ebenhöh

ICGEB, New Delhi, India, 15 October, 2012

Introduction

General idea: optimise a linear function under inequality constraints

Variables: x_i , i=1...N

Constraints: $l_i \leq x_i \leq u_i$

Objective:

$$\Omega = \sum_{i}^{N} c_{i} \cdot x_{i}$$

Introduction

General idea: optimise a linear function under inequality constraints

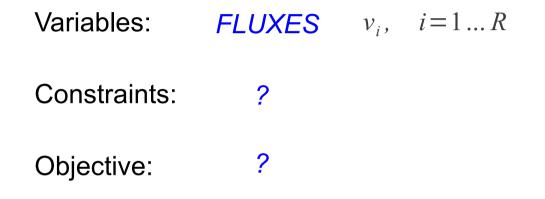
Variables: x_i , i=1...N

Constraints: $l_i \leq x_i \leq u_i$

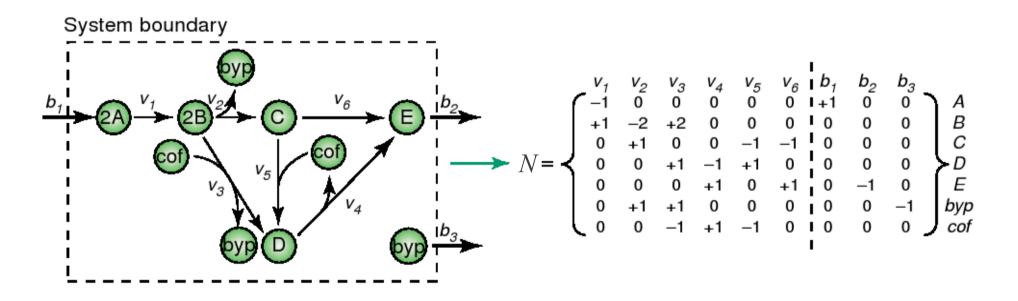
Objective:

$$\Omega = \sum_{i}^{N} c_{i} \cdot x_{i}$$

EXAMPLE



A metabolic system is defined by *internal reactions* and *exchange fluxes*

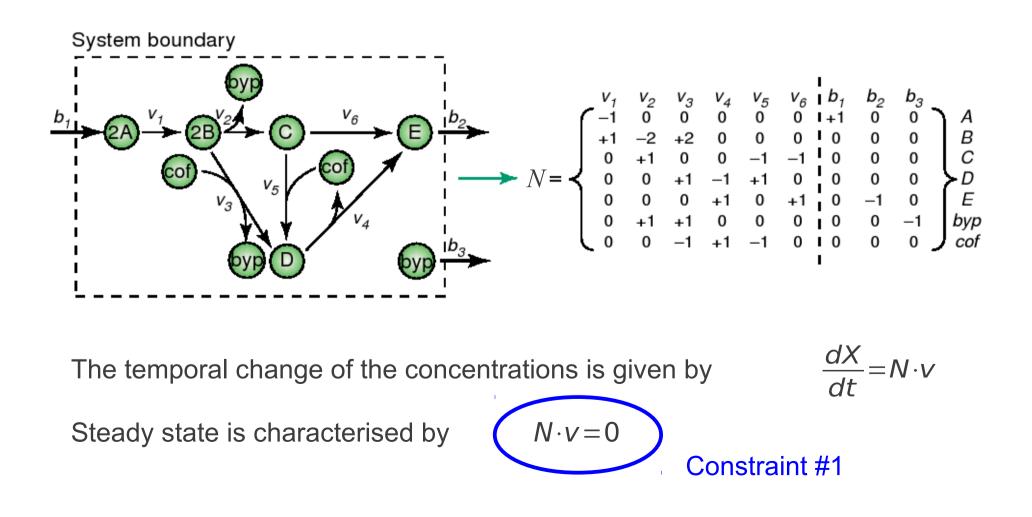


The temporal change of the concentrations is given by

$$\frac{dX}{dt} = N \cdot v$$

Steady state is characterised by $N \cdot v = 0$

A metabolic system is defined by *internal reactions* and *exchange fluxes*



Because of thermodynamic reasons, some reactions can only proceed in one direction

Because of thermodynamic reasons, some reactions can only proceed in one direction

E.g. Glc+ATP \rightarrow G6P+ADP $\Delta G^0 = -24.9 \text{ kJ/mole}$ $K_{eq} = \frac{[\text{ADP}]_{eq} \cdot [\text{G6P}]_{eq}}{[\text{ATP}]_{eq} \cdot [\text{Glc}]_{eq}} = e^{-\Delta G^0/RT} = e^{10.05} = 23000$

Because of thermodynamic reasons, some reactions can only proceed in one direction

E.g. Glc+ATP \rightarrow G6P+ADP $\Delta G^0 = -24.9$ kJ/mole

$$K_{\rm eq} = \frac{[\rm ADP]_{eq} \cdot [\rm G6P]_{eq}}{[\rm ATP]_{eq} \cdot [\rm Glc]_{eq}} = e^{-\Delta G^0/RT} = e^{10.05} = 23000$$

With [ATP]/[ADP]=3 and [Glc]=1 mM the reaction runs in reverse if

$$[G6P] > K_{eq} \cdot [Glc] \cdot \frac{[ATP]}{[ADP]} = 69000 \text{ mM} = 69 \text{ M} \quad !!!$$

(pure water has 55.5 M)

Because of thermodynamic reasons, some reactions can only proceed in one direction

E.g. Glc+ATP \rightarrow G6P+ADP $\Delta G^0 = -24.9 \text{ kJ/mole}$

$$K_{\rm eq} = \frac{[\rm ADP]_{eq} \cdot [\rm G6P]_{eq}}{[\rm ATP]_{eq} \cdot [\rm Glc]_{eq}} = e^{-\Delta G^0/RT} = e^{10.05} = 23000$$

With [ATP]/[ADP]=3 and [Glc]=1 mM the reaction runs in reverse if

$$[G6P] > K_{eq} \cdot [Glc] \cdot \frac{[ATP]}{[ADP]} = 69000 \text{ mM} = 69 \text{ M} !!!$$

(pure water has 55.5 M)

directionality implies $v_i \ge 0$ Constraints #2

Some process have upper bounds

- maximal uptake rates
- known maximal enzyme activities

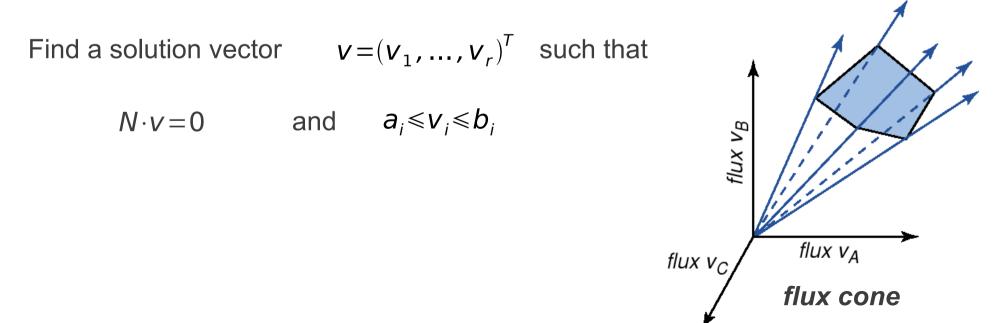
directionality implies $v_i \leq v_i^{max}$ Constraints #3

What is constraint based modelling?

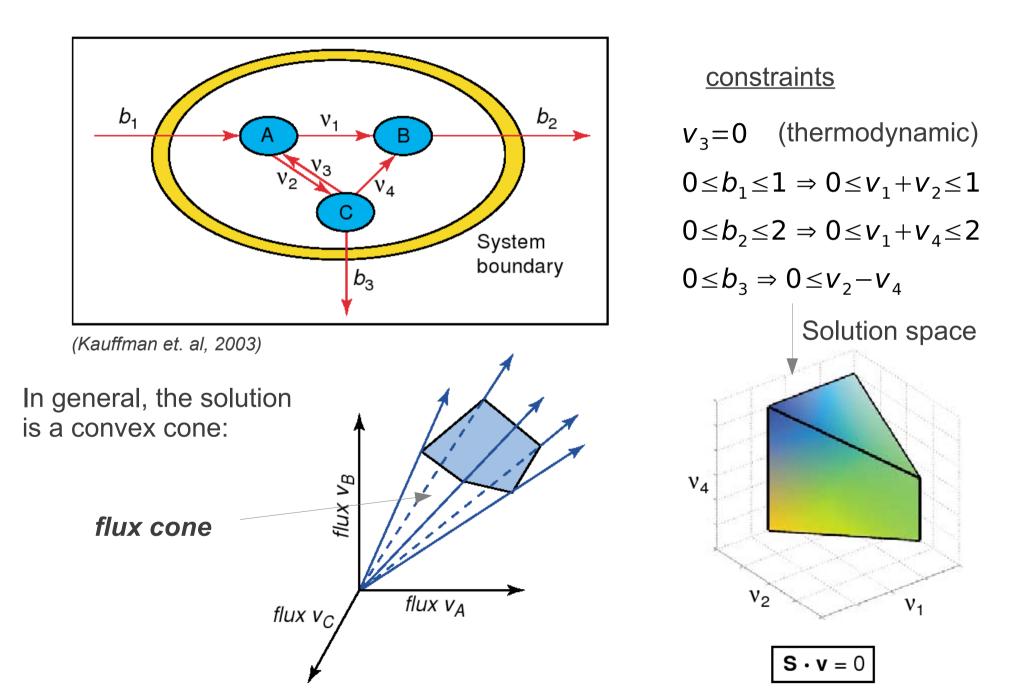
Fluxes in metabolic networks are subject to *constraints*

- Thermodynamic (directionality) $V_i \ge 0$
- Enzyme concentrations $V_i \leq V_{i,max}$

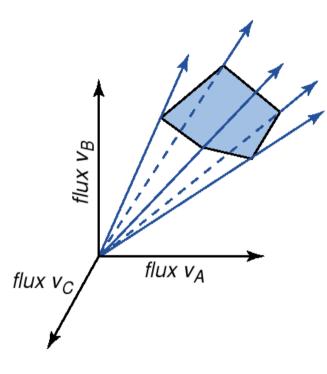
Constraint based models analyse steady state solutions which fulfill the given constraints.



Example: constraint based model



Which solution?



Variables: **FLUXES** v_i , i=1...R

Constraints: Stationarity, maximal rates $N \cdot v = 0, \ 0 \le v_i \le v_i^{\max}$

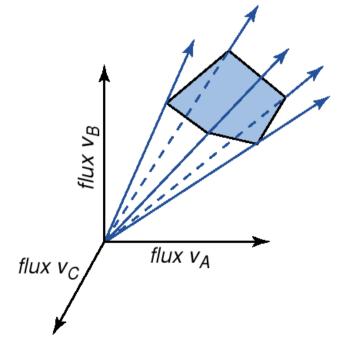
Objective: ?

Variables: **FLUXES** v_i , i=1...R

Constraints: Stationarity, maximal rates $N \cdot v = 0, 0 \le v_i \le v_i^{\max}$

Objective: ?

The whole purpose of linear programming is to find <u>one flux distribution</u> from the solution cone which is "optimal"



What is optimal?

No general answer!

Plausible assumptions:

- maximal growth / biomass production
- most 'economic' solution (minimal enzyme usage)

Even if the objective is not 'correct', the computation is useful: We can investigate the question "what if...?"

A typical LP problem maximising biomass

- assemble r x n stoichiometry matrix N (r reactions, n metabolites)
- identify irreversible reactions $R \subseteq \{1...r\}$
- define boundary fluxes $B \subseteq \{1...r\}$
- define "biomass reaction" v_{biomass} : $\sum_{i} \alpha_i \cdot S_i \rightarrow \text{biomass}$

Example from *E.coli* model (Feist et al, 2007)

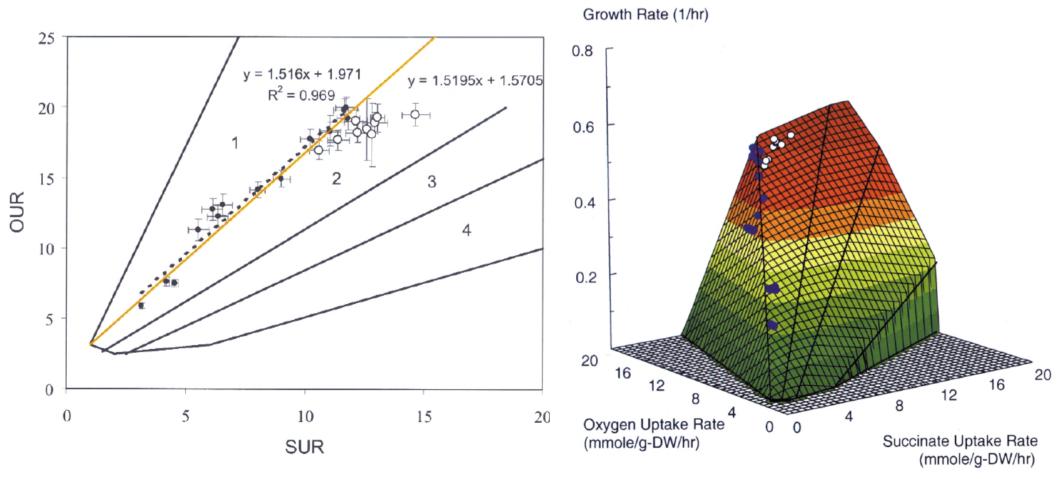
(54.613) cpd00001 + (59.98) cpd00002 + (0.001787) cpd00003 + (0.00045) cpd00004 + (0.000335) cpd00005 + (0.000112) cpd00006 + (0.000168) cpd00010 + (0.01128) cpd00013 + (0.000223) cpd00033 + (0.000223) cpd00033 + (0.000233) cpd00034 + (0.4991) cpd00035 + (0.2091) cpd00038 + (0.3334) cpd00039 + (0.2342) cpd00041 + (0.000223) cpd00042 + (0.00376) cpd00048 + (0.2874) cpd00051 + (0.1298) cpd00052 + (0.2557) cpd00053 + (0.2097) cpd00054 + (0.000223) cpd00056 + (0.03008) cpd00058 + (0.1493) cpd00060 + (0.1401) cpd00062 + (0.004512) cpd00063 + (0.05523) cpd00065 + (0.18) cpd00066 + (0.134) cpd00069 + (0.00023) cpd00070 + (0.000098) cpd00078 + (0.08899) cpd00084 + (0.000223) cpd00087 + (0.004512) cpd00099 + (0.4378) cpd00107 + (0.02481) cpd00115 + (0.03327) cpd00118 + (0.0921) cpd00119 + (0.000223) cpd00125 + (0.2148) cpd00129 + (0.2342) cpd00132 + (0.00308) cpd00149 + (0.1542) cpd00155 + (0.4119) cpd00156 + (0.2465) cpd00161 + (0.000223) cpd00125 + (0.2481) cpd00129 + (0.2342) cpd00132 + (0.000223) cpd00220 + (0.02561) cpd00254 + (0.006767) cpd10515 + (0.006767) cpd100516 + (0.000223) cpd00254 + (0.000223) cpd00254 + (0.000253) cpd00254 + (0.006767) cpd10554 + (0.006767) cpd10554 + (0.006767) cpd10515 + (0.000253) cpd00254 + (0.000253) cpd00254 + (0.000253) cpd00254 + (0.006767) cpd10515 + (0.006767) cpd10515 + (0.000253) cpd00254 + (0.000253) cpd00254 + (0.006767) cpd10515 + (0.006767) cpd10516 + (0.000223) cpd00557 + (0.000253) cpd00254 + (0.006767) cpd10515 + (0.006767) cpd10516 + (0.000223) cpd15534 + (0.000253) cpd15534 + (0.000253) cpd15534 + (0.006767) cpd10553 + (0.006767) cpd10516 + (0.000223) cpd15539 + (0.000253) cpd15539 + (0.000253) cpd1554 + (0.006767) cpd10515 + (0.006767) cpd10516 + (0.000223) cpd15534 + (0.000253) cpd15534 + (0.000253) cpd15534 + (0.006767) cpd10515 + (0.006767) cpd10516 + (0.000253) cpd15534 + (0.000253) cpd155

• define upper bounds for uptake rates (boundary fluxes): $v_i \leq v_i^{\text{max}}$ for $i \in B$

The LP-problem:maximise $v_{biomass}$ Result:under the constraints $N \cdot v = 0$ Flux distribution v $v_i \leq v_i^{max}$ for $i \in B$ $v_i \geq 0$ for $i \in R$

Optimality studies in E. coli

- E. coli was grown on succinate
- Optimal growth rates were predicted as extreme fluxes
- Oxygen and succinate uptake rates were measured



(Edwards and Palsson, 2000)

A typical LP problem minimising costs

- assemble r x n stoichiometry matrix N (r reactions, n metabolites)
- identify irreversible reactions $R \subseteq \{1...r\}$
- define boundary fluxes $B \subseteq \{1...r\}$
- define "biomass reaction" v_{biomass} : $\sum_{i} \alpha_i \cdot S_i \rightarrow \text{biomass}$
- Fix biomass (e.g. from experiments)

$$v_{\rm biomass} = v_{\rm biomass}^{\rm exp}$$

The LP-problem:

minimise

under the constraints

$$\sum_{i}^{r} w_{i} \cdot v_{i}$$
$$N \cdot v = 0$$
$$v_{\text{biomass}} = v_{\text{biomass}}^{\exp}$$

 $v_j \ge 0$ for $i \in R$

Variation of constraints to query the model

Objective: study how optimal fluxes change upon perturbation of external conditions Example: impose additional ATP demand (reflecting e.g. external stress conditions)

Additional constraint $v_{ATPdemand} = \gamma$ \leftarrow tunable parameter (Additional ATP consuming process: $ATP+H_2O \rightarrow ADP+P_i$)

Variation of constraints to query the model

Objective: study how optimal fluxes change upon perturbation of external conditions Example: impose additional ATP demand (reflecting e.g. external stress conditions)

