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Why analyse networks ?

Predicting network behaviour is hard but useful:

@ How to predict the effects of addition or removal of
reactions ?

@ How to predict additions or removals of reaction to produce
a desired effect ?

@ What is basic principles that underlie such questions ?
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Why analyse networks ?

@ Can we extract simple subsystems from very large reaction
networks ?

@ How do the ‘standard’ biochemical pathways function in
very large networks ?

@ How will this help our practical understanding of
biochemical networks ?
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Definition of a metabolic system

A list of reactions defined by:

@ Stoichiometry.
@ And possibly:
@ Thermodynamics,
@ Kinetics,
© Metabolite concentrations,
© Other experimental observations.

@ External (boundary) metabolites.
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Structural analysis

@ Assume steady state.
@ |dentify properties of all possible steady-states.

@ Theory - based on LA manipulations of a matrix
representation of the network.

@ Can (potentially) be used on very large networks.

@ Models can (potentially) built from publically available
data-bases.
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Modelling networks of reactions (1)

Reactions interconvert substrates and products whilst
conserving mass.

Transporters are a special case of reaction. (Internal vs
external metabolites)

Reactions are not enzymes.

Enzymes are not genes.
Rate of change concentration is sum of reaction rates.

This is assumed to tend to zero in the long term (steady
state)

Mark Poolman Energy Metabolism in a Genome Scale Model of Rice



Modelling networks of reactions (2)
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Modelling networks of reactions (2)
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Modelling networks of reactions (3)
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Modelling networks of reactions (3)
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Modelling networks of reactions (3)
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Modelling networks of reactions (3)
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Or more succinctly:
Nv=0
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Kernels
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Kernels
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Kernels
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Kernels
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Kernels
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Significance of the Null Space

@ Encapsulates all possible steady state behaviour.
@ |dentifies invariant properties of the network.
@ Allows identification of relationships between fluxes.

@ Forms the starting point for most (if not all) structural
analysis of metabolic networks.
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Limitations of Null Space Analysis

@ Provides an “unfocussed” view of the system.
@ Difficult to formulate specific questions.
@ Not always informative for genome-scale models.
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Application of LP to metabolic networks

GivenNv =0

Determine instances of v with specific properties.
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Application of LP to metabolic networks

GivenNv =0

Determine instances of v with specific properties.

@ Optimise (ie minimise or maximise) certain fluxes.
@ Constrain (fix or limit) other fluxes.
@ Constrain flux relationships to satisfy Nv =0
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Application of LP to metabolic networks

minimise  : Viargs +— objective
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Application of LP to metabolic networks

minimise  :  Viargs <— objective

subject to
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Application of LP to metabolic networks

minimise  :  Viargs <— objective

subject to
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Application of LP to metabolic networks

minimise  :  Viargs <— objective
. Nv=0
subject to
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Application of LP to metabolic networks

minimise  :  Viargs <— objective
. Nv=0 +— steady state
subject to
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Application of LP to metabolic networks

minimise  :  Viargs <— objective

. Nv=0 +— steady state
subject to .
max; > V; > min;
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Application of LP to metabolic networks

minimise  :  Viargs <— objective
. Nv=0 +— steady state
subject to . .
max; > V; > min; <— flux constraints
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Application of LP to metabolic networks

minimise  :  Viargs <— objective
. Nv=0 +— steady state
subject to . .
max; > V; > min; <— flux constraints

Note:
@ Failure to find a solution is still useful.

@ Once a solution has been found, it is easy to change flux
constraints and quickly re-solve.

@ This allows rapid exploration of the optimal space.
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Scanning LP constraints

minimise :  Viargs
I — Nv=0
P= subject to : Imax > Vi > Imin

X = Xmin--Xmax

for x in range(x_min,x_max):
Ip.SetConstraint(x)
Ip.Solve ()
solution = Ip.GetSolution ()
results .AddData(solution)
Analyse(results)
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A Genome-scale Model of Rice

@ Built from the ‘Ricecyc’ database http:
//pathway.gramene.org/gramene/ricecyc.shtml

@ Extensive curation - ensure stoichiometric and
thermodynamic consistancy.

@ Inputs: COy, NH3, NO;, SO% ™, P;

@ Outputs: O,, Amino acids, polysaccharides, DNA, RNA,
lignin.

@ 1400 metabolites, 1700 reactions.

@ Seperate compartments for choroplast and mitochondrion.
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http://pathway.gramene.org/gramene/ricecyc.shtml
http://pathway.gramene.org/gramene/ricecyc.shtml

Model Compartments
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Model Compartments
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Analysing the Model

minimise DV
I — Nv =20
b= subject to : vij=1x

V= O..l/max
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Analysing the Model

minimise DV
I — Nv =20
b= subject to : vij=1x

V= O..l/max

@ Minimise total flux (proxy for minimum protein investment).
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Analysing the Model

minimise DV
I — Nv =20
b= subject to : vij=1x

V= O..l/max

@ Minimise total flux (proxy for minimum protein investment).
@ tx represents fluxes in biomass transporters v;_ ;
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Analysing the Model

minimise DV
I — Nv =20
b= subject to : vij=1x

V= O..l/max

@ Minimise total flux (proxy for minimum protein investment).
@ tx represents fluxes in biomass transporters v;_ ;
@ v is the photon flux. Solve for a range of values.

Mark Poolman Energy Metabolism in a Genome Scale Model of Rice



@ 309 reactions required for bomass synthesis.
@ 142 showed some response to varying photon flux.
@ Most responses were weak.
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@ 309 reactions required for bomass synthesis.
@ 142 showed some response to varying photon flux.
@ Most responses were weak.

35 T T T T T T T T T

30

25

20

15

Reaction count

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mark Poolman Energy Metabolism in a Genome Scale Model of Rice



Chloroplast response.
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Mitochondrial response.
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Active shuttles.
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Mitochondrial flux modes.
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Conclusions

@ Analysing the model greatly simplifies a complex network:
@ Only 300 from 1700 reactions to account for autotrophic
growth.
@ Of these 30 are identified significantly responding to
variations in light.
@ We propose that optimal energy metabolism in plants
requires coordinated responses in the three major
compartments.
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