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Abstract

Streptococcus agalactiae is a leading cause of neonatal infectious mortality, caus-
ing pneumonia, septicaemia and meningitis. The recently reported genome se-
quencing results for several strains provide an opportunity for the computational
metabolic reconstruction of the organism. The present work involves construc-
tion and analysis of genome-scale metabolic models of S. agalactiae , the char-
acterisation of physiological properties and the identification of potential drug
targets.

The models of four strains of the organism were constructed, using functional
genome annotations as the primary input data. Two alternative data resources
were used: existing annotations from the KEGG†1 [75] database and de novo an-
notations generated using the tools RPS-BLAST† [67] and PRIAM† [12]. The
lists of biochemical reactions were obtained from the KEGG LIGAND† [35]
database. The feasible reaction directions were defined according to the liter-
ature data. A number of hypothetical reactions were included, such as trans-
porters and biosynthesis reactions for major biomass components.

Algorithms were developed for the detection and correction of errors in the
input data, such as inconsistent naming of metabolites. Quantitative indicators
were introduced for the evaluation of model quality, based on the conformity
with physical and biochemical constraints. Methods for the detection of stoi-
chiometric inconsistencies (a common type of modelling error) were introduced
and published [33].

Several reannotations were made using two alternative approaches: manual
inspection of the ‘failed’ pathways and stochastic optimisation of genome an-
notations. The latter approach involves a simulated annealing algorithm [53]
which optimises the quality of a model by randomly reassigning the enzymatic
functions to the genes.

Apart from the existing methods of metabolic network analysis (such as el-
ementary mode analysis [37]), original methods were developed, characterising
the interactions of a metabolic network with its environment. The concepts
of elementary substrate and product compositions were introduced and highly
efficient algorithms for their detection were proposed. These algorithms en-
abled the enumeration of fermentation substrates, of minimal compositions of
fermentation products, and of minimal combinations of amino acids sufficient
for protein biosynthesis.

For drug target prediction, a computationally feasible algorithm for the de-
tection of minimal cut sets (essential groups of reactions [55]) was developed.
Lists of minimal cut sets for biomass synthesis and energy production were
calculated.

A comparison with the available literature data demonstrated that the ac-
curacy of the modelling predictions was comparable with that of experimental
results. This observation confirms the informativeness and reliability of genome-
scale metabolic reconstructions.

1Here and further, the symbol † directs the reader to the List of URLs.
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Chapter 1

Introduction

1.1 Rationale

The original objective of the present work was the genome-scale metabolic recon-
struction of the pathogenic bacterium Streptococcus agalactiae, the investigation
of its biochemical network and the detection of potential drug targets. The es-
tablished theoretical and practical framework of metabolic modelling provided
the methodological basis for the work. However, as the work progressed, ef-
fective solutions of a range of problems required the development of original
concepts, methods and software. Hence, the scope of the thesis was extended
to the development of a methodology for computational drug target prediction
in pathogenic bacteria in general.

The genome-scale metabolic models of four strains of the organism were ex-
pected to reflect the current knowledge of its physiology and to enable further
useful predictions. The reconstruction methods were intended to be possibly
automatable, reproducible and universal, i.e. applicable to various bacterial
genomes. The achievement of these criteria is strongly hindered by the pres-
ence of missannotations and ambiguous gene function predictions (multiple en-
zymatic functions predicted for the same gene with comparable expectation
values). Original solutions had to be sought to solve these problems as well
as many other technical issues associated with the automatic data import from
metabolic databases [84, 33].

A number of methods have been proposed and are widely used for the com-
prehensive characterisation of metabolic networks, such as the calculation of
elementary flux modes [37] and extreme pathways [103]. Unfortunately, these
methods are poorly scalable to genome-scale models because of their computa-
tional complexity. Functional stoichiometric analysis [118] is a computationally
tractable alternative which focuses on the interactions of a metabolic network
with its environment, rather than on its internal structure. The development
of original methods of functional analysis was expected to provide highly effi-
cient tools for the characterisation of such important physiological properties as
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nutritional requirements and possible fermentation routes.
The potential of metabolic modelling for drug target prediction is based

on the central role of metabolic enzymes in physiology, their high conserva-
tion among pathogens and suitability for high-throughput identification [6]. Al-
though cases of prediction and validation of drug targets have been reported [5,
127], effective methods of computational drug target identification are still to
be established. An attempt to advance the existing solutions proposed for this
problem was made in the scope of the present work.

1.2 Overview of Streptococcus agalactiae

Streptococcus agalactiae(Group B streptococcus; GBS) is a leading cause of
neonatal infectious morbidity and mortality in the United States and Western
Europe, causing pneumonia, septicaemia and meningitis. It is also an increasing
cause of mortality in immunocompromised adults [107] and a major cause of
intramammary infection in dairy cattle [52]. The organism is found in vaginal
and anorectal flora of approximately 10-30% of pregnant women in UK and
US [40], more frequently in lower socioeconomic groups [8]. Nine serotypes of
GBS cause disease in human: Ia, Ib and II-VIII. The early-onset form of GBS
(< 7 days of age) occurs with a reported incidence of 1-2 cases per 1000 live
births and has a mortality rate of nearly 20% of affected neonates [1]. This form
is associated with prematurity, prolonged labor, preterm or prolonged rupture
of membranes and chorioamnionitis. The less frequent late onset form (mostly
in the first 3 months [106]) is mostly caused by the serotype III, which is also
responsible for a significant proportion of the early onset desease, and for nearly
all cases of meningitis, regardless of age of the onset [48, 40].

The early onset form is transmitted vertically through ruptured or intact
membranes, or, less typically, during passage through a colonised birth canal.
Fetal aspiration of contaminated amniotic fluid initiates pneumonia, leading
further to bacteremia, septic shock and meningitis [8]. The rapid growth of
S. agalactiae in amniotic fluid (up to 100-fold of E. coli growth [38]) is an im-
portant factor in the pathogenesis of infection. The lung is a probable portal of
entry to bloodstream, due to the ability to adhere to and invade alveolar and
endothelial cells [34]. The late onset form is acquired postpartum from mater-
nal and other sites and leads to meningitis, bacteremia and ostheoarthritis [8].
Breast milk has been experimentally proven to be the source of late-onset GBS
infection in a number of works [30, 123, 60].

The genomes of several S. agalactiae strains have been published recently [34,
115]. The genome of the strain NEM316 (serotype III) contains 2118 protein
coding genes, 50% of which have orthologs in the closely related S. pyogenes
genome. Putative functions could be assigned to 62% of the genes; 29% were
similar to unknown proteins and 9% were unique. The analysis of the genes hav-
ing no orthologs in S. pyogenes detected their clustering in 200 regions ranging
in size from 1-77 genes. Fourteen large islands (11-77 genes) contain all genes
related to mobile elements except one and the majority of known or putative
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virulence genes [34]. A study comparing the strains NEM316 and 2603VR
(serotype V) confirmed the correspondence of four islands to the criteria of a
true pathogeneicity island; in general, the genomes of two strains were found to
be extremely similar [39]. A comparison of six strains representing five serotypes
revealed a core genome accounting for ≈ 80% of any single genome and contain-
ing most of the ‘housekeeping’ genes. It has been demonstrated that the serotype
classification does not reflect the actual evolutionary relationships [115].

Two surface polysaccharides are produced by S. agalactiae : the group B
carbohydrate, which is common to all strains and the serotype specific capsu-
lar polysaccharide. Genes encoding 30 surface and 71 secreted proteins have
been predicted [34]. These proteins play an important role in the virulence and
pathogenesis of the infection. This group includes adhesins, such as fibronectin-
binding protein and laminin-binding protein; toxins (haemolysins, CAMP factor
and exfoliative toxin A); extracellular digestive enzymes, such as hyaluronate
lyase and C5a peptidase. All the serotypes, but especially III, are poorly anti-
genic [40].

The diversity of environments colonised by S. agalactiae is reflected in the
high proportion of genes responsible for regulation and stress adaptation. Tran-
scriptional regulators comprise 5% of the predicted genes [40]. Stress adaptation
proteins include superoxide dismutase and a large set of heat shock proteins. In-
ability of S. agalactiae to synthesise many amino acids, vitamins and co-factors
and its dependence upon host-derived nutrients is associated with the high de-
velopment of transport systems: 255 genes encoding transporters have been
predicted in serotype III, most of which are ABC transporters. A genome anal-
ysis has demonstrated the capacity to import a wide range of carbon resources,
including glucose, fructose, lactose, mannose, cellobiose, trehalose, mannitol,
β-glucoside and N -acetylgalactosamine [34]. The same study has detected en-
zymes necessary for glycolysis, whereas pentose phosphate pathway is only in-
volved in pentose and gluconate utilisation, but does not serve to by-pass gly-
colysis. In contrast, the citric acid cycle is reported to be completely missing,
leading to inability to synthesise most of the amino acids. Their acquisition
is supported by eight ABC transporters, eight permeases and a large number
of peptidases [34]. The human strains of S. agalactiae in general do not fer-
ment lactose, but the ability to do so can be achieved after 8 to 10 passages in
substrate containing lactose [46].

S. agalactiae oxidises glucose to the following fermentation products: lac-
tate, pyruvate, acetate, formate, ethanol, acetoin and CO2, in different propor-
tions depending on the availability of oxygen [71]. Although Streptococcaceae
are generally considered as non-respiring organisms, some evidence of oxidative
phosphorylation in S. agalactiae has been reported [71]. This finding has been
confirmed by the identification of genes encoding cytochrome bd terminal quinol
oxidase [34]. It has been demonstrated that S. agalactiae is able to respire in the
presence of two essential factors in the environment: quinone and haem [126].

S. agalactiae is a commensal constituent of microflora, but the systems de-
veloped for nutrient acquisition may play a key role in pathogenesis when the
organism encounters normally sterile sites, such as neonatal lung and amniotic
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fluid [40]. Therefore, investigation of metabolic networks may lead to deeper
insights into virulence and aid the development of novel prophylactic and ther-
apeutic means.

At present, Penicillin G is the main choice for treatment and prophylaxis [1,
8]. Routine screening and chemoprophylaxis in the last years led to a decline in
the incidence of early onset infection [1, 107]. However, intrapartum antibiotic
prophylaxis is an imperfect solution, the disease still occurs, and infection and
death from S. agalactiae are still a major public health issue. Antibiotic treat-
ment of newborns may lead to a range of side effects, including development
of resistance in other organisms. Therefore, effective narrow-spectrum antibi-
otics are required (Mark Anthony, personal communication). Identification of
potential drug targets would be a crucial step towards the achievement of this
goal.
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Chapter 2

Theoretical Foundations

2.1 Introduction

In the past two centuries, the advances of biological sciences enabled the dis-
covery of the most basic building blocks of life, such as genes, enzymes and
metabolic species. Investigation of these components in the fields of genetics,
biochemistry and molecular biology and the advent of ‘omics’ techniques made
it possible to collect immense amounts of data. Although a more complete
understanding of the structures and functions of biomolecules requires further
observation and analysis using more sophisticated experimental methods, the
reverse problem arises: how do the interactions of biomolecules produce the be-
haviour of entire living systems, such as cells and organisms? Depending on the
specific problems, these interactions can be considered in the context of gene
regulatory, signal transduction, metabolic or other networks; however, each of
these networks is only an aspect of an integral functional unit. The structure,
behaviour and regulation of such a network cannot be adequately described us-
ing qualitative, verbal principles. Instead, a formalised theory is required to
integrate, quantify and generalise the existing knowledge about biomolecular
networks.

The need of such a theory led to the origin of Systems Biology – ‘the study
of an organism, viewed as an integrated and interacting network of genes, pro-
teins and biochemical reactions which give rise to life’ (Institute for Systems
Biology†). In general, a system can be defined as a set of interacting elements,
e.g. enzymes and reactants in metabolic systems. The interactions result in the
emergent properties of the system that cannot be attributed to the isolated com-
ponents. The emergent properties of living systems include metabolism, growth
and reproduction. Further, any living organism has the ability to maintain a
relatively constant chemical composition, often called homeostasis. Metabolic
networks tend to a dynamic equilibrium (steady state), when the input and out-
put metabolites are exchanged with the environment, and the concentrations of
internal metabolites are balanced by consuming and producing reactions [24].
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Another important systemic property of living systems is robustness – the abil-
ity to function in various conditions, due to the regulation and adaptation on
the level of enzymatic activity, gene expression and even evolutionary changes
[58, 54]. The robustness of systems may be also increased due to their modular-
ity – the ability of subsystems to work independently [86], as well as redundancy
– the presence of multiple subsystems with similar functions [78]. The subsys-
tems and elements, on the other hand, have various degrees of essentiality –
relative importance for the survival and functioning of the whole system [61].
Finally, any living system not only adapts to the environment but also influ-
ences its state; it changes the chemical composition of the surrounding media
by consuming external substrates and releasing end products.

Mathematical models are widely used in systems biology and in particular,
in the studies of metabolic networks. A metabolic model is a mathematical rep-
resentation of a collection of molecular conversions (reactions) in a living organ-
ism; its elements are metabolites and reactions. The first published metabolic
models usually covered separate pathways, such as glycolysis [32, 96], electron
transport [59] and photosynthesis [85]. The sizes of models, however, tend to
grow, exceeding several hundreds of reactions in genome-scale models, which
describe the metabolic networks of whole organisms [104, 27].

Models are usually developed for certain pragmatic purposes and their use-
fulness is determined by the compromise between adequacy and simplicity [37].
Most real world systems are too complex to consider every detail, given the
lack of data and computational limitations. Moreover, many factors may be ig-
nored as not appreciably affecting the outcomes. Therefore, any mathematical
model involves simplifying assumptions, such as the distinctions between inter-
nal and external metabolites and between reversible and irreversible reactions
(see below).

Metabolic systems are characterised by two groups of data: variables (such
as concentrations and fluxes) and parameters (such as stoichiometric coeffi-
cients and kinetic constants) [37]. Depending on the parameters employed, the
metabolic models are usually subdivided into two major groups: kinetic and
structural [84]. Both types of models include reaction stoichiometries, which
define the time-invariant logical topology of the metabolic networks, i.e. the
connections of their elements - metabolites and reactions. Kinetic models also
include rate equations and kinetic parameters, which provide the possibility of
simulating the dynamic evolution of a network from a particular initial state,
by calculating the time-depenedent changes of the flux rates and metabolite
concentrations. Unfortunately, the rate laws and kinetic parameters are mostly
unavailable; further, the analysis of kinetic models on the genome scale is com-
putationally hard and the results are difficult to interpret [83]. Therefore, in the
scope of the current thesis, only structural models were generated and analysed.
The analysis of such models is usually based on the assumption that the system
is at a steady state.

The starting point of the modelling process is the initial hypothesis, which,
in the case of a metabolic model, implies that the behaviour of the investigated
system can be adequately described as a function of the input list of reac-
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tions [83]. The methods of model construction are based on two complemen-
tary approaches, which we define as data-driven and hypothesis-driven. The
data driven approach involves the selection, collection, curation and process-
ing of input data, such as the list of reactions. These data can be obtained
from literature, from experimental data or from databases, such as KEGG [49],
BioCyc† [50] and BRENDA† [105]. The use of databases enables automatic
generation of models, which is, however, associated with a range of technical is-
sues [84]. The hypothesis-driven approach includes the formulation of additional
hypotheses about the probable behaviour of the investigated system. Although
their inclusion increases the amount of uncertainty in the model, it often leads
to more precise and practically useful results. Simplifying assumptions are an
example of this approach, but some hypotheses may increase the complexity of
a model, e.g. hypothetical reactions and metabolites.

Once a model is generated, it may be interrogated. Depending on the objec-
tives, the interrogation of metabolic models can be subdivided into two phases:
constructive and analytic [83]. The purpose of constructive interrogation is im-
provement of the model quality; this can be done by using specific methods for
the detection of errors [84, 33] and for the prediction of missing data [93]. The
results are used for further correction, extension and refinement of the models;
the process can be repeated iteratively, until a sufficient level of accuracy is
achieved (Figure 2.1). Analytical interrogation, in contrast, aims at the predic-
tion of relevant biological properties of the underlying networks, such as reaction
pathways [110, 103], net conversions of external metabolites [118], nutritional
requirements [36], essential enzymes [61], functional modules [29, 86] and phy-
logenetic relations to other networks [15]. Although these results can also give
rise to changes in the models, the ultimate goal is to make a contribution to
biological knowledge.

The published genome-scale metabolic reconstructions include those of E.coli
[20], H. influenzae [104], H. pylori [102] and many others. The metabolic
reconstruction of S. cerevisiae [27] was claimed to produce the first compre-
hensive network of a eucariotic organism. The metabolic reconstruction of P.
falciparum has been used for the identification of novel antimalarial drug tar-
gets [127]. Some genome-scale models have been constructed recently in our
group, including a model of E. coli [9], S. erythrea (H. Patel, M. G. Poolman,
unpublished) and plant metabolism (A. Chokkathukalam, work in progress).

2.2 Structural modelling of metabolism

Structural modelling refers to the construction and analysis of metabolic mod-
els including solely information about reaction stoichiometries and (optionally)
their allowed directions. Stoichiometry describes the proportions of changes in
metabolite concentrations in a particular reaction. By defining the ‘is intercon-
verting’ relation between the sets of reactions and metabolites, stoichiometries
form the topological structure of a network, i.e. the logical connections between
its elements; this network structure defines the limits of the possible behaviour

7



Figure 2.1: Typical work flow during a modelling investigation. Scientific value
is only gained during the interpretation/hypothesis generation phase, which
takes place outside of the computer. Picture by Poolman et al. [83].

of the system [55]. In contrast to kinetic properties, which are subject to dy-
namic changes due to activation and inhibition of enzymes, stoichiometries are
invariant in time, unless evolutionary scales are considered [37]. Stoichiometries
are often better known than kinetic parameters, they are expressed in discrete
numbers and in most cases uniquely defined for each reaction in a model (un-
less variable polymerisation degrees are involved). These advantages make the
use of structural models indispensable for the characterisation of genome-scale
metabolic networks.

Metabolites Each metabolite in a model is a logical entity, referring to some
chemical species. The level of abstraction can vary depending on the context,
e.g. the same species can be defined as ‘α-D-glucose’, ‘D-glucose’ or ‘glucose’.
Some metabolites may refer to even broader groups of substances, such as ‘pro-
tein’ or ‘primary alcohol’. However, for a range of technical reasons it is prefer-
able to restrict the scope of metabolite definitions to possibly unique formu-
lae [84, 33]. In conceptual models, created for theoretical or didactic purposes,
the actual substances often do not need to be specified (see Figure 2.2).

The set of metabolites in a metabolic model is subdivided to two subsets:
internal and external metabolites, depending on their relation to the model’s
boundary. Each internal metabolite is used solely by the reactions included
into the model; hence, its concentration in the system is a function of the rates
of these reactions. External metabolites, in contrast, are subject to mass flow
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beyond the system. The following groups of substances are often defined as
external:

• Nutrients and excretory products, e.g. glucose and lactate.

• Metabolites, which are present in a large excess or buffered, e.g. water,
proton and carbon dioxide.

• Biomass components, such as protein, nucleic acids and cell wall.

• Other polymers, such as starch, where variable polymerisation degrees
make it impossible to derive the concentrations from the flux rates.

• Highly connected metabolites (i.e. used by many reactions), such as ATP
and NAD+ can be also made external in order to limit the extent of the
model.

The definition of the set of external metabolites may depend on the problem in-
vestigated. In particular, by changing the sets of sources and sinks, the system’s
behaviour in different environmental conditions can be analysed.

Reactions A reaction in a model indicates a conversion of some set of metabo-
lites (substrates) into another set (products), taken in amounts specified by the
reaction stoichiometry. In biochemical systems, most reactions are enzymatic;
however, spontaneous reactions are also possible. Similarly to metabolites, reac-
tions can be specified with various levels of detail, e.g. several enzymatic steps
can be represented by one net reaction. Such generalised reactions may stand
for complex cellular processes, such as protein biosynthesis from amino acids.

Transport reactions, instead of interconverting metabolites, change their lo-
cation with regard to the boundary of the whole system or some of its sub-
systems (e.g. compartments). In structural models, such reactions are often
represented as interconversions of distinct metabolites which refer to the same
chemical species. For instance, the import of glucose can be represented as
follows: x glucose → glucose, where the substrate and the product denote the
external and internal ‘versions’ of glucose, respectively. The reactions which
consume or produce external metabolites are referred as exchange reactions.

The set of reactions can be subdivided into the subsets of reversible (bi-
directional) and irreversible (uni-directional) reactions. This distinction is an
example of a simplifying assumption, since there are no absolutely irreversible
reactions in a real metabolism and the feasibility of a given direction depends
on the rest of the system. However, thermodynamic gradients between exter-
nals may impose directionality on routes connecting them. Therefore, defining
certain reactions as irreversible sometimes improves the accuracy of predictions.
In particular, generalised biosynthetic reactions may be defined as irreversible,
to reflect the growth of the organism. For each irreversible reaction, the proper
direction must be specified.

9



Mathematical representation A range of formalisms exist for the rep-
resentation of metabolic models. Diagrams (Figure 2.2a) are widely used for
illustration, whereas lists of reactions (Figure 2.2b) are convenient for data in-
put and storage. For most of the quantitative analysis methods, a metabolic
model is represented as a stoichiometry matrix [37] (Figure 2.2c, d). In such a
matrix, each element defines the number of molecules of the metabolite, speci-
fied by the row, used in the reaction, specified by the column, whereby the sign
indicates the direction of mass change (negative for consumption and positive
for production).

The complete structure of a network is represented by its external stoichiom-
etry matrix N̂ (Figure 2.2c). This matrix includes the rows describing both
internal and external metabolites and hence represents a closed system [23]. By
removing the rows describing external metabolites, we obtain the internal stoi-
chiometry matrix N, where the stoichiometries of exchange reactions are incom-
plete (Figure 2.2d). This matrix represents an open system, which exchanges
mass with the ‘environment’, defined by the pool of external metabolites.

A structural model is completely defined by its external stoichiometry matrix
and two sets: those of external metabolites and reversible reactions. Further
in the thesis, we denote by m and n the numbers of metabolites and reactions
in a model, respectively. Without loss of generality, we assume that the rows
and columns in stoichiometry matrices are reordered (unless otherwise stated)
so that the first k rows and the first r columns describe the internal metabolites
and reversible reactions, respectively. Hence, a network can be represented as
a triple (N̂, k, r). The sets of reactions and metabolites are denoted R and M,
respectively.

We refer to a vector d as positive (denoted d > 0) if it contains positive
components only, semipositive (d ≥ 0) if it contains at least one positive and
no negative components and seminegative (d ≤ 0) if it contains at least one
negative and no positive components.

A number of physiologically important properties of metabolic systems can
be determined by interrogation of external and internal stoichiometry matrices.
The analysis methods described in this section are based on two mathemati-
cal fields: linear algebra and graph theory. Linear algebraic methods of the
analysis of metabolic models are referred as stoichiometric analysis and are
classified here into mass-balance and flux-balance analysis methods, depending
on the fundamental constraints they apply to the networks. Mass-balance anal-
ysis describes relationships between metabolite concentrations and compositions
subject to the mass conservation constraint; these relationships characterise the
network at any point in time and do not depend on the feasibility of reaction
directions. Flux-balance analysis concerns possible distributions of flux rates
and concentration changes at a steady state; irreversibility constraints can be
taken into account.
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R1: xA + C → AC
R2: AC ↔ BC
R3: BC → C + xB
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Figure 2.2: A network represented as a diagram (a), a list of reactions (b),
external (c) and internal (d) stoichiometry matrices; left null space matrix (e);
matrix of extreme non-negative conservation relationships(f).
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2.2.1 Mass-balance analysis

Although the actual metabolite concentrations depend on the initial values and
flux rates, some important restrictions are implied by reaction stoichiometries
and the law of mass conservation. Consider the network shown in Figure 2.2.
While the network interconverts the external metabolites xA and xB, the in-
ternal metabolite C acts as a cofactor, by catalysing this conversion. Its atoms
are not exchanged with the environment and comprise a conserved moiety – a
chemical entity participating in the system without loss of integrity [37]. The
total concentration of a conserved moiety is constant in the system and so is
the total concentration of all metabolites containing it:

C + AC + BC = const. (2.1)

These concentrations enter a conservation relationship: a linear combination
of concentrations which is constant in time. In terms of linear algebra, this
relationship can be expressed as follows:

(1 1 1 0 0) ·













C
AC
BC
xA
xB













= const. (2.2)

or, for a general case:
gT ĉ = const. (2.3)

where ĉ is the vector of concentrations and g is the conservation vector, whose
non-zero components are the conservation coefficients of the metabolites con-
tributing to the relationship. A typical example of a conservation relationship is
the ATP, ADP and AMP pool, which preserves the adenylate moiety. The con-
servation coefficients are not necessarily equal to unity; e.g. in the phosphate-
conserving relationship, ATP and ADP occur with the coefficients 3 and 2,
respectively. In these examples, the conservation coefficients indicate how many
times the conserved moiety occurs in the molecule of the given metabolite.

How can a conservation relationship be found in the stoichiometry matrix?
Let us return to the network shown in Figure 2.2. Since the concentration of the
conserved moiety C in each reaction remains unchanged; the sum of conservation
coefficients weighted by the stoichiometric coefficients is equal to zero; e.g. in
R1 we have: (−1 ∗ 0) + (−1 ∗ 1) + (1 ∗ 1) = 0. To generalise, we write:

m
∑

i=1

giN̂ij = 0 : 1 ≤ j ≤ n (2.4)

This equation can be written in a simpler manner:

N̂
T
g = 0 (2.5)
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Any solution g of this equation is a conservation vector and vice versa. The
solution space (often referred as the left null space [23]) is spanned by a non-
unique set of m−rank(N̂) linearly independent conservation vectors, which can
be arranged into a matrix G:

GN̂ = 0 (2.6)

An example is shown in Figure 2.2e. The first column in this matrix contains a
negative coefficient for C and does not correspond to any conserved moiety.

In general, only semipositive conservation relationships represent the conser-
vation of chemical units [37]. The set of semipositive solutions of Equation 2.5
is a pointed polyhedral convex cone [97]. Each vector in this set can be rep-
resented as a non-negative linear combination of a finite number of generating
vectors, which are unique up to positive multiples. These vectors correspond to
the extreme non-negative conservation relationships [37]. An algorithm for the
detection of the complete set of generating vectors has been proposed by Schus-
ter and Höfer [111]. The generating vectors for our example are the columns
of the matrix shown in Figure 2.2f. Here, the first and second columns corre-
spond to the conservation of the atoms exchanged with environment and of those
remaining within the systems boundary, respectively. Only the second relation-
ship persists in the open system and can be found in the internal stoichiometry
matrix.

The most encompassing conservation relationship in a network represents
the total conservation of mass [111]:

N̂
T
m = 0 (2.7)

The components of the conservation vector m can be considered as feasible
molecular masses of the metabolites; in a correctly defined network, all com-
ponents must be positive. The unconserved metabolites (those not involved in
any semipositive conservation relationships) indicate modelling errors [73]. This
issue is elaborated in Section 5.2 and in a recent paper of our group [33].

2.2.2 Flux-balance analysis

To reveal the essential features of metabolic systems, one often restricts the
analysis to asymptotic time behaviour (i.e. after a sufficiently long time span).
Although this behaviour may be oscillatory or chaotic, many systems reach a
steady state. The concept of a steady state is a mathematical idealisation, which
implies that concentrations and fluxes inside the system do not change within a
tolerable accuracy over a certain time span [37]. The assumption that a system
is at a steady state plays an important role in metabolic modelling, since it
enables a relatively simple approach to the analysis of fluxes based on linear
constraints.

In general, a concentration changes in time as a function of flux rates. E.g.
the rate of change of concentration of c1 in Figure 2.3 can be calculated as
follows:

dc1

dt
= v1 − v2 + v3
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Figure 2.3: A network represented as a diagram (a) and internal stoichiometry
matrix (b); two suitable null space matrices (c, d); table of reaction correlation
coefficients (e).

This can be written in the form of vectors:

dc1

dt
= (1 − 1 1 0) ·









v1

v2

v3

v4









where the left multiplier is the corresponding row in the stoichiometry matrix.
This equation can be summarised for all concentrations:

dc

dt
= Nv (2.8)

where v is the vector of flux rates and c is the vector of concentrations of internal
metabolites. At a steady state, these concentrations are constant:

Nv = 0 (2.9)

Assuming that all reactions are reversible, any solution v of this system is a
possible distribution of flux rates at a steady state.

Null space analysis The solution space of Equation 2.9 is spanned by its null
space basis of dimension n−rank(N), which can be represented as a non-unique
matrix K:

NK = 0 (2.10)

The columns of K are linearly independent solutions of Equation 2.9 and any
steady state flux vector can be written as a linear combination of these columns.

14



R1

R2

R3

R4

R5

R6

















−1 1
−1 0

0 −1
0 −1

−1 1
0 0

















a b c

Figure 2.4: a) Reaction subsets in a network. The colouring of arrows indicate
the inclusion of reactions into different subsets; the dead reaction is represented
by a dashed arrow. b) Null space matrix: the subsets {R1, R5} and {R3, R4} are
represented by proportional (equal) rows; the dead reaction R6 is represented
by a zero row. c) The ‘condensed’ version of the same network, where each
subset is replaced by a net reaction. The dead reaction R6 is removed. R2 and
R3 + R4 have the same stoichiometry, so one of them should be also removed
before analysis.

An example is shown in Figure 2.3c; the first column of this matrix represents
an internal cycle of length two and the second column is a 3-reaction pathway
converting x1 into x2.

The analysis of the null space reveals some important relationships between
steady-state flux vectors. Proportional rows in a null space matrix indicate reac-
tion subsets (also known as enzyme subsets [79]): groups of reactions whose flux
rates always remain in a fixed non-zero ratio at a steady state. E.g. in Figure 2.3,
the fluxes v1 and v4 always operate simultaneously and the corresponding rows
in the right null space matrix are identical. Another example is shown in Fig-
ure 2.4a. In this network, three subsets are present: {R1, R5}, {R3, R4} and the
singleton subset {R3}. The flux rate of R6 is zero at any steady state; such
reactions are often called dead or strictly detailed balanced reactions [113]. In
reversible networks, dead reactions are always represented by zero rows in the
null space matrix.

Since the reactions in a subset operate simultaneously at any steady state,
they are essential for each other, i.e. blocking one of them leads to a block in
the others. A number of studies indicate co-expression of enzymes catalysing
reactions involved in the same subsets [94, 112, 9].

The calculation of reaction subsets provides a possibility of simplifying a
model by replacing the reactions of each subset with one net reaction; dead
reactions can be removed, since they do not contribute anything to the steady
state fluxes (see Figure 2.4b).

While reaction subsets represent a boolean relation on the set of reactions
(two reactions are either in a subset or not), more subtle relationships may
be detected by the analysis of an orthogonal null space matrix, in which all
columns are perpendicular to each other [86]. The cosines of the angles between
the rows of this matrix are defined as reaction correlation coefficients and are
equal to Pearson’s correlation coefficients between the sets of fluxes carried by
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the corresponding reactions in all steady states. Reaction correlation coefficients
are real numbers in the interval (-1, 1), which reveal the level of ‘cooperation’
between reactions and can be used for hierarchical modular decomposition of
metabolic networks. In particular, reactions in disconnected subnetworks have
a correlation of zero and those in a subset have a correlation of 1 or -1 (see
Figure 2.3e).

Null space analysis has two important limitations: firstly, the null space
matrix is not uniquely defined for a given network; secondly, it ignores the
irreversibility constraint. An example is shown in Figure 2.3d: in this matrix,
the second column represents a pathway, which involves the irreversible flux
v3 in the backward direction. One can overcome these limitations by using
the methods of convex analysis and linear programming, whose applications to
metabolic modelling are reviewed in the following two sections.

Pathway analysis If a network contains irreversible reactions, the flux vector
can be decomposed into subvectors vrev and virr, where vrev ∈ Rr. Provided
that the directions of irreversible reactions are appropriately defined, their flux
rates are always positive:

virr ≥ 0 (2.11)

The set of flux vectors satisfying Equations 2.9 and 2.11 is a polyhedral convex
cone, referred as the flux cone [37]. This cone is located in a high-dimensional
space, where each dimension corresponds to a reaction flux. If all reactions
are reversible, the flux cone occupies the whole null space of the system; if
all are irreversible, the flux cone is the intersection of the null space and the
non-negative orthant.

Consider the network shown in Figure 2.5. Each feasible flux distribution
in this network is a point inside the trihedral flux cone, located in a three-
dimensional reaction space. The definition of a cone implies that it contains all
non-negative multiples of any of its points; hence, multiplication of a feasible flux
vector by any positive real number gives another feasible flux vector. The set of
positive multiples of some non-zero vector in a flux cone is called a flux mode.
Geometrically, each flux mode is a half-line inside the flux cone, commencing
from the origin (but not including it). Hence, it can be sufficiently characterised
by any of its points and is often denoted as a single vector (e.g. v1, v2 and v3 in
Figure 2.5). A flux mode is reversible if the opposite half-line is also within the
flux cone; this implies that all reactions entering it with non-zero coeffiecients
are reversible.

Biochemically, each flux mode is a feasible combination of flux rates at a
steady state, defined uniquely up to positive scaling. It can be also considered
as a reaction pathway in a network, starting and ending at external metabolites.
The set of reactions participating in a flux mode is represented by its support,
defined as the set of the indices of non-zero components [97]:

P (v) = {i : vi 6= 0} (2.12)
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v1: X1 → C
v2: C ↔ X2

v3: C → X3

a b

v1 v2 v3 X1 X2 X3

v1 1 1 0 −1 1 0
v2 1 0 1 −1 0 1
v3 0 −1 1 0 −1 1

c d

Figure 2.5: a, b) A network of three reactions, where X1, X2 and X3 are external.
c) Three-dimensional flux space: the axes correspond to reaction fluxes; the
marks indicate unit values. v1, v2 and v3 are feasible flux vectors representing
the elementary flux modes, which are shown as half-lines. These half-lines are
the generating vectors (edges) of the trihedral flux cone; its cross-section is
hatched. d) Table of elementary flux modes (left part) with the corresponding
net conversions (right part).
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Since the flux cone is convex, any non-negative linear combination of any
pair of feasible flux vectors is also feasible; hence, the number of flux modes in
a general case is infinite. However, some modes can be represented as super-
positions of simpler ones; e.g. the flux mode (−2 1 1)T in Figure 2.5 is
simply a sum of v1 and v2. Moreover, these two modes taken in any positive
proportions would produce different flux modes representing the same pathway
(defined as a set of reactions). Therefore, pathway analysis of metabolic net-
works often aims to detect possibly simple, irreducible pathways, which can
operate independently from the rest of the system. Two closely related con-
cepts addressing this problem are widely accepted: those of elementary flux
modes [37] and extreme pathways [103].

A flux mode v is elementary, if it cannot be represented as a non-negative
linear combination of any other two flux modes v′ and v′′, such that P (v′) ⊂
P (v) and P (v′′) ⊂ P (v). In other words, an elementary flux mode cannot be
decomposed as a sum of other flux modes without cancellation occuring in at
least one component. The set of elementary modes is uniquely defined for a
given network and has some important properties [110]:

• An elementary flux mode is uniquely defined by its support (hence, the
proportions of flux rates are fixed for the set of participating reactions).

• A flux mode is elementary iff it is minimal, i.e. its support does not contain
the support of any other flux mode as a proper subset.

• Any flux vector is a positive linear combination of vectors representing
some elementary flux modes.

From the first property it follows that an elementary mode can be sufficiently
represented by a set of reactions; the second property implies that this set is
irreducible. Hence, each elementary mode is a minimal functional unit of a
metabolic network, able to operate independently at a steady state; if only the
reactions participating in the elementary mode are active, removing one of them
would cause a cessation of steady state fluxes in the rest. According to the third
property, the set of elementary modes characterises all possible steady state flux
distributions. This set can be calculated using the algorithms given by Schuster
and Hilgetag [109] and by Urbanczik and Wagner [90].

A feasible flux vector represents an extreme pathway if it cannot be decom-
posed as a non-negative linear combination of any two feasible flux vectors. The
definition of an extreme pathway is stricter than the definition of an elementary
mode, since it does not imply that components may not be cancelled out during
addition. Hence, the set of extreme pathways is a subset of the set of elementary
modes and is also uniquely defined for a given network. In fact, it is the minimal
set of flux modes which is sufficient to represent all possible steady state flux
distributions as superpositions of its elements. The calculation of extreme path-
ways requires a reconfiguration of the network, so that each reversible reaction
is replaced by a pair of mutually opposite irreversible ones and each metabolite
is used by at most one exchange reaction.
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Geometrically, extreme pathways are the generating vectors of the flux cone.
This is also true for elementary modes, if all exchange fluxes in the network
are irreversible [57]. An example is shown in Figure 2.5c, where the sets of
elementary modes and extreme pathways coincide. Figure 2.6 shows a situation,
where these sets are different. In this network, some elementary modes can be
decomposed as positive linear combinations of others:

v3 = v2 + (−v1)
v5 = v4 + v1

v7 = v6 + (−v1)

(note that −v1 is an elementary mode). Since some components are cancelled
out in each case, these decompositions do not violate the definition of an ele-
mentary mode. However, they do violate the definition of an extreme pathway.

Each flux vector is characterised by its net conversion (net stoichiometry),
which is defined by the concentration changes occuring as the result of the flux.
The net conversion can be determined by means of the external stoichiometry
matrix:

ċ = N̂v (2.13)

where ċ is the vector of time derivatives of concentrations. Clearly, if v is
feasible at a steady state, all non-zero components of ċ correspond to external
metabolites1. Examples are shown in Figures 2.5 and 2.6. Biochemically, each
net conversion describes changes in the composition of the environment of a
system which take place when a given pathway is operated. In particular, if
the pathway is an internal cycle, its net conversion is equal to zero (e.g. v1 in
Figure 2.6). The set of all possible net conversions of a network at a steady
state is a polyhedral convex cone, referred as conversion cone [118]. This topic
is elaborated in Section 7.

Elementary modes and extreme pathways are essential structural invariants
of metabolic networks. Their number indicates the functional richness and flex-
ibility of biochemical systems. The number of independent pathways intercon-
verting the same external metabolites is a measure of pathway redundancy,
which characterises the robustness of the systems [78]. However, using the two
approaches may lead to different results [57, 77]; e.g. in Figure 2.6 each non-
zero net conversion is performed by two elementary modes, but only one extreme
pathway.

Pathway analysis provides a possibility of predicting essential enzymes and
genes, whose deletion prevents particular metabolic functions [108]. The calcula-
tion of elementary modes enables the detection of minimal cut sets - irreducible
sets of reactions in a network whose inactivation results in the failure in a certain
function of the system [55]. The potential applications of this concept include
drug target identification.

The calculation of elementary modes and extreme pathways is an NP-hard
computational problem, which often leads to a combinatorial explosion in large

1Exceptions from this rule are possible in incorrectly defined networks, see Section 5.2
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R1: xA ↔ A
R2: A ↔ B
R3: xB ↔ B
R4: B ↔ C
R5: A ↔ C
R6: xC ↔ C

a

b

R1 R2 R3 R4 R5 R6 xA xB xC
v1 0 1 0 1 −1 0 0 0 0
v2 1 1 −1 0 0 0 −1 1 0
v3 1 0 −1 −1 1 0 −1 1 0
v4 1 0 0 0 1 −1 −1 0 1
v5 1 1 0 1 0 −1 −1 0 1
v6 0 0 1 1 0 −1 0 −1 1
v7 0 −1 1 0 1 −1 0 −1 1

c

Figure 2.6: a, b) A network of six reactions. c) Table of elementary flux modes
(left part) and the corresponding net conversions (right part); only one direction
of each mode is shown. v1,v2,v4 and v6 are the extreme pathways.
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models. The efficiency of the algorithms can be improved by applying them to
‘condensed’ models (see Figure 2.4b); however, the calculation of a complete set
of elementary modes in genome-scale models remains a serious computational
challenge. An alternative approach to pathway analysis is described in the next
section.

Linear programming methods Despite the enormous number of possible
flux distributions in metabolic systems (the number of elementary modes in
genome-scale models may exceed a million), in many cases only a few of them
are physiologically meaningful and represent a practical interest. Such optimal
states of the system can be predicted using the mathematical technique called
linear programming.

A function f of variables x1, ..., xn is called a linear form if it can be written
as c1x1+...+cnxn (or cx in a vector form), where the coefficients ci are constant
real numbers. f is called an affine function if it is the sum of a linear form and
a constant: f(x) = cx+d. A linear constraint is a linear equality or inequality,
e.g. aTx = 0 or aT x ≤ 0. A set of linear constraints can be written in a matrix
form, e.g. Ax = b or Ax ≤ b, where each row of the matrix A corresponds to
one linear constraint.

A linear program (LP) is an optimisation problem where an affine function
is required to be optimised (maximised or minimised) subject to a finite set of
linear constraints [119]. A linear program can be written in the canonical form:

Minimise cx + d
Subject to Ax ≤ b

Where x ≥ 0
(2.14)

where x represents the vector of variables to be determined, while the vectors c
and b, the real number d and the matrix of coefficients A are known (note that
an equality aT x = 0 can be written as a pair of inequalities aTx ≤ 0, aTx ≥ 0).
The affine function to be minimised is called objective function. The set of
solutions satisfying the system of linear constraints is a convex polyhedron,
termed the feasible region. Hence, the aim of linear programming is to optimise
the objective function within the feasible region. The methods developed for this
purpose include the well known simplex algorithm, introduced by G. Dantzig in
1947. These methods are implemented by a number of commercial and open-
source LP solvers, such as GLPK† and Lindo†.

In metabolic modelling, the linear constraints circumscribe the limits of the
possible systems behaviour, within which any actual metabolic phenotype of
the cell must lie [21]. In the previous sections, we introduced three important
sets of linear constraints which govern metabolic systems: mass conservation
(Equations 2.5 and 2.7), flux balance at a steady state (Equation 2.9) and
positivity of fluxes in irreversible reactions (Equation 2.11). A special case of a
feasible region is the flux cone, defined by Equations 2.9 and 2.11. The region
of feasible flux vectors can be reduced by applying additional constraints, e.g.
upper bounds of the flux rates in some reactions, based on a knowledge of
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enzyme capacities [89]. For instance, in Figure 2.5, the maximal rates in v1, v2

and v3 could be set to 1:

Subject to Nv = 0
Where 0 ≤ vi ≤ 1, 1 ≤ i ≤ n

(2.15)

This would limit the feasible region to the flux cone closed by its cross-section,
which is shown as the hatched triangle. In addition, the rates in some reactions
can be fixed to constant values. In particular, setting a flux rate to zero implies
the removal of a given flux and thereby can simulate an enzyme or gene deletion.
The objective function may involve a single variable (e.g. maximising the flux
in a given reaction) or a group of variables (e.g. minimising the total flux in
a pathway). One of the typical objectives is the optimisation of growth rates,
measured as the flux in biomass synthesis reactions [19, 43].

One of the potential issues associated with linear programming is that only a
single solution can be calculated, whereas multiple solutions with equal values of
the objective function may exist. A set of alternative solutions can be calculated
using the methods of mixed-integer linear programming (MILP), which assume
that some variables may be assigned only integer values [80]. However, the
computational complexity of MILP problems is higher than that of LP problems.

2.2.3 Graph-theoretical methods

Graph theory is the study of graphs: mathematical structures used to model
pairwise relations between objects from a certain collection. A graph is defined
as an ordered pair (V, E), where V is a non-empty set of vertices and E is a set
of pairs of vertices, called edges. If the edges are ordered pairs, then the graph
is directed (digraph). The definition of a graph may include weights : numerical
values assigned to edges.

Vertices usually represent objects and edges represent relations or connec-
tions between them. An edge connects two vertices, which are said to be inci-
dent to it and adjacent to each other. The degree of a vertex is the number of
edges incident to it. A path is a sequence of vertices and edges, where consec-
utive elements are incident; the path length is defined as the number of edges.
Two vertices are connected if there exists a path between them. A graph is
connected if all of its vertices are connected and disconnected otherwise; the
connected components of a graph are its connected subgraphs.

A number of approaches exist to graph representation of metabolic networks.
In a substrate graph, the metabolites are represented as vertices and connected
by edges, if they occur in the same reaction. In a reaction graph, the ver-
tices represent reactions, which are connected if they use at least one common
metabolite [122]. In a bipartite metabolic graph, both reactions and metabolites
are represented as disjoint sets of vertices, where the edges connect the reactions
to the metabolites they interconvert. A bipartite graph completely preserves the
information present in a stoichiometry matrix, including the stoichiometric co-
efficients, which can be encoded as edge weights. Graphs are often depicted as
diagrams, where vertices and edges are represented by points (circles) and lines
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R1: xA → A
R2: A → 2 B
R3: B → xB1
R4: B → xB2

a b

c d

 R1

D-Glucose 6-phosphate ADP

ATP Glucose

 R2

D-Fructose 6-phosphate

alpha-D-Glucose 6-phosphate

e f

Figure 2.7: The same network (a) represented as a substrate (b), reaction (c)
and bipartite (d) graph. In the bipartite graph, the unit edge weights are not
shown. Deleting R2 results in a disconnected network (e). Inconsistent naming
of the same metabolite (D-glucose 6-phosphate/α-D-gucose 6-phosphate) gives
rise to another disconnected network (f).

between adjacent vertices, respectively; the edge directions in a digraph can be
indicated by arrows (Figure 2.7).

Wagner and Fell, 2001 analysed the metabolic graph of E. coli and con-
cluded that it shared the characteristics of a small world network, where any
node can be achieved from any other by a relatively small number of steps [122].
Arita, 2004 proposed to connect metabolites in a graph only if carbon atoms
are transferred between them [2]. The Petri net approach, based on the use of
directed bipartite graphs, may be used to detect some important system prop-
erties and structural patterns [121, 128]. Efforts have been made to develop
methods of hierarchical decomposition of metabolic graphs [29] and to detect
relatively independent functional modules [92, 66]. Damage analysis [61] is a
graph-theoretical method investigating the influence of the knock-out of individ-
ual enzymes on the function of the network, by counting the number of blocked
reactions. The network expansion method [18] analyses network topology to
detect metabolites that can be produced from a given set of substrates. A
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modification of this method predicts nutritional requirements of organisms [36].
Graph-theoretical analysis can be used for the detection of modelling er-

rors [84]. Complete metabolic networks of organisms are usually assumed to
be connected. This assumption is obvious if an organism is able to grow on a
simple medium, containing single carbon, nitrogen and phosphate sources. The
situation is less clear if an organism requires essential amino acids and cofactors.
However, even then it may be assumed that all metabolites participate in the
paths leading to protein, nucleic acids and other biomass constituents. Hence, a
disconnected network can be considered as an error. The typical causes of dis-
connectedness include missing reactions (Figure 2.7e) and inconsistent naming
of metabolites (Figure 2.7f). In terms of graph theory, disconnected subnet-
works can be identified as multiple connected components, e.g. {xA, R1, A}
and {B, R3, xB1, R4, xB2} in Figure 2.7e).

Orphan metabolites are the internal metabolites with a degree of one (i.e.
used by only one reaction), e.g. Z in Figure 2.4. Since the concentrations of
such metabolites are not balanced and the reactions involving them are dead,
their presence also indicates modelling errors. Dead-end metabolites are those
only consumed or only produced; the concentration of such a metabolite can
be balanced only if it is not an orphan and at least one reaction using it is
reversible.

The ‘Core’ algorithm (Poolman, unpublished) removes the orphan metabo-
lites, extracting the stoichiometrically flux-balanceable, ‘core’ part of a metabolic
network. The algorithm is iterative: in each iteration, those reactions involving
orphans are removed from a network (thus new metabolites may become or-
phans); the algorithm terminates, when the network contains no more orphans.

2.3 Construction of genome-scale models

The recent success of genome sequencing projects and the development of func-
tional annotation tools provide an opportunity to considerably enhance the
knowledge of physiology and biochemistry of organisms, by reconstructing their
metabolic networks computationally from genome data. Such reconstructions
are called ‘genome-scale’, since all reactions that can be identified in a genome
annotation are included in the model. The possible steps of the construction
of a genome-scale model are implied by the standard pathway of information
flow [84]:

DNA → RNA → enzymes → reactions → metabolites (2.16)

These steps may include: functional annotation of the genome; selection of
the set of relevant enzymes; its translation into a set of catalysed reactions and
further into a set of interconverted metabolites; definition of the feasible reaction
directions and of external metabolites.
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2.3.1 Genome annotation

Many sequenced genomes are available in public databases, such as NCBI†,
KEGG and TIGR†. Functional annotation refers to the identification of open
reading frames in a sequenced genome and to the assignment of functions to
them. The most common approach to gene function prediction is based on
searching for sequence homologies between the putative genes and molecules of
known functions in other organisms. It is anticipated that orthologous genes
are likely to carry similar functions in most cases, although it is known that the
enzyme specificity may be changed by a single change in the sequence. Further,
the functions of enzymes used as references may be themselves assigned as a
result of a homology search, thereby increasing the probability of missannota-
tions [25]. On the other hand, the description of the complete functionality of a
protein is impossible beyond the context of the metabolic network [28]. A range
of computational tools have been developed to aid the automated annotations,
such as metaSHARK [81], BioMiner [65] and Pathway Tools [51]. Many anno-
tations can be obtained together with the genomes from public databases, such
as KEGG. The enzymatic functions of proteins are represented by EC (Enzyme
Commission†) numbers [4].

PRIAM [12] is a database of automatically generated position-specic scoring
matrices (PSSM, also called profiles) associated with entries in the ENZYME†

database [4]. Each profile in PRIAM is generated by applying a PSI-BLAST
search to a set of enzymatic sequences sharing an EC number. Hence, it can
be considered as a descriptor of the given EC number; some EC numbers are
described by multiple profiles. The PRIAM July 2006 release (corresponding to
ENZYME release 39) was used in the current work. Unfortunately, the database
does not cover most of the currently known EC numbers (see Table 4.6e).

RPS-BLAST [67] uses a BLAST-like algorithm to search a query sequence
against a database of profiles (in contrast to PSI-BLAST, which searches a
profile against a database of sequences). The database must be provided in a
separate file; in our work, the PRIAM database was used. As the input, the
program uses a nucleotide sequence file in the FASTA format, which may contain
multiple sequences (e.g. predicted ORFs in a genome). For each sequence, the
program reports the profiles (hits), whose alignment against the query sequence
produces an E-value (expectation value: the number of matches as good as the
observed one that would be expected to appear by chance [62]) lower than a
certain threshold value, which is supplied as an additional parameter. The result
is sent to the text output, which represents a sequence of records associated with
ORFs.

An example of RPS-BLAST output record is shown in Figure 2.8a. It con-
sists of two parts: the upper part contains meta-information, while the lower
part (starting from the word ‘Fields’) represents a table of predictions. The
table contains three rows, each of them corresponding to a single hit. The first
entry is identical in all rows and shows the query ID (in this case, the gene
identifier sag:SAG0030). The second entry (subject ID) shows the profile name,
which consists of a number, followed by the letter ‘p’ and the EC number de-
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# RPSTBLASTN 2.2.13 [Nov-27-2005]

# Query: sag:SAG0030 purH; bifunctional phosphoribosylaminoimidazolecarboxamide

formyltransferase/IMP cyclohydrolase (EC:3.5.4.10 2.1.2.3);

K00602 phosphoribosylaminoimidazolecarboxamide formyltransferase [EC:2.1.2.3];

K01492 IMP cyclohydrolase [EC:3.5.4

# Database: /usr/local/share/bio/Priam/DATA/RPSBLAST_MAT_EZ/profile_EZ

# Fields: Query id, Subject id, % identity, alignment length, mismatches,

gap openings, q. start, q. end, s. start, s. end, e-value, bit score

sag:SAG0030 1p3.5.4.10 60.34 532 192 6 7 1545 2 533 0.0 885

sag:SAG0030 1p2.1.2.3 60.34 532 192 6 7 1545 2 533 0.0 885

sag:SAG0030 1p3.4.24.13 18.40 326 255 10 598 1542 1169 1435 7e-07 48.9

Figure 2.8: A record in an RPS-BLAST/PRIAM output containing an annota-
tion of the gene SAG0030.

scribed by the profile. The following entries show the alighnment parameters,
namely percentage of identical letter pairs, the overall length of the alignment,
the number of mismatched letter pairs, the number of gap openings, the starting
and ending coordinates of the query sequence (q. start, q. end) and subject
sequence (s. start, s. end), the E-value and the bit score. The rows of the
table are ordered by an ascending E-value and descending bit score; hence, the
higher rows represent the more significant hits. In the example shown, the EC
numbers 3.5.4.10 and 2.1.2.3 are predicted with the lowest possible E-value of
0.0, while 3.4.24.13 produces a relatively high E-value of 7 · 10−7.

2.3.2 Definition of a reaction set

The list of EC numbers encoded in a genome can be translated into a list
of metabolic reactions with the aid of biochemical databases, such as KEGG
LIGAND, BioCyc and BRENDA. BioCyc contains pathway-genome databases
(PGDBs) for completely sequenced species, each of them describing the genome
and the predicted metabolic network for a certain organism. The main prob-
lems at this stage include the lack of information about the reactions catal-
ysed, incorrectly defined reactions (e.g. some metabolites may be skipped in
the stoichiometries) and the inconsistent naming of metabolites. Apart from
the reactions catalysed by the known enzymes, the reaction list may include
hypothetical reactions, which often belong to the following types:

• spontaneous reactions, such as hydrolysis of carbonic acid;

• generalised reactions representing complex biosynthesis processes, such as
protein synthesis;

• transport reactions, whose inclusion is often based on the knowledge of
nutrients and end products, rather than the annotation;

• expenditure reactions, which generalise the consumption of currency metabo-
lites, such as ATP and NADH.
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Figure 2.9: Input and structural errors in metabolic reconstruction. The ele-
ments of the model represent the elements of the underlying system. An input
error is an incorrect representation of an element. It may further lead to a
structual error: an internal inconsistency in the model.

2.3.3 Detection and correction of errors

Constructive interrogation of large, automatically generated models is associ-
ated with specific problems. Such models typically contain large numbers of
errors, whose detection is especially difficult, given that the elements of a model
and their identifiers (names) are determined by the database, not the mod-
eller [84]. In the current thesis, we make a distinction between two classes of
errors: input errors and structural errors (see Figure 2.9). Some common types
of problems in input data are listed below:

• missannotations;

• atomically unbalanced reactions: some metabolites, such as protons, are
often skipped in reaction definitions in databases; more considerable vio-
lations are also possible, e.g. in the following reaction2:

4-Methylene-L-glutamate ↔ 4-Methylene-2-oxoglutarate

nitrogen, oxygen and hydrogen are unbalanced.

• generic metabolites, e.g:

Primary alcohol + Acceptor ↔ Aldehyde + Reduced acceptor

2All examples of errors in this section are found in the KEGG database, release 29.
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• polymers with variable degrees and units of polymerisation; e.g. the fol-
lowing pair of reactions:

ATP + tRNA ↔ Pyrophosphate + tRNA
CTP + tRNA ↔ Pyrophosphate + tRNA

implies that ATP and CTP are isomers.

• inconsistent naming of metabolites (see Figure 2.7f).

Some of these problems can be detected before or during model construction
(see Section 4.1.1); unfortunately, many of the input errors (especially the mis-
sannotations) remain unrevealed. Structural errors result from input errors and
violate certain physical and biochemical constraints inside the model, such as
mass conservation and ability to achieve a steady state. Some types of the
structural errors can be detected by the analysis of the whole model; they in-
clude orphan metabolites, dead reactions, disconnected subnetworks [84] and
stoichiometric inconsistencies [33]. Isostoichiometric reactions (i.e. those with
identical or proportional stoichiometries) can be also considered as structural
errors, since they represent redundant information and form spurious internal
cycles, e.g. v2 and v3 in Figure 2.3a.

The identification of missing reactions in metabolic models is commonly re-
ferred to as gap analysis or gap filling; in genome-scale models, this process
may result in annotation or reannotation proposals [74]. Gap filling may be
based on literature search or homology search in sequence databases. A num-
ber of methods have been developed for the automatisation of the gap filling
process, using linear optimisation. The programs GapFind and GapFill [99]
resolve the dead-end metabolites in a model (referred by the authors as root
no-production and root no-consumption metabolites) by a minimal combina-
tion of editing operations, including reversing reaction directionalities, adding
new reactions from the MetaCyc database and adding transporters. A method
has been proposed for restoring the ability of a model to grow in experimentally
observed conditions by adding a minimal number of reactions from a database
and transporters for excretion [93]. The GIMME algorithm [7] aims to reconcile
a metabolic reconstruction with gene expresssion data.

2.4 Metabolic modelling software

Software development is an important part of the present-day research in sys-
tems biology. Only very simple, conceptual systems can be handled manually;
practical applications of the existing methods require intensive use of computa-
tional tools.

2.4.1 Overview of existing tools and formats

Common scientific packages, such as Mathematica† and MatLab†, are widely
used in metabolic modelling. However, the solution of specific problems often

28



requires development of specialised software. A variety of tools have been cre-
ated for kinetic modelling, such as Gepasi [69], SCAMP [101], Jarnac [100] and
PySCeS [76].

METATOOL [79] was one of the pioneering tools designed particularly for
stoichiometric analysis. Being operated from a command line, it calculates the
convex basis of a flux cone, elementary flux modes and reaction subsets (termed
by the authors as ‘enzyme subsets’). A graphical user interface to METATOOL
is provided by YANA [114], which also integrates structural models with pro-
teomics and gene expression data. The toolbox SNA [117] calculates, in addition
to elementary flux modes, the elementary vectors of a conversion cone (see Sec-
tion 7). Stoichiometric analysis methods are provided by CellNetAnalyzer [56]
and Copasi [41] (successor of Gepasi).

Various formats have been introduced for the description of metabolic mod-
els. Gepasi, METATOOL and PySCeS use their own formats which are intended
to be readable and editable by humans. Jarnac defines own programming lan-
guage for the description and interrogation of models.

SBML† (Systems Biology Markup Language) [42] is an open-source, software-
independent format for representing biochemical reaction networks, which ex-
tends the standard data-description language XML. SBML is increasingly pop-
ular in the metabolic modelling community and supported by a wide range
of software tools. Other XML-based formats used in systems biology include
CellML [63], KGML (used in KEGG database) and the native format of Copasi.

2.4.2 Software design: concepts and patterns

The process of software production may involve several major phases [10]:

• Requirements analysis: identifying what is needed from the software.

• Specification: defining what the software is to do.

• Design: describing how the system is to perform its tasks.

• Implementation: translating the design into a form usable by a computer
(e.g. a programming language).

• Testing: validation of the implementation.

In the current thesis, we mainly focus on the first three phases. Although the
solutions developed at these steps can be formulated in a human language,
their understanding requires the knowledge of some concepts concerning the
objectives and methods of software design. Apart from adequately addressing
the specified needs, the desirable qualities of a software system often include the
following attributes [47]:

• Efficiency: processing time, memory and disk space should not be wasted.

• Reusability: a solution should be applicable to a whole class of problems,
rather than address a single problem in a single context.
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• Extensibility: it must be possible to add new capabilities to existing soft-
ware without major changes in its implementation.

• Usability: the user interface must be comprehensible and learnable.

The reusability and extensibility of software systems is often achieved by means
of modular design: decomposition of complex systems into sets of relatively sim-
ple modules, which must be highly cohesive but loosely coupled [47]. The imple-
mentation of design solutions is largely defined by programming paradigms : the
fundamental styles of problem solving underlying the programming languages.
In the procedural (imperative) paradigm, a program is a sequence of statements,
which can be structured into procedures (functions) performing specific tasks. A
procedure receives a list of arguments and returns a result; the same procedure
can be executed with different arguments in different contexts. In the object-
oriented programming (OOP) paradigm, a program is formulated in terms of
objects and their interactions. Table 2.1 introduces some of the basic concepts
of OOP, mentioned further in the chapter.

The productivity of software development process can be improved by using
design patterns, which capture general reusable solutions to commonly occur-
ring problems. These solutions have typically developed and evolved over time
and do not depend on the programming language, nor on the specific field of
application. Design patterns gained popularity in computer science due to the
book ‘Design Patterns: Elements of Reusable Object-Oriented Software’ [31].

2.4.3 Python programming language

Python† [64] is an open-source, high-level programming language. One of the
main advantages of Python is the productivity of work with it: the program-
ming time is about half as long in comparison to lower-level languages, such
as C, C++ and Java [87]. The high productivity of Python is provided by its
clear, well readable syntax, the absence of a compilation step and the use of
efficient, universal built-in data types, such as lists and dictionaries (see Ta-
ble 2.2). Further, the readability of Python and such features as automatic
memory management make it relatively error-safe.

Python is a multi-paradigm language, supporting procedural, object-oriented
and functional programming [116]. In addition to classes, the elements of mod-
ular design in Python include modules (source code files) and packages (folders)
which provide interfaces of their own.

Due to the availability of an interactive console, Python can be used as
an environment for both writing and executing programs, thus facilitating in-
cremental development and testing. This feature is utilised by the metabolic
modelling tools ScrumPy and PySCeS, which provide access to a Python con-
sole.

Although Python programs are less efficient than those written in C or C++,
this disadvantage can be circumvented by encoding time and memory-critical
components in C and embedding them into Python programs using the SWIG†

technology. A variety of Python libraries and packages are available for scientific

30



Table 2.1: Concepts of object-oriented programming [22, 47, 116, 31]

Concept Description
Encapsulation Grouping of logically related data and functional-

ities into a new entity.
Object Primary unit of decomposition in OOP. Encapsu-

lates data and procedures; has a unique identity
and state.

Class A set of objects with a similar structure and be-
haviour. Each object is an instance of its class.

Built-in types Basic data types defined by a programming lan-
guage, such as numbers and characters.

Attributes Data encapsulated in an object.
Methods Procedures encapsulated in an object.
Initialisation The process of creating an object.
Constructor A special procedure initialising an instance of the

class in which it is defined.
Interface A set of methods and attrubutes by which an ob-

ject can be accessed; typically hides the details of
implementation.

Abstraction A mechanism by which an interface can be spec-
ified independently from the details of implemen-
tation.

High-level Providing strong abstraction from details.
Client A user or a piece of software which uses a given

object
Defined statically Defined in the source code.
Defined dynamically Defined during the execution of the program.
Inheritance A mechanism by which the attributes and meth-

ods of one class (superclass) can be extended in
another class (subclass); defined statically.

Overriding Defining a new implementation for an inherited
method in a subclass.

Abstract method Method with no implementation, designed as a
part of an interface; to be overridden in subclasses.

Composition A mechanism by which new functionalities can be
created by using objects in ensemble; defined dy-
namically through object acquiring references to
other objects.

Aggregation A mechanism of composition, by which one ob-
ject (aggregatee) acts as a component of another
object (aggregator).

Delegation A mechanism of composition, by which one object
receives a request from a client and sends it to
another object.

31



tasks, including SciPy†, NumPy† and BioPython†. Python is portable on all
major operating systems.

2.4.4 ScrumPy: metabolic modelling in Python

ScrumPy† is an open-source metabolic modelling package, developed in our
group. The program is implemented in Python (although certain time-critical
algorithms are coded in C). The user interface of ScrumPy is the Python console
and the input of requests is performed in the form of Python statements (see
Figure 2.10a). In addition, pieces of code can be written in separate source
files and executed from the console. The close integration of modelling and
programming processes results in the following advantages of ScrumPy over
command line and GUI-based modelling tools:

• Flexibility: the range of operations applicable to a model is restricted
solely by the user’s programming skills and the capabilities of Python.

• Transparency: the user has an almost full control over the behaviour of a
model (except for the low-level computations).

• Extensibility: new data structures, methods and algorithms can be added
to ScrumPy in the form of modules and packages.

• Reusability: any sequence of operations once applied to a model can be
stored in a source file and re-executed. The same solutions can be used in
different contexts.

• Efficiency: no system resources are expended for the support of complex
graphical user interfaces.

• Usability: the syntax of Python is simple and intuitive; a comprehensive
system of nested menus and widgets is unnecessary.

A metabolic model is encapsulated in an object of the class Model, which con-
tains references to the internal and external stoichiometry matrices. A stoi-
chiometry matrix is represented as an object of the class StoMat, which asso-
ciates the rows and columns with unique names; it also defines the lists of ex-
ternal metabolites and irreversible reactions as attributes. A model can be rep-
resented and stored in a special plain-text based file format (see Figure 2.10b).

ScrumPy provides methods of both kinetic and structural modelling, in-
cluding the calculation of elementary modes (implemented in C), reaction sub-
sets, conservation relationships, reaction correlation coefficients and some graph-
theoretical methods. Numerical errors can be avoided due to the use of arbitrary-
rational numerical types provided by the package GMP†(GNU multiple precision
arithmetic library).

A number of extensions to ScrumPy are available in the form of separate
packages, such as Kegg2 and PyoCyc, which are intended for the interrogation
of the KEGG and BioCyc databases, respectively. The package glpk provides
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Table 2.2: Built-in types and classes with examples of usage in the current work.
The original classes listed in the table are described in chapter 3.

Type, class Description Can represent
Built-in Python types
str string metabolite name: "water"
bool boolean liveness of a reaction: True

or False
int integer number stoichiometric coefficient: 1
float floating point number correlation coefficient: 1.0
tuple immutable ordered collection correlation coefficient with

the p-value: (1.0, 0.0)

list mutable ordered collection genes in a genome:
[SAG0001, SAG0002]

dict dictionary associating unique
keys to values

reaction stoichiometry:
{a:-1, b:1} means ‘a → b’

ScrumPy classes
matrix matrix in which rows and

columns are associated with
unique names

arbitrary matrix

StoMat subclass of matrix; provides
some methods of stoichio-
metric analysis

stoichiometry matrix

Model encapsulates a metabolic
model; contains an external
and internal stoichiometry
matrices as attributes

metabolic model

Original classes
Set unordered collection enzymes encoded by a gene
Relation dictionary associating keys

with sets
relation between genes and
encoded enzymes

Record dictionary with a unique ID description of an enzyme in a
metabolic database

Database dictionary associating IDs
with records

metabolic database

MtxLP encapsulates an LP LP based on a given coeffi-
cient matrix

System dictionary of genes, enzymes,
reactions and metabolites

a layer in an integrated
metabolic reconstruction
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an object oriented Python interface to the linear programming solver GLPK†.
A range of ScrumPy extensions have been developed in the scope of the current
work; these are described in the following chapter.
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a

Structural()

External(x1, x2)

v1: x1 -> c1 ~

v2: c1 -> c2 ~

v3: c2 -> c1 ~

v4: c2 -> x2 ~

b

Figure 2.10: a) The ScrumPy user interface. The first statement in the Python
console initialises the metabolic model stored in the file ‘simple.spy’ (shown in
Figure 2.3a). The second statement shows the text representation of the exter-
nal stoichiometry matrix. b) The same model represented in ScrumPy format:
the first line indicates that the model is structural; the second line defines the
list of external metabolites; the following lines define reaction names and sto-
ichiometries (the arrow symbol ‘->’ indicates that a reaction is irreversible).
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Chapter 3

Software Development

Software development on its own right was not an objective of the current
project; our in-house tool ScrumPy [82] was used for metabolic modelling at all
stages of the work. Nevertheless, the solution of various problems arising during
the construction and analysis of models led to the necessity of new software
development. This necessity was determined by two major reasons: firstly,
original analysis methods were developed and needed implementation; secondly,
a range of external data resources and tools was employed and interfaces were
required between these and ScrumPy.

The software was implemented in the Python programming language in the
form of extensions to ScrumPy. Although these extensions were developed
with particular current problems in mind, they were aimed to represent pos-
sibly accomplished and reusable components rather than ad hoc solutions. The
achievement of this objective was facilitated by the employment of existing de-
sign patterns [31]. The resulting software was organised into several packages
representing relatively independent functional units.

In this chapter, we describe the packages Utils, LP, Source and Bio (see
the CD attached), focusing on the basic design solutions and the implementation
of the existing analysis methods. The implementation of original methods is
described in the following chapters.

3.1 Utility functions and classes

The package Utils provides a variety of basic, general-purpose functinalities,
which are intended for three major purposes: implementation of mathemati-
cal routines, providing universal data structures for information storage, and
connecting ScrumPy to external software.
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Table 3.1: Design patterns [31] and their applications in the current work.

Pattern name Intent Applications
Factory method Define an interface for creat-

ing objects, without specify-
ing their exact class.

Initialisation of databases
and integrated metabolic
reconstructions.

Singleton Ensure that a class has only
one instance.

Initialisation of a KEGG
database object.

Composite Compose objects into tree
structures to represent part-
whole hierarchies.

Structure of databases and
integrated metabolic re-
constructions.

Decorator
(Wrapper)

Attach additional responsi-
bilities to an object dynam-
ically; alternative to inheri-
tance.

Multilayered structure of
an integrated metabolic re-
construction.

Facade Provide a unified interface to
a set of lower-level interfaces.

Unified interface to the
subdatabases of KEGG
LIGAND. Interface to
databases and analysis
methods provided by
an integrated metabolic
reconstruction.

Proxy Provide a surrogate or place-
holder for another object;
create expensive objects on
demand.

Initialisation of element
objects in an integrated
metabolic reconstruction.

Strategy Define a family of algorithms,
encapsulate each one, and
make them interchangeable.

Lexical analysers, parsers
and field editors for KEGG
database.
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3.1.1 Mathematical routines

Although ScrumPy provides built-in methods for the work with matrices, se-
quences and sets, additional functionalities were required. Since these function-
alities apply to already existing instances of data structures, they were imple-
mented procedurally (except for the class Annealer) and organised into several
modules1, described below.

Module Round This module is designed for handling round-off errors: a fre-
quent issue occuring in computations involving floating-point numbers. Such
numbers are represented in computers with a final precision, termed as ma-
chine accuracy2. In typical 32-bit computers, the machine accuracy is around
3×10−8 [88]. The module defines the constant ZEROVAL = 10−8 and simple pro-
cedures for comparing numbers with this constant: any number with a smaller
absolute value is assumed to be equal to zero. This comparison is used in matrix
and LP calculations to provide a tolerable accuracy of results.

Module Sto Reaction stoichiometries can be conveniently represented in the
form of Python dictionaries, with keys and values corresponding to metabolite
names and coefficients, respectively, as shown in Table 2.2. This module defines
procedures operating on these dictionaries, such as comparision, multiplication,
normalisation, extraction of substrate and product sets.

Module Mtx Defines a range of procedures operating on matrices represented
as instances of the ScrumPy class StoMat. The functionalities provided by this
module include the following:

• Comparing matrices, their rows, columns and elements with zero, in re-
spect of the tolerable floating point accuracy.

• Comparing a pair of matrices, detection of equal columns regardless of the
order of rows.

• Detection of proportional rows.

• Null-space analysis methods, including detection of dead reactions and
reaction subsets in a null-space matrix containing floating point numbers
(the corresponding ScrumPy methods are applicable to matrices of arbi-
trary precision numbers only).

• Reaction correlation analysis of stoichiometry matrices.

• Editing operations on stoichiometry matrices, such as creation of a column
representing a given stoichiometry.

1Note that the word module here and further in the chapter refers to Python source files,
rather than to the general meaning of modules in engineering and systems theory.

2More precisely, machine accuracy is the smallest floating point number which, when added
to the floating point number 1.0, produces a floating point number different from 1.0.
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• Operations on boolean matrices representing binary relations, such as find-
ing the union of two relations.

Module Connect Implements graph-theoretical analysis of stoichiometry ma-
trices, including detection of connected components, orphan metabolites and the
‘Core’ algorithm.

Module String Defines procedures for parsing, editing and generating strings,
including those representing reaction equations and EC numbers.

Module Comp Implements the calculation of elementary substrate and prod-
uct compositions (see Chapter 7).

Module StoiCons Implements the detection of minimal inconsistent net sto-
ichiometries and elementary leakage modes (see Chapter 7).

Module Annealing Defines the class Annealer, which provides a generic im-
plementation of the simulated annealing algorithm (see Chapter 6).

3.1.2 Data structures

The classes described below are intended to provide a collection of universal
structures for parsing, editing, storing and interrogating data. To achieve this
objective, the functionalities of built-in Python types (namely lists and dictio-
naries) were extended with new capabilities including serialisation (i.e. storing
objects in files) and certain features of relational databases. Two mechanisms of
serialisation are supported: 1) the standard Python mechanism called cPickle†

and 2) storing and parsing text files, for which special methods are provided.
The inheritance hierarchy and composition of classes is shown in the upper part
of Figure 3.1.

Class IOContainer Provides an interface to cPickle. Methods for generating
and parsing text representation are declared.

Class IOList Subclass of IOContainer and Python list.

Class IODict Subclass of IOContainer and Python dict.

Class Set Implements basic set-theoretical operations and parsing/storing
methods for the text representation of sets in the form of comma-separated
values. The module also provides functions for set distance calculation.
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Class Relation A dictionary associating each key with a collection of objects,
which is internally represented as a Set object. In the text representation, in
each line a key is followed by a tab and the text representation of the corre-
sponding set. An example is shown below:

SAG0850

SAG0884 1.1.1.1, 6.3.2.7

SAG1391 4.2.1.58, 6.3.2.7

None 1.3.1.10, 1.5.1.12

The first three lines show gene identifiers SAG0850, SAG0884 and SAG1391
followed by the lists of EC numbers of the enzymes encoded by the correspond-
ing genes, whereby SAG0850 encodes nothing. Note that each element in the
sets can be associated with more than one key; e.g. 6.3.2.7 is encoded by two
genes. The last line starts with the default key None, followed by those enzymes
encoded by none of the genes. Hence, the class Relation represents a many-to-
many relation between two sets (in this example - sets of genes and enzymes)3.
Although such relations are typically represented as binary matrices, the dictio-
nary representation has some advantages, including low memory consumption
(no memory is occupied by empty elements of the matrix) and availability of
the highly efficient search by key. By calling the GetReverse() method, the
reverse representation of the same relation can be obtained:

1.1.1.1 sag:SAG0884

1.3.1.10

1.5.1.12

4.2.1.58 sag:SAG1391

6.3.2.7 sag:SAG0884, sag:SAG1391

None

The class provides a range of methods for editing and selecting keys, elements
or subrelations according to various criteria.

Class Record Associates each key with a list or a dictionary representing a
data field; in addition, contains the string attribute ID and implements text
representation, e.g:

Water:

Formula: [’H2O’]

Reaction: [’R00001’, ’R00002’, ’R00004’]

Canonical SMILES: [’O’]

Mass: [’18.0106’]

This is an example of a record describing Water; the top line contains the ID,
each of the remaining lines shows a key followed by a colon and the content of
the corresponding field.

3The text format described here (except the None key) is used in the KEGG database for
storing annotated genomes.
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Class Database Associates each key with a unique record, whose ID is iden-
tical to the key. In addition, contains a Relation object which associates the
values of certain fields to the IDs of the corresponding records, thus imple-
menting database indexing. E.g. in a database of metabolites, the IDs could
represent the names (as in the example above) and the indexing relation could
associate the reactions with the metabolites used.

Implements a range of selection methods. Each selection method returns a
group of records satisfying a given query, which is organised as a new database,
e.g:

>>> subDB = DB.Select(key = ’REACTION’, value = ’R00001’)

In this example, the method Select returns a subdatabase of all metabolites
used by the reaction R00001.

The design of this class uses the pattern Composite, i.e. some methods of
the class are delegated to the components, namely the records. For instance, the
text representation of a database is simply a sequence of text representations
of its records. A database can be parsed from an external resource (the parsing
method must be implemented in a subclass) and stored in a cPickle or text file.

3.1.3 Interfaces to external software

Module Latex Represents data in the Latex† format, which is used by the
typesetting system of the same name.

Module NJ Represents hierarchical data in and parses them from the Newick†

tree format, which is used by the NJplot† tree viewer.

Module Layout Uses the package Pydot† for representing metabolic networks
in the form of bipartite graphs, which can be visualised and stored in various
image file formats via the graph visualization software Graphviz†.

3.2 Interfaces to data resources

Integration of metabolic models with external data resources was one of the
main objectives of software development in the current project. Such resources
as biochemical and other databases, annotation tools and microarrays were used
for the construction of models, their analysis and the interpretation of results;
therefore, the development of interfaces connecting them to ScrumPy was an ab-
solute necessity. Although the databases and tools strongly differ in the formats
used and functionalities provided, abstraction was used to design generalised in-
terfaces, providing access to the data required for modelling tasks and ignoring
other fields. Thus, by extending the classes Database and Record, generic data
structures were developed for biochemical and annotative databases. The ab-
stract methods were implemented in the classes linked to specific resources,
namely KEGG and PRIAM.
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Figure 3.1: Inheritance and composition of the data structure classes in the
packages Utils and Source. The subclasses of Record are not shown; their
inheritance hierarchy mirrors that of database classes.
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The classes described below are collected in the package Source; their in-
heritance hierarchy and composition is shown in the lower part of Figure 3.1.

3.2.1 Biochemical databases

By biochemical databases we mean those describing compounds, reactions and/or
enzymes, such as KEGG LIGAND, BioCyc and BRENDA.

Class BioRecord Declares a range of abstract access methods returning syn-
onyms, web links, comments and other data.

Classes CompoundRecord, ReactionRecord and EnzymeRecord Declare spe-
cific abstract methods, e.g. returning the formula of a given metabolite, the
equation of a given reaction and the list of reactions catalysed by a given en-
zyme.

Class BioDB Contains records of the three classes mentioned above. The
methods GetCompoundDB, GetReactionDB, GetEnzymeDB return subdatabases
containing records of the given class only. Declares abstract selection methods
by biochemical criteria (e.g. isomers) and methods returning general biochem-
ical information, e.g. the identifiers of amino acids and polymers in the given
data resource.

3.2.2 KEGG interface

KEGG LIGAND database was used in the current work for automatic model
generation and for retrieving additional information (not included into the mod-
els) about reactions, metabolites and enzymes. The database consists of several
parts, including COMPOUND (information about chemical compounds), RE-
ACTION (biochemical reactions), ENZYME (enzyme nomenclature) and GLY-
CAN (experimentally determined glycan structures).

Although the database provides an on-line application programming inter-
face (KEGG API†), it includes only a limited set of methods. Further, the access
through a network considerably slows down the work with massive datasets. Fi-
nally, using on-line data as an input for model construction makes the resulting
models potentially irreproducible, since the content of the database is not con-
stant.

By the beginning of the work, an interface to KEGG LIGAND had been al-
ready developed by M.G.Poolman. This interface included classes for accessing
the COMPOUND and REACTION databases, which were downloaded in the
form of flat files from the KEGG FTP† server and stored locally. However, it
was decided to develop a new implementation using the technologies lex/yacc
and cPickle for parsing and serialisation of data, respectively. A unified inter-
face to the databases COMPOUND, REACTION, ENZYME, GLYCAN and
PUBCHEM was developed using the design patterns Facade, Strategy and
Singleton.
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Figure 3.2: Information flow during the parsing of the KEGG local copy. The
fourth row shows the subclasses of KeggFieldEditor.

Parsing The local copy of KEGG API includes flat files named compound,

reaction, enzyme and glycan, containing the data from the corresponding
parts of the database, represented as sequences of text records. Unfortunately,
no documentation about the formats of these files was found, so the formatting
rules were inferred as a result of trial-and-error-based reverse engineering pro-
cess. The parsing of the files uses the external package Ply† which is a Python
implementation of the widely used parsing tools lex and yacc†. lex generates
a lexical analyzer, which scans an input stream (e.g. a file) and picks up the
basic items, called tokens, according to definitions and rules supplied by the
user. yacc generates a parser, which recognises the tokens and performs some
user-defined actions. The KEGG parsing rules for lex and yacc are defined in
the modules KeggLexer and KeggParser, respectively. The parser recognises
the start and end of a record in the text, the ID and the entire fields. The
internal structures of the fields are analysed by the class KeggFieldEditor and
its subclasses, which store the fields, represented as lists or dictionaries, in the
record objects (see Figure 3.2).

The format of the KEGG flat files is not constant; we found a number
of changes in different releases of the database. This issue is addressed by
changing the rules defined in KeggLexer and KeggParser modules and/or the
methods defined in KeggFieldEditor and its subclasses. Note that the changes
in the database format do not affect the class KeggDB and its subclasses, since
the structure of the database classes is decoupled from the parsing process.
Moreover, the same objects can be loaded from different files using different
parsers (design pattern Strategy).
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Class KeggRecord Implements access to common fields, such as names, com-
ments, links and pathways.

Classes KeggCompoundRecord, KeggReactionRecord and KeggEnzymeRecord

Each of these classes has two parents in the hierarchy: KeggRecord and the cor-
responding generic BioRecord class. Implement the specific access methods
declared in their generic parents.

Class KeggDB Contains the locations of input files and directories and im-
plements high-level methods for parsing, saving and loading files. During the
initialisation, an object of this class searches the special directory, in which its
content can be serialised in a cPickle file. If it finds the file, it loads the contents
from it. Otherwise, it parses the flat file and immediately serialises itself in a
cPickle file. The reason for dual storage of data is that loading a database from
cPickle is about ten times less time-consuming then parsing the KEGG flat files.

Class PubChemDB The PUBCHEM† database contains information about molec-
ular structures of chemical compounds. This class parses the web pages of the
database and extracts the following data from each record: canonical and iso-
meric SMILES† strings (unambiguous description of the molecular structure),
IUPAC† name and International Chemical Identifier (InChI†).

Class CompoundDB Contains the data from the files compound and glycan. In
addition, during the initialisation an object of this class initialises a PubChemDB

object and updates itself with the content of the latter. Hence, the information
from KEGG COMPOUND and PUBCHEM databases is integrated in the same
records.

Classes ReactionDB and EnzymeDB Implement methods for selecting sets of
reactions by the catalysing enzymes and vice versa, as well as by genes and
organisms (as specified in KEGG LIGAND).

Class WholeKegg Is a subclass of EnzymeDB but also contains refences to
CompoundDB and ReactionDB objects, which are loaded during its initialisa-
tion (design pattern Facade). Implements a range of methods used for model
construction, some of which are described in Chapter 4.

3.2.3 Annotative databases

The purpose of annotative databases is the storage of information about genes
and predicted enzymatic functions. Each object of the class AnnotRecord de-
scribes a single gene or ORF, whose identifier is the record ID. The fields con-
tain information about the predicted proteins and prediction parameters, such
as alignment length, bit score and e-value. The class AnnotDB implements se-
lection methods returning subdatabases of records satisfying certain criteria.
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Classes PriamRecord and PriamDB Implement the methods for parsing the
output of the annotation tool RPS-BLAST executed in combination with the
database of enzyme signature PRIAM.

3.2.4 Gene expression database

The class MicroArrayDB provides an interface for the analysis of gene expression
data. The data can be parsed from a comma-separated spreadsheet file (‘.csv’
format). Each record (class MARecord) stores the data from one spreadsheet
row; the field names are defined by the column names in the spreadsheet; the
values in one of the columns (defined by the user) are used as record IDs (see
Figure 3.3a). The content of a database can be represented as a gene expression
table (Figure 3.3b). The rows in this table are used to calculate the correlations
between gene expression patterns; the result can be represented as a correlation
matrix (Figure 3.3c). The correlation method can be supplied by the user as an
argument; by default, Pearson’s correlation coefficient is used.

3.2.5 Initialisation of databases

Many applications depend on objects of certain families of classes, whereby the
specific classes themselves are determined dynamically. For instance, an inte-
grated metabolic reconstruction object may contain references to biochemical,
annotative and gene expression databases, but the names of the resources are
specified in the input file or defined by the user. The package Source imple-
ments the method GetDB, which receives the name of a resource and returns the
corresponding database (design pattern Factory Method). For instance, the fol-
lowing two statements initialise objects of the classes WholeKegg and PriamDB,
respectively:

>>> Kegg = Source.GetDB(’KEGG’)

>>> Priam = Source.GetDB(’PRIAM’)

The initialisation of a WholeKegg object is time-consuming and the object
itself requires a massive amount of memory. Initialising it more than once leads
to a waste of resources, since the content of the database is unique (unless
different versions are used). Therefore, after the initialisation of a WholeKegg

object, the package keeps a reference to it. If the function GetDB is called
again with the argument ‘KEGG’, this reference is returned (design pattern
Singleton).

3.3 Linear programming interface

Linear programming methods have been widely used in the current work. In
addition to established methods, such as flux optimisation and coupling analysis,
original methods have been developed involving LP and MILP techniques. The
package LP includes a hierarchy of classes, where each class encapsulates a set
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ORF01584:

2.5_hr: [0.025999999999999999]

8.0_hr: [0.94299999999999995]

4.5_hr: [-2.3959999999999999]

6.0_hr: [-0.86299999999999999]

0.5_hr: [0.5]

Locus: [’SAG1422’]

2.0_hr: [-0.012]

1.0_hr: [0.65900000000000003]

4.0_hr: [-0.45300000000000001]

0_hr: [0.161]

3.25_hr: [-0.437]

Common name: [’"glycosyl transferase, group 2"’]

Organism: [’2603’]

5.0_hr: [-0.93300000000000005]

ORF00928:

2.5_hr: [0.246]

8.0_hr: [-1.464]

4.5_hr: [-2.7869999999999999]

6.0_hr: [-3.9980000000000002]

0.5_hr: [-0.76000000000000001]

Locus: [’SAG0818’]

2.0_hr: [0.13600000000000001]

1.0_hr: [-0.16400000000000001]

4.0_hr: [-0.621]

0_hr: [-0.69099999999999995]

3.25_hr: [0.01]

Common name: [’ribonucleoside-diphosphate red’]

Organism: [’2603’]

5.0_hr: [-1.891]

a

0.5 hr 0 hr 1.0 hr 2.0 hr 2.5 hr 3.25 hr 4.0 hr 4.5 hr 5.0 hr 6.0 hr 8.0 hr
SAG0818 -0.76 -0.691 -0.164 0.136 0.246 0.01 -0.621 -2.787 -1.891 -3.998 -1.464
SAG1422 0.5 0.161 0.659 -0.012 0.026 -0.437 -0.453 -2.396 -0.933 -0.863 0.943

b

SAG0818 SAG1422
SAG0818 1.0 0.573097909064
SAG1422 0.573097909064 1.0

c

Figure 3.3: a) The text representation of a gene expression database containing
two records. The record IDs are set to the ORF identifier; the fields correspond
to the gene identifiers (‘Locus’), gene product names (‘Common name’), organ-
ism names and expression levels at different time points. b) Expression table:
gene IDs are used as row labels, the columns correspond to expression levels. c)
Correlation matrix with Pearson’s correlation coefficients.
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Figure 3.4: Inheritance hierarchy of classes in the packages glpk and LP.

of linear programming methods based on one of the approaches, such as mass
balance analysis, flux balance analysis and conversion analysis (see Figure 3.4).

Low-level classes GNU Linear Programming Kit† (GLPK) is an open-source
software package intended for solving LP, MILP, and other related problems.
The package is implemented in the C programming language. A low-level
Python interface to GLPK was created by M.G.Poolman and encapsulated in
the package glpk; it includes the automatically generated module glpk ll and
the class lp. Each object of this class represents a linear program; it can be
edited after the initialisation (e.g. the objective function can be changed and
new constraints can be included) and solved repeatedly. The class implements
basic methods for defining the objective function and linear constraints and the
method Solve, which delegates the solution to the GLPK solver.

The subclass Mip was developed in the scope of the current work; it in-
troduces the possibility of defining integer variables and solving mixed-integer
linear programs.

Class MtxLp Since it is convenient to represent linear constraints in the form
of a stoichiometry matrix, the constructor of this class accepts a StoMat object
as an argument and uses it as the matrix of linear constraints. Additional
arguments define the direction of optimisation (minimisation or maximisation),
the class of the problem (LP or MILP) and the lower and upper bounds of the
variables, e.g:

>>> lp = LP.MtxLp(mtx = A, direc = ’Min’, klass = ’LP’,
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lowBound = 0, upBound = 1)

The created object corresponds to the following LP with an empty objective
function:

Minimise
Subject to Ax = 0

Where 0 ≤ xi ≤ 1, 0 ≤ i ≤ a
(3.1)

where a is the dimension of A. By replacing the argument ‘LP’ by ’MIP’, an
MILP can be created, where each real-number variable xi is associated with an
additional integer variable ki in the interval [0, 1], e.g.

>>> milp = LP.MtxLp(mtx = A, direc = ’Max’, klass = ’MIP’)

creates the following MILP:

Maximise
Subject to Ax = 0

Where xi ≥ 0, 0 ≤ i ≤ a,
ki ∈ {0, 1}, 0 ≤ i ≤ a

(3.2)

(the default lower and upper bounds for all xi are 0 and ∞, respectively).
The method SetObjective defines the stoichiometry of the objective func-

tion, which can be passed in as a dictionary, e.g.

>>> lp.SetObjective({’x1’ : 1, ’x2’ : 2})

results in the following LP:

Minimise x1 + 2x2

Subject to Ax = 0
Where 0 ≤ xi ≤ 1, 0 ≤ i ≤ a,

(3.3)

Two methods define special objective functions, widely used for a range of tasks.
SetSumObjective defines the objective function as the simple sum of variables
xi, i.e.

∑a

i=1 xi (or 1T x in the vector form).
The method SetLenObjective is only applicable to mixed-integer problems.

It defines the objective function as the sum of integer variables ki and includes
additional inequality constraints of the form xi ≤ ki if the objective is minimi-
sation and ki ≤ xi if it is maximisation, e.g:

>>> milp.SetLenObjective()

results in the following MILP:

Maximise
∑a

i=1 ki

Subject to Ax = 0
Where 0 ≤ ki ≤ xi, ki ∈ {0, 1}, 0 ≤ i ≤ a

(3.4)

The solution k contains a maximal number of unit components. However, the
third line ensures that a component ki can be set to a unit only if the corre-
sponding xi is positive. Hence, the program effectively maximises the number of
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positive components in x. Similarly, if the objective is minimisation, the MILP
has the following form:

Minimise
∑a

i=1 ki

Subject to Ax = 0
Where 0 ≤ xi ≤ ki, ki ∈ {0, 1}, 0 ≤ i ≤ a

(3.5)

Each ki can be set to zero only if the corresponding xi is zero. Hence, the
program minimises the number of positive components in x. Equations 3.4 and
3.5 are widely used for various tasks, e.g. minimising the number of reactions
involved in a pathway.

The class implements a number of methods for complementing a linear pro-
gram with new constraints. The method MakePositive forces a given list of
variables to be greater then or equal to a predefined small constant EPSILON =

ZEROVAL
1

2 , e.g.

>>> lp.SetSumObjective()

>>> lp.MakePositive([’x1’, ’x2’])

results in the following LP:

Minimise
∑a

i=1 xi

Subject to Ax = 0
x1, x2 ≥ ǫ

Where 0 ≤ xi ≤ 1, 0 ≤ i ≤ a,

(3.6)

where ǫ = EPSILON. This program calculates the solution x with the minimal
sum of components, such that x1 and x2 are positive. The reason for writing
xi ≥ ǫ instead of xi > 0 is the impossibility of using strict inequalities in linear
programs.

As mentioned in Chapter 2, mixed integer linear programming enables find-
ing multiple solutions satisfying the same problem. This can be done by it-
eratively solving an MILP, whereby after each iteration the last solution must
be excluded from the feasible region. The method SetIntegerCut provides
this possibility by complementing the MILP with a constraint termed integer
cut [73]:

∑

i∈P (k)

ki ≤ |P (k)| − 1 (3.7)

where k is a solution previously found. The integer cut ensures that the unit
components of k do not obtain unit values simultaneously in further solutions
since their sum is set to be less then their number.

The method GetSolution returns the current solution in the form of a dic-
tionary or a column vector:

>>> lp.Solve()

>>> print lp.GetSolution()

{’x2’: 1.0, ’x1’: 1.0, ’x4’: 1.0}
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>>> print lp.GetSolution(asmatrix = True)

v

x1 1.0

x2 1.0

x3 0.0

x4 1.0

Other functionalities implemented in this class include general methods for
coupling analysis [11, 73] and essentiality analysis (see Chapter 8).

Class CompLp The constructor of this class receives the external stoichiometry

matrix N̂
T

of a network as the matrix argument. The class implements methods
of mass-balance analysis and in particular, the verification of stoichiometric
consistency and detection of unconserved metabolites (see Chapter 5).

Class FluxLp This class is intended for flux-balance analysis. In the LP prob-
lems defined by this class, reaction flux rates and stoichiometries are represented
as variables and constraints, respectively. A simple example of such a represen-
tation is shown in Equation 2.15, where the internal stoichiometry matrix is used
as the matrix of linear constraints. However, this equation ignores the possi-
bility of a negative flux rate in the reversible flux v2, since the lower bounds
of all variables are set to zero. Defining no lower bounds for the flux rates of
reversible reactions would possibly lead to the unboundedness of minimisation
problems and to the impossibility to calculate minimal absolute rates.

This problem is often tackled by ‘splitting up’ the reversible reactions, i.e.
by replacing each of them by a pair of mutually opposite irreversible ones (the
same approach is used for the calculation of extreme pathways). In the current
work, we apply a slightly modified approach: Firtsly, we ‘split up’ all columns in
the internal stoichiometry matrix. The resulting matrix can be mathematically
represented as the split matrix N̈ = (N| − N). We denote the distributions of
forward and backward flux rates by +v and −v, respectively, and the split flux
vector v̈ = (+v|−v)T . The following equality is satisfied at a steady state:

N̈v̈ = 0 (3.8)

Then we explicitly set the flux rates of the backward directions of irreversible
reactions to zero, thus preventing the backward fluxes:

−virr = 0 (3.9)

The constructor of FluxLP receives a StoMat object representing an internal
stoichiometry as the matrix argument, e.g.

>>> flp = LP.FluxLp(N)
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creates the following LP:

Minimise

Subject to N̈v̈ = 0,
−virr = 0

Where v̈ ≥ 0

(3.10)

(note that the list of irreversible reactions is contained as an attribute in StoMat

itself). Although any solution of this program has the form v̈, an actual distri-
bution of net flux rates is calculated as follows:

v = v+ − v− (3.11)

This distribution is returned by default by the method GetSolution.
The class implements editing methods, such as including and deleting re-

actions and changing their reversibility. The method IsLive determines the
‘liveness’ of a given reaction, e.g. its ability to carry some flux at a steady
state. This problem does not reduce itself to the calculation of a solution with
a positive value in the given component, since any reversible flux is involved in
a spurious cycle with its opposite direction (we define these cycles as trivial).
To exclude the fluxes in trivial cycles, we block the opposite direction:

Minimise

Subject to N̈v̈ = 0,
−virr = 0,
v̈j ≥ ǫ,
v̈opp(j) = 0

Where v̈ ≥ 0

(3.12)

where ǫ is a small positive number and opp(j) is the opposite direction of the
j-th flux:

opp(j) = (j + n) % 2n (3.13)

Note that the LP shown in Equation 3.12 has an empty objective function; it
only determines the feasibility of the problem. The j-th reaction is live iff at
least one feasible solution exists. The LP is solved twice, with forward and
backward fluxes taken as v̈j ; the method returns True iff at least one of the
directions is feasible. In contrast to the null space analysis method for detection
of strictly detailed balanced reactions, the LP-based method takes into account
the irreversibility constraint and is applicable to individual reactions.

A number of methods is provided for the calculation of flux modes satisfying
given constraints. The method MinSumMode minimises the sum of all flux rates
in a mode, while retaining a non-zero flux in a given reaction, using the following
LP:

Minimise
∑2n

i=1 v̈i

Subject to N̈v̈ = 0,
−virr = 0,
v̈j ≥ ǫ,
v̈opp(j) = 0

Where v̈ ≥ 0

(3.14)
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The method ShortestMode calculates the shortest (i.e. involving the mini-
mal number of reactions) flux mode in which a given reaction is participating
in either direction. The following MILP is invoked for each direction:

Minimise
∑2n

i=1 ki

Subject to N̈v̈ = 0,
−virr = 0,
v̈j ≥ ǫ,
v̈opp(j) = 0

Where 0 ≤ v̈i ≤ ki, 1 ≤ i ≤ 2n

(3.15)

By minimising the support of the flux mode, Equation 3.15 ensures that it
is elementary. Equations 3.14 and 3.15 must be solved for the forward and
backward fluxes of the query reaction; the more optimal solution is returned by
the method.

Other functionalities implemented in this class include calculation of a flux
mode performing a given net conversion (see Chapter 7), flux essentiality anal-
ysis (see Chapter 8) and flux coupling analysis [11].

Classes ConvLp and EnvLp These classes are used for the calculation of mini-
mal net conversions and minimal substrate and product compositions (see Chap-
ter 7).

3.4 Integrated metabolic reconstruction

The package Bio is intended to provide a unified interface to a metabolic model,
the data resources used for its construction, and the analysis methods used for
its interrogation; we further refer to this interface as an integrated metabolic
reconstruction (reconstruction for short).

3.4.1 Design

A possible way to attach additional functionalities to an object is inheritance:
a subclass of Model could be created, implementing analysis methods and ac-
cess to databases. This would be not a flexible structure, however, because the
choice of functionalities and their implementation would be predefined stati-
cally. Instead, we used the design pattern Decorator (Wrapper), which enables
adding new functionalities to an existing object dynamically, by ‘enclosing’ it
into another object, called a wrapper. For instance, a metabolic model can be
enclosed in an object which implements LP tasks and delegates other requests
to the model itself. The model and its wrapper provide a single unified inter-
face; on the other hand, the model can be still accessed directly. Moreover,
a wrapper can be ‘dismounted’ and another wrapper can be attached instead;
hence, the set of functionalities provided by the interface can be changed dy-
namically. A wrapper, in turn, can be enclosed in another wrapper, which

53



enriches the interface with a new flavour of functionalities. The package Bio in-
cludes a number of wrapper classes for ScrumPy metabolic models, intended for
construction, editing, analysis, database integration, storage and optimisation
of metabolic reconstructions. In an integrated metabolic reconstruction, these
wrappers form a multilayered structure, where each layer handles the requests
for which it is responsible and delegates the rest to the underlying layer. Some
of the requests are delegated further to other objects, such as databases and
linear programs; thus, the whole reconstruction provides a unified interface to
a set of lower-level interfaces (design pattern Facade). Since the selection of
layers in a reconstruction can be defined dynamically, its initialisation is decou-
pled from the interface and implemented in separate methods (design pattern
Factory method).

Another feature of integrated metabolic reconstructions is their composite
structure. Although a metabolic model is typically considered as a set of bio-
chemical reactions interconverting metabolites, in genome-scale reconstructions,
the information about enzymes and genes is often crucial. Therefore, we devel-
oped separate classes representing genes, enzymes, reactions and metabolites.
Although these classes are designed as aggregatee elements of a reconstruc-
tion, their objects do not exist during the whole lifetime of the latter. Instead,
they are created on demand, when the information about a given element is
requested by its unique identifier (design pattern Proxy). On the other hand,
a reconstruction delegates some of the methods to the element classes (design
pattern Composite).

3.4.2 Generic classes

Class Wrapper Implements the basic functionality of a generic wrapper, which
provides a unified interface with an underlying object of an arbitrary class. The
reference to this object is stored in the attribute Sublevel, which is by default
initialised as a dictionary. The method getattr is called when a given
attribute or method (denoted attr) is requested, but not found in the wrapper;
it looks up for attr in the sublevel:

def __getattr__(self, attr):

return getattr(self.Sublevel, attr)

Similarly, the method setattr assigns a new value val to the attribute attr
found in the sublevel, if it cannot be found in the wrapper:

def __setattr__(self, attr, val):

if not attr in self.__dict__:

setattr(self.Sublevel, attr, val)

else:

self.__dict__[attr] = val

Due to these methods, a client can access and edit the content of the sublevel,
as if it belonged to the wrapper itself. Since the default sublevel is a dictionary,
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the latter serves as the ‘core’ of the multilayered systems of wrappers, described
below.

Class System A generic wrapper for a metabolic model. Implements basic
methods for creating and accessing elements, copying its content and extracting
a subsystem by a list of element IDs.

Class Element A generic element of a reconstruction. Contains a reference to
its aggregator System object, in which it has a unique ID.

Each of the modules described below defines own subclasses of the classes
System and Element under the same names, and subclasses Gene, Enzyme,
Reaction and Metabolite of the own class Element. While a System object
system1 encloses the System object system2, each element of system1 encloses
the homonymous (e.g. having the same ID) element of system2. Hence, a re-
construction is designed as a multilayered composite structure (see Figure 3.5).

3.4.3 Internal structure and access methods

Module Access Defines the innermost layer of a reconstruction, stores its
internal structure (relations between elements) and implements access meth-
ods. The System object encloses two sublevels: a dictionary and a Model ob-
ject, which by default contains empty stoichiometry matrices. In addition, the
System object itself contains two logical binary matrices: the catalysis matrix C,
representing the relation between reactions and the catalysing enzymes, and the
annotation matrix A, relating enzymes to the encoding genes (see Figure 3.6b,
c). The advantage of representing relations in the form of matrices is the pos-
sibility of applying matrix operations, including multiplication. For instance,
the product C · A relates reactions to genes, while in the product N̂ · C, each
column represents the net stoichiometry of a given enzyme (see Figure 3.6e, f).

The getattr and setattr methods in the class System are overrid-
den, so that any attribute or method is firstly looked up in the object itself,
then in the underlying model and finally, in the underlying dictionary. The
latter stores the element IDs as keys, enabling each element in a reconstruction
to be accessed by its ID using the dictionary operator [], e.g:

>>> gene = system[’g1’]

(in fact, the element object is created once this operator is applied). Each el-
ement has a reference to its ‘parent’s’ matrix (where the elements of its class
are associated with the rows) and ‘children’s’ matrix (where they are associ-
ated with the columns). E.g. for an enzyme these are the annotation matrix
and the catalysis matrix, respectively; the ‘parent’s’ matrices of genes and the
‘children’s’ matrices of metabolites are empty. By looking up in these matrices,
the elements present the information about their hierarchical relationships. For
instance, the method GetChildren returns the list of lower-level elements in the
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a

b

Figure 3.5: The multilayered composite structure of an integrated metabolic
reconstruction.
a) Inheritance and composition in two layers. Inheritance: The generic classes
Wrapper, System and Element are on the top of the inheritance hierarchy.
Each module defines subclasses of System and Element under the same names,
and four subclasses of the own class Element. Aggregation: Each layer is
composed of objects of classes defined in one of the modules. The System

object is aggregated with Metabolite, Reaction, Enzyme and Gene objects,
which are created on demand. Delegation: The objects of the outer layer
(blue) enclose the homonymous objects of the inner layer, which in turn enclose
dictionaries (denoted {}). The inner System object, in addition, encloses a
Model object.
b) Default layers and delegation of requests. The layers are shown in the bottom
row; each layer performs the tasks it is responsible for and delegates the rest
to the inner layer (leftward arrow) or to other classes and modules (upward
arrows).
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hierarchy, i.e. enzymes encoded by a gene, reactions catalysed by an enzyme
or metabolites used by a reaction. The names of the methods GetParents,
GetSiblings, GetPartners and GetExclusiveChildren are self-explaining:

>>> print system[’g1’].GetChildren()

[’e1’, ’e2’]

>>> print system[’e2’].GetParents()

[’g1’, ’g2’]

>>> print system[’e1’].GetSiblings()

[’e2’]

>>> print system[’g1’].GetPartners()

[’g2’]

>>> print system[’g1’].GetExclusiveChildren()

[’e1’]

The data describing an element object (e.g. the set of ‘children’) are collected
from the matrices and other sources during its initialisation and stored in its
underlying dictionary. They can be accessed by field names, similarly to fields
in a database record, e.g:

>>> print gene[’children’]

[’e1’, ’e2’]

Module Interact Provides the interactivity of a reconstruction, by sending
messages to users and receiving requests from them. The System object defines
the address to which the messages are sent. By default, the output goes to the
Python console, but it can be redirected to files or shown in message boxes in a
graphical user interface. The method ErrorMsg is called when an error occurs in
an outer layer; it prints a report about the error in the output. A user can send
requests to the reconstruction via the console or dialogue boxes. File dialogue
boxes are used for opening and saving data in files.

3.4.4 Editing methods

Module Edit Serves for editing an existing reconstruction. The element
classes in this module are accessible directly from the interface of the pack-
age Bio and can be initialised on their own, outside of a reconstruction. Then
they can be included into a reconstruction under given IDs, e.g:

>>> system[’m’] = Bio.Metabolite(external = False)

In this example, a metabolite object is created and included into the recon-
struction (named system) under the ID ‘m’ (an empty row is included into
the external stoichiometry matrix). The existing elements can be edited, e.g a
metabolite can be declared external:

>>> system[’m’].SetExternal()
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>>> system = Bio.System()

>>> system[’g1’] = Bio.Gene([’e1’, ’e2’])

>>> system[’g2’] = Bio.Gene([’e2’, ’e3’])

>>> system[’e1’].SetChildren([’r1’, ’r2’])

>>> system[’r1’].SetStoich({’a’ : -1, ’b’: 1})

>>> system[’r2’].SetStoich({’b’ : -1, ’c’: 1})

>>> system[’r3’] = Bio.Reaction({’c’ : -1, ’d’ : 1}, irrev = True)

>>> system[’e2’].SetChildren([’r2’])

>>> system[’e3’].SetChildren([’r3’])

>>> system[’tx_A’] = Bio.Transporter(’a’, ’x_a’, source = True)

>>> system[’tx_D’] = Bio.Transporter(’d’, ’x_d’, source = False)

>>> system.Save(’example.xspy’)
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Figure 3.6: A sequence of commands (a) for initialisation, editing and storing
of an integrated metabolic reconstruction; its annotation (b), catalysis (c) and
external stoichiometry (d) matrices; the relation between reactions and genes
(d) (note that g1 encodes two enzymes catalysing r2); net stoichiometries of
enzymes (e).
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Further examples of creating and editing elements are shown in Figure 3.6a.
Note that a reaction can be initialised with a given stoichiometry (represented
as a dictionary), while a gene or an enzyme can be initialised with a given list
of children. The class Transporter is a subclass of the class Reaction, which
is declared only in this module and intended for including transport reactions
for given metabolites.

By default, an element is deleted with its exclusive children. E.g. in the
following example, the reaction tx A is deleted with the metabolite x a, which
is not used by any other reaction.

>>> del system[’tx_A’]

An element can be also copied from one reconstruction to another with all of
its descendents, using the method Paste (by analogy with copying and pasting
in various programs), e.g:

>>> system[’g1’].Paste(other_system)

Here the gene g1 is copied into the reconstruction other system with its de-
scendant enzymes, reactions and metabolites; whereby the hierarchical relations
and stoichiometries are retained.

Two elements in the same reconstruction can be ‘merged’, by replacing the
corresponding pairs of rows and columns in the matrices by their sums. E.g.
in the following example, the reactions r1 and r3 are replaced by one reaction
with their net stoichiometry, named r3 and catalysed by the enzymes which had
previously catalysed any of them:

>>> system[’r1’].MergeWith(’r3’)

>>> print system[’r3’].GetEquation()

a + c -> b + d

>>> print system[’r3’].GetParents()

[’e1’, ’e3’]

This operation is used for handling redundancies in networks, such as synonyms
and isostoichiometric reactions, i.e. those with identical stoichiometries.

Some editing operations are applicable to a whole reconstruction, such as
updating the current stoichiometry, catalysis or annotation matrix with the
content of another matrix and updating the reconstruction with the content of
another reconstruction.

Module Update Ensures that the internal structure of a reconstruction is
correctly updated after the completion of an editing request. For instance, if
reaction stoichiometry is changed in the external stoichiometry matrix, the same
change must be applied to the internal stoichiometry matrix. The reason for
decoupling the editing and updating processes is that the latter is relatively
time-consuming, while editing operations are often applied in a sequence or
a loop. Hence, instead of updating the reconstruction after each operation
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executed in lower levels, it is updated only once, when the whole editing task
requested by the client is completed.

The updating routine includes the detection of the pairs of isostoichiometric
reactions, to which the method MergeWith is applied. Hence, the software
ensures that no isostoichiometric reactions can exist simultaneously in a model4.

3.4.5 Analysis methods

The modules described below provide interfaces tor the analysis methods imple-
mented in the packages Utils and LP, and implement some higher-level meth-
ods.

Module Graphic Provides an interface to graph-theoretical methods. Imple-
ments a method for the detection of isostoichiometric reactions.

Module Flux Provides an interface to methods of flux balance analysis and
essentiality analysis (see Chapter 8).

Module Comp Provides an interface to methods of mass balance analysis and
a range of original methods, including the detection of stoichiometric inconsis-
tencies (see Chaper 5), elementary net conversions and elementary substrate
and product compositions (see Chapter 7).

Most of the methods implemented in these classes are time-critical with the
computational time depending on the size of the network. As an optional pre-
processing step, these methods apply the ‘Core’ algorithm to the corresponding
stoichiometry matrix in order to reduce its size.

3.4.6 Integration with databases

Apart from providing interfaces to databases, the modules described below en-
able automatic generation of reconstructions, by importing data from external
resources.

Module Integrate Defines generic classes for integrating a reconstruction
with a database. The System object contains a reference to a unique database
with which it is associated. The design of the whole reconstruction implies that
it contains one layer associated with a reconstruction of a given type, which is
defined by a special key (e.g. ‘Bioch’ for biochemical and ‘Anno’ for annotative).
The layers use these keys to recognise the requests addressing their databases.

Each element has a reference to a unique record in the database. The method
LoadRecords receives a list of IDs and imports the data from the corresponding
records into the reconstruction, creating new elements. The method LoadSource

imports all records, creating a whole-database reconstruction.

4Here we mean the reactions with identical, rather than any proportional stoichiometries.
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Module Bioch Interface to a biochemical database, whose records can be
associated with enzyme, reaction and metabolite elements. In the following
example, two elements are imported from the KEGG database:

>>> system.LoadRecords([’1.1.1.1’, ’R00001’], ’Bioch’)

Note that the IDs belong to records of different types: R00001 is a reaction and
1.1.1.1 is an enzyme. The latter is imported with the reactions which it catalyses
according to KEGG, while all reactions are imported with the corresponding
metabolites, retaining the stoichiometries.

Module Annotate Interface to an annotative database, whose records are
associated with the genes. Genes can be imported, e.g:

>>> system.LoadRecords([’SAG0001’, ’SAG0002’], ’Anno’)

Besides the genes, the enzymes encoded are imported from the annotative
database, and the reactions catalysed and the metabolites interconverted are
imported from the biochemical database. Hence, the following command being
applied to an empty reconstruction creates a complete metabolic model based
on a given annotation:

>>> system.LoadSource(’Anno’)

3.4.7 Visualisation and storage

Module View Implements methods for representing a reconstruction or its
parts in the form of a text string, a ScrumPy file or a bipartite graph image.
The text representations of an element includes the ID followed by a name and
then by dictionary fields in separate lines, e.g:

>>> print system[’C00001’]

C00001: H2O

external: False

For a reaction, the name is replaced with an equation written in a human-
readable form:

>>> print system[’R01600’]

R01600: ATP + Glucose <> D-Glucose 6-phosphate + ADP

irrev: False

equation: C00002 + C00293 <> C00092 + C00008

A reaction can be also shown in the ScrumPy format:

>>> print system[’R01600’].ToSpy()

R01600:

C00002 + C00293 <> C00092 + C00008

~
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The text and ScrumPy representations of a reconstruction are assembled from
the corresponding representations of its elements.

The generation of graph images is delegated to the module Layout. An
example is shown in Figure 3.7b.

Module Store Since the original ScrumPy is not sufficient for a complete
description of a metabolic reconstruction, an extended ScrumPy format (XSPY)
was developed (see Figure 3.7a). A file in this format consists of four parts:
The first part represents a dictionary of databases; once a file is loaded, these
databases are initialised and linked to the reconstruction. The second and third
parts describe the relations between genes and enzymes and between enzymes
and reactions, respectively. Note that each line in the first three parts starts
with the ‘#’ symbol and is therefore ignored by the ScrumPy parser. The fourth
part is the model representation in the original ScrumPy format.

The module provides reading and writing methods for the XSPY format,
as well as for comma-separated text files, which may contain lists of external
metabolites, irreversible reactions and other supplementary data.

3.4.8 Optimised annotation

The following modules implement the stochastic optimisation algorithms used
for optimised genome annotation (see Chapter 6).

Module Reproduce Defines and implements the mutation operators.

Module Optim Defines an optional layer, which invokes the objective function.
The latter can be provided by the user as an argument or reimplemented in
subclasses. The module also defines classes and interface methods for genetic
algorithms and simulated annealing.

3.4.9 Initialisation

Since a metabolic reconstruction is an ensemble of objects of variable classes, it
is preferable to decouple its initialisation from its structure and to implement it
in factory methods. The default factory method creates the layers and encloses
them into each other in the order shown in Figure 3.5b. The method is accessible
in the interface of the package Bio; optional arguments define the input XSPY
file, the output address and the associated databases, e.g:

>>> system = Bio.System(’example.xspy’, output = ’term’,

Bioch = ’KEGG’, Anno = ’PRIAM’)

This command initialises the reconstruction described in the file ‘example.xspy’,
directs the output to the console, intialises the KEGG database (if not already
existing) and an empty PRIAM-based annotative database and associates them
with the reconstruction. If the database names are not supplied as arguments,
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########################################

#SOURCES:

#Anno: PRIAM

#Bioch: KEGG

########################################

#GENES/ENZYMES:

#SAG0040 2.7.1.2

#SAG0402 5.3.1.9

#None

########################################

#ENZYMES/REACTIONS:

#2.7.1.2 R01600

#5.3.1.9 R02740

#None

########################################

#REACTIONS/METABOLITES:

Structural()

R01600:

C00002 + C00293 <> C00092 + C00008

~

R02740:

C00092 <> C00085

~

a

 R01600

D-Glucose 6-phosphate ADP

 R02740

ATP Glucose

D-Fructose 6-phosphate

b

Figure 3.7: A reconstruction containing two genes, two enzymes and two reac-
tions, represented in the extended ScrumPy format (a) and in a graph image (b).
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they are set to the definitions in the input file. The selection and order of layers
can be easily modified by overriding the factory method.

3.5 Discussion and conclusions

In the current chapter, the development of the software packages Utils, Source,
LP and Bio was described. Although these packages were designed and can
be used separately, their entirety represents a relatively complete and self-
contained framework for the construction, validation and analysis of genome-
scale metabolic reconstructions.

The package Bio provides the top-level interface of this framework, which is
referred in this chapter as integrated metabolic reconstruction. This interface
encapsulates the structure of a metabolic reconstruction, most of the methods
required for the work with it and references to related data resources. Note that
none of the underlying objects can be considered as a top-level or ‘master’ object.
In fact, the user directly accesses the outermost layer of a reconstruction, which
has no preferential control over the rest of the system. The information flow
between the layers (see Figure 3.5b) is to an extent similar to the mass flow in
a biochemical pathway, where the control over the system behaviour is shared
between all steps. Such ‘egalitarian’, bottom-up approach to modular design
provides strong flexibility and extensibility: the number of layers providing
different functionalities is unrestricted and the mechanism of their creation and
inclusion is relatively simple. However, from the user’s perspective, the whole
reconstruction appears and acts as a single, integral object.

The reusability of the software was achieved by the encapsulation of lower-
level functionalities in packages, modules and classes. In particular, the class
Database provides universal functionalities for data storage, while the package
LP and the KEGG interface can be used as standalone tools for linear program-
ming and biochemical data interrogation, respectively.

Efficiency was not among the primary objectives of software development,
since most of the low-level, time-critical computations were delegated to ScrumPy
and GLPK. Nevertheless, the high-level design solutions proved to be useful for
the improvement of efficiency. For instance, the application of the ‘Core’ algo-
rithm as a preprocessing step significantly accelerated the computational time
in analysis methods. Further, the utilisation of the design patterns Singleton
and Proxy strongly reduced the consumption of memory.

One of the most considerable outcomes of the development of high-level
functionalities was the increase in software usability and modeller’s productivity.
As an example, we demonstrate the automatic generation of a genome-scale
reconstruction based on a given annotation, using two Python statements:

>>> system = Bio.System(Bioch = ’KEGG’, Anno = ’PRIAM’)

>>> system.LoadAnnotation(’annotation.out’)

The time required for the execution of these statements does not exceed several
minutes. Clearly, the development of a valid, ready-to-work model requires the
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application of a range of further methods; most of which are also automatised.
These methods are described in the following chapters.
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Chapter 4

Model Construction

As shown in Figure 2.1, the construction of a model is an iterative process,
and its definition typically depends on the intermediate analysis results. In
this chapter, we describe the part of the construction process which can be
completed at the first iteration, assuming that the methods used at this stage
do not require the knowledge of any systemic properties of a model.

4.1 Methods

Although the methods described below were developed particularly for the
metabolic reconstruction of S. agalactiae, they are intended to be applicable
(possibly after minor modifications) to the construction of a genome-scale model
of an arbitrary bacterium using a sequenced genome as the primary source of
data. The genome annotation can be obtained from a database or generated de
novo; biochemical data are obtained from the KEGG LIGAND database. The
import of annotative and biochemical data has been completely automatised.

4.1.1 Curation of biochemical data

Methods have been developed for the detection of certain types of errors during
this process, thus preventing potential input errors in the model.

Empirical formulae By parsing the content of the field ‘FORMULA’ in a
KEGG COMPOUND record, the empirical formula of the corresponding com-
pound is identified and represented as a dictionary mapping elements to stoi-
chiometric coefficients. However, in some records this field is missing, so the re-
sulting dictionary is empty. Further, some empirical formulae cannot be parsed
unambiguously; e.g. ‘(1C12H20O10)n’ for starch (where ‘n’ denotes the poly-
merisation degree) and ‘HOR’ for the generic compound ‘Alcohol’ (where ‘R’
denotes a radical). In such cases, the parser returns an empty dictionary, and
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the compound is qualified as generic, if the field is missing or contains the sub-
string ‘R’1 and as a polymer, otherwise (see Table 4.1a).

Atomic balance The net balances of elements in a reaction can be calculated
using the empirical formulae of reactants and represented similarly to a reac-
tion stoichiometry. For instance, the atomic balance of the reaction R02713:
C6H9NO4 ↔ C6H6O5 is:

{H : −3, C : 0, O : 1, N : −1}

This result implies that 3 atoms of hydrogen and one atom of nitrogen are lost
in the reaction, while one atom of oxygen is produced in excess. We subdivide
all reactions into three distinct categories:

• balanced: the net balances of all atoms are equal to zero;

• unbalanced: at least one net balance is non-zero;

• undeterminable: the atomic balances cannot be calculated because the
reaction involves one or more metabolites with missing or unparseable
empirical formulae.

Table 4.1b demonstrates that reactions with undeterminable atomic bal-
ance comprise a considerable proportion (more than the quarter) in the KEGG
database. Table 4.1c shows that hydrogen is the most frequently unbalanced
element in KEGG reactions. The violations are often caused by skipping H+ in
the reactions involving such metabolites as NAD+, NADP+ and HCO−

3 . The
empirically developed Algorithm 1 attempts to correct these violations.

Standardisation of metabolite names Inconsistencies in the naming of
metabolites in KEGG LIGAND are largely caused by the following two factors:

• the same metabolites specified in different reactions as a compound or a
glycan (e.g. C00369 and G10545, respectively for starch);

• the same metabolites specified with different levels of abstraction (e.g.
‘α-D-glucose’, ‘D-glucose’ or ‘glucose’);

The records in the COMPOUND and GLYCAN subdatabases contain fields
named ‘GLYCAN’ and ‘COMPOUND’, respectively, which enable the detection
of correspondences between them. The inconsistencies of the second type are
resolved as follows: the metabolites with identical Canonical SMILES strings are
detected and grouped; hence, each group includes optical isomers (see Table 4.2
a, b). These groups are used as an input for an algorithm generating a semantic

1Note that the character ‘R’ is not contained in the names of any elements involved in
KEGG (see Table 4.1b). The metabolites C00342 (thioredoxin), C00343 (oxidised thiore-
doxin), C04261 (protein N(pi)-phospho-L-histidine) and C00615 (protein histidine) are not
qualified as generic, altough their empirical formulae contain the substring ‘R’. The glycans
with missing formulae are not qualified as generic.
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Table 4.1: Categories of empirical formulae (a), reactions (b) and elements (c)
in the KEGG LIGAND database (release 29). For each category, the number
and percentage is shown. For each element, the number of reactions violating
its balance and of all reactions involving is shown.

num. %
parseable 11058 77.71
generic 926 6.5
polymers 181 1.27
missing 2064 14.5

a

category num. %
balanced 4002 58.77
unbalanced 1059 15.55
undeterminable 1749 25.69
involving polymers 281 4.13
involving generics 216 3.17

b

el. unbalanced involved
H 941 4988
O 333 4953
C 157 4968
N 63 3789
P 34 2830
S 13 986
Cl 11 164
Mn 0 1
Ni 0 1
Hg 0 1
As 0 2
F 0 4
I 0 7
Mg 0 19
Se 0 22
Br 0 23
Fe 0 26
Co 0 28

b
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Algorithm 1 Correct the coefficient of H+ in the stoichiometry sto.

balance := balance hydrogen(sto)
if balance 6= 0 then

coef := 0
if sto[H2O] = 0 then

if sto[NAD+] = −[NADH ] then
coef := sto[NADH ]

else if sto[NADP+] = −[NADPH ] then
coef := sto[NADPH ]

end if
end if
if sto[HCO−

3 ] 6= 0 then
coef := sto[HCO−

3 ]
end if
//save the correction if it reduces the absolute net balance:
if coef 6= 0 then

test sto := copy(sto)
test sto[H+] := coef
test balance := balance hydrogen(test sto)
if abs(test balance) < abs(balance) then

sto[H+] := coef
end if

end if
end if
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Table 4.2: Ilustration of the methods used for the standardisation of metabolite
names: a) Canonical SMILES strings enable distinguishing optical isomers (α-
D-glucose and β-D-glucose) in a group of metabolites with an identical atomic
composition. b) A relation associating canonical SMILES strings with groups
of isomers. c) A relation associating the most generic metabolite definitions to
the other definitions in the groups (D-glutamine is excluded).

FORMULA Canonical SMILES
α-D-glucose C6H12O6 C(C1C(C(C(C(O1)O)O)O)O)O
β-D-glucose C6H12O6 C(C1C(C(C(C(O1)O)O)O)O)O
fructose C6H12O6 C(C1C(C(C(O1)(CO)O)O)O)O

a

C(C1C(C(C(C(O1)O)O)O)O)O glucose, D-glucose, α-D-glucose, β-D-glucose
C(CC(=O)N)C(C(=O)O)N glutamine, D-glutamine, L-glutamine

b

glucose D-glucose, α-D-glucose, β-D-glucose
glutamine L-glutamine

c

hierarchy of metabolites (Table 4.2c). The algorithm compares the names of the
members of each group, assuming that a more generic name (e.g. ‘glucose’) is
contained in the tail of a more specific name (e.g. ‘D-glucose’). The algorithm
is apparently not absolutely sensitive, but it appears to be fully specific (no
false-positives have been found by manual check of the output). The resulting
hierarchy is represented as a relation associating each metabolite with its most
generic definition. D-forms of the amino acids are not included in the hierarchy,
since they are metabolically distinct from the L-forms.

To avoid naming inconsistencies, the following rules are applied to all metabo-
lites imported from the KEGG LIGAND database:

• if a metabolite is defined as a glycan (i.e. its identifier starts with ‘G’)
but can be alternatively defined as a compound, then the identifier of the
corresponding compound is used, e.g. C00369 instead of G10545.

• if a metabolite is included in the semantic hierarchy, then the identifier
of the most generic definition is used, e.g. C00293 (glucose) instead of
C00267 (α-D-glucose).

The identifiers defined by these rules are further referred as standardised iden-
tifiers.
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4.1.2 Irreversible reactions

The following books have been used as a data source for the definition of reaction
irreversibilities: ‘Biochemical pathways: an atlas of biochemistry and molecular
biology’ (Gerhard Michal, 1999 [70]) and ‘Biochemistry’ (Berg et al., 2002 [44]).
The enzymatic reactions indicated in the diagrams by unilateral arrows were
defined as irreversible (see Table 4.3).

In addition, the following groups of reactions are defined as irreversible based
on hypothetical assumptions:

• reactions catalysed by the enzymes of the class ‘hydrolases’,

• reactions consuming nucleoside triphosphates, except for the following
subgroups:

– the known ATP producers, catalysed by phosphoglycerate kinase,
acetate kinase and aspartate kinase;

– reactions transferring the phosphate groups between different nucle-
oside triphosphates, e.g. ATP + GDP ↔ ADP + GTP

It has been found that a number of irreversible reactions in KEGG LIGAND
are not defined according to their actual direction; these reactions need to be
inverted (see Table 4.4).

4.1.3 Hypothetical reactions

Since the automatically imported biochemical data describe solely the enzymatic
reactions involved in small molecule metabolism, a range of important metabolic
functions need to be represented by manually defined hypothetical reactions.
Here we describe a possible set of hypothetical reactions to be included in a
genome-scale model based on the KEGG database.

Biosynthetic pathways Protein, RNA, DNA, plasma membrane and cell
wall are defined as the biomass components to be covered by a model. The
synthesis of these products is represented in the form of generic reactions,
which are assumed to approximate the actual net stoichiometries of biosyn-
thetic pathways. These reactions are defined as irreversible, thus imposing
the growth condition (i.e. non-negative net production of biomass). All reac-
tions are listed in table 4.5. The reactions syn PROTEIN, syn RNA and syn DNA

produce the hypothetical generic metabolites representing protein, RNA and
DNA, respectively from their natural precursors. The stoichiometry of the reac-
tion syn FATTY ACID corresponds to the net stoichiometry of palmitate synthe-
sis [44]; hence, the hypothetical metabolite FATTY ACID has the composition of
palmitate. The further reactions represent the synthesis of diacylglycerol, phos-
phatidate, phosphatidylserine, phosphatydilethanolamine, phosphatydilglycerol
and cardiolipin. The reaction syn MEMBRANE represents the synthesis of plasma
membrane from its major components. The synthesis of peptidoglycan is rep-
resented by two successive reactions. The KEGG identifier C05894 denotes the
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Table 4.3: The reactions catalysed by the enzymes shown below were defined
as irreversible based on a search in [70] (upper part) and [44] (lower part).

EC number name
4.1.3.27: anthranilate synthase
2.1.1.45: thymidylate synthase
2.3.3.10: hydroxymethylglutaryl-CoA synthase
2.7.6.1: ribose-phosphate diphosphokinase
2.7.1.11: 6-phosphofructokinase
2.4.2.14: amidophosphoribosyltransferase
2.7.1.15: ribokinase
2.7.1.30: glycerol kinase
2.4.1.1: phosphorylase
1.1.1.133: dTDP-4-dehydrorhamnose reductase
2.3.1.54: formate C-acetyltransferase
2.3.1.30: serine O-acetyltransferase
2.4.1.18: 1,4-alpha-glucan branching enzyme
3.2.1.1: alpha-amylase
3.1.3.11: fructose-bisphosphatase
2.5.1.6: methionine adenosyltransferase
1.2.1.10: acetaldehyde dehydrogenase (acetylating)
4.1.1.5: acetolactate decarboxylase
2.7.1.40: pyruvate kinase
2.1.3.2: aspartate carbamoyltransferase
2.5.1.9: riboflavin synthase
4.2.3.5: chorismate synthase
4.2.3.1: threonine synthase
2.2.1.6: acetolactate synthase
4.1.2.5: threonine aldolase
1.5.1.2: pyrroline-5-carboxylate reductase
4.1.1.31: phosphoenolpyruvate carboxylase
2.7.1.2: glucokinase
2.7.1.11: 6-phosphofructokinase
6.3.4.5: argininosuccinate synthase
2.7.1.30: glycerol kinase
6.3.1.2: glutamate-ammonia ligase
6.4.1.2: acetyl-CoA carboxylase
2.7.1.40: pyruvate kinase
3.1.3.11: fructose-bisphosphatase
2.1.3.3: ornithine carbamoyltransferase
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Table 4.4: The reactions catalysed by the enzymes shown in the upper part and
the reactions shown in the lower part were iverted in the model, in accordance
with their proper directions.

EC number name
2.2.1.6: acetolactate synthase
1.5.1.2: pyrroline-5-carboxylate reductase
4.1.1.31: phosphoenolpyruvate carboxylase
1.2.1.10: acetaldehyde dehydrogenase (acetylating)
3.5.2.3: dihydroorotase
2.7.1.40: pyruvate kinase
2.3.1.54: formate C-acetyltransferase
2.4.2.14: amidophosphoribosyltransferase
3.5.4.10: IMP cyclohydrolase
R00177: ATP + H2O + methionine → pyrophosphate + orthophos-

phate + S-adenosyl-L-methionine
R02750: deoxyribose + ATP → 2-deoxy-D-ribose 5-phosphate + ADP

compound Undecaprenyl-diphospho-N-acetylmuramoyl-(N-acetylglucosamine)-
L-alanyl-D-isoglutaminyl-L-lysyl-D-alanyl-D-alanine. The full biomass is rep-
resented by a single external hypothetical metabolite.

Expenditure reactions The following reactions are intended to represent
the consumption of currency metabolites in the catabolic processes not covered
by the model:

ATPase: ATP + H2O → ADP + Phosphate
NADH Oxidase: NADH → NAD+ + H+

NADPH Oxidase: NADPH → NADP+ + H+

Spontaneous reactions The reaction Carboxyanhydrase: HCO3− + H+ ↔
CO2 + H2O is included.

Transporters Reversible transporters are included for some metabolites which
can freely pass through the cell membrane, namely water, ammonia, CO2 and
oxygen.

4.2 Application to genome-scale models

The methods described above were used to generate models of S. agalactiae
strains sag, sak, san and coh2. Two lines of models were constructed using dif-
ferent data sources for the determination of the sets of metabolic enzymes. The

2These identifiers denote the strain names and are used further in the thesis, see Table 4.6a.
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Table 4.5: Hypothetical biosynthesis reactions. Hypothetical metabolites are
denoted by uppercase names. Non-hypothetical metabolites are represented in
the actual model by their KEGG identifiers.

protein, nucleic acids:
syn PROTEIN:
Glycine + Proline + Leucine + Tyrosine + Asparagine +
Tryptophan + Aspartate + Phenylalanine + Threonine +
Isoleucine + Alanine + Methionine + Histidine + Cysteine +
Lysine + Glutamate + Glutamine + Arginine + Serine + Valine → PROTEIN

syn RNA:
GTP + CTP + ATP + UTP → 4 Pyrophosphate + xRNA

syn DNA:
dCTP + dTTP + dGTP + dATP → 4 Pyrophosphate + xDNA

lipids, membrane:
syn FATTY ACID:
7 Malonyl-CoA + Acetyl-CoA + 20 H+ + 14 NADPH →
8 CoA + 7 CO2 + 14 NADP+ + 6 H2O + FATTY ACID

syn PHOSPHATIDATE:
2 FATTY ACID + sn-Glycerol 3-phosphate → PHOSPHATIDATE

syn CDP DIACYLGLYCEROL:
PHOSPHATIDATE + CTP → Pyrophosphate + CDP DIACYLGLYCEROL

syn PHOSPHATIDYL SERINE:
Serine + CDP DIACYLGLYCEROL → CMP + PHOSPHATIDYL SERINE

syn PHOSPHATIDYL ETHANOLAMINE:
PHOSPHATIDYL SERINE → CO2 + PHOSPHATIDYL ETHANOLAMINE

syn PHOSPHATIDYL GLYCEROL:
sn-Glycerol 3-phosphate + CDP DIACYLGLYCEROL →
CMP + Orthophosphate + PHOSPHATIDYL GLYCEROL

syn CARDIOLIPIN:
2 PHOSPHATIDYL GLYCEROL → Glycerol + CARDIOLIPIN

syn MEMBRANE:
PHOSPHATIDATE + PHOSPHATIDYL SERINE +
PHOSPHATIDYL ETHANOLAMINE + CARDIOLIPIN → MEMBRANE

peptidoglycan
syn UDC P:
FATTY ACID + Orthophosphate → Undecaprenyl phosphate

syn PG:
Serine + Alanine + 2 C05894 → D-Alanine + PEPTIDOGLYCAN

biomass
syn BIOMASS:
PROTEIN + xRNA + xDNA + MEMBRANE + PEPTIDOGLYCAN → BIOMASS
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Figure 4.1: Construction of two lines of models. First line (left): the enzyme sets
were obtained from the annotations available in KEGG. Second line (right): the
genome sequences with predicted ORFs were obtained from KEGG and TIGR;
the enzyme sets were predicted using RPS-BLAST and PRIAM.

first line was based on genome annotations obtained from the KEGG database
and included models of the strains sag, sak and san. The second line was
based on in-house annotations of all four strains. The whole process is outlined
in Figure 4.1.

4.2.1 Data selection and collection

Genome sequences The complete genomes of the strains sag, sak and san

are available in the GenBank† and KEGG databases. Other sources of complete
genomes include the TIGR database for sag and sak and the organism-specific
SagaList† database for san. The genome files were obtained in the FASTA
format, with predicted open reading frames. Since the KEGG genome files
were found to cover more ORFs (see Table 4.6b), they were selected as the
primary data source for the second-line models of sag, sak and san (the files
were released on January 27, 2009). In addition, the incomplete genome of the
strain coh was retrieved from the TIGR database (released on January 18, 2006)
and used as a data source for a second-line model.

Annotations Genome annotations of the strains sag, sak and san were ob-
tained from the KEGG database and used as input data for the first-line models.
The annotations are represented in the form of flat files containing gene iden-
tifiers followed by comma-separated EC numbers (the text representation of
the class Relation conforms with this format, see Chapter 3). Table 4.6 shows
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Table 4.6: a) Organism identifiers for the modelled strains of S. agalactiae(the
first three are the KEGG identifiers). b) The numbers of ORFs in the genome
files obtained from different data sources. c) The numbers of ORFs annotated
and EC numbers predicted in the functional annotations obtained from KEGG.
d) Numbers of records in the KEGG LIGAND releases 29 (used in the current
work) and 49 (January 1, 2009). e) The content of the PRIAM database; the
third line indicates the EC numbers in KEGG LIGAND (release 49) without
profiles in PRIAM.

ID Strain Serotype
sag 2603 V
sak A909 Ia
san NEM316 III
coh COH1 III

Database sag san sak coh

GenBank 2124 1996 2134
KEGG 2276 2136 2235
TIGR 2169 2034 2475
SagaList 2134

a b

sag sak san
ORFs total 566 595 576
encoding multiple EC numbers 27 49 27
EC numbers total 412 446 418
encoded by multiple genes 87 94 90
incompletely qualified 43 57 43

c

Release 29 49
Total records 36644 39172
Compounds and glycans 25180 26311
Reactions 6810 7819
Enzymes 4654 5042

d

EC numbers 2099
Profiles 2706
EC numbers missing 2943

e
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that these annotations represent many-to-many relations between genes and en-
zymes. Some EC numbers in the annotations are not completely qualified and
contain one or more missing fields denoted by hyphens, e.g. 1.1.1.-.

Biochemical resources KEGG LIGAND database was also selected as the
source of biochemical data for the translation of the enzyme sets into the sets
of catalysed reactions. Release 29.0 (January 1, 2004) was used for the current
work. The local interface to KEGG LIGAND is described in Chapter 3.

4.2.2 Implementation and results

Figure 4.2 shows an example Python code producing the first and second-line
models of a single strain. The first two lines demonstrate the generation of the de
novo annotation. The method Run of the class PriamDB executes RPS-BLAST
with the arguments indicating the input genome file, the threshold E-value (set
to 10−3) and the output file, respectively.

The further operations are applied to integrated metabolic reconstructions.
The methods OpenAnnoRel and LoadAnnotation are used to import annota-
tions from a file obtained from KEGG and from an RPS-BLAST output file,
respectively; the biochemical data from KEGG are imported in parallel. The
argument rule of the method LoadAnnotation specifies the rule defining which
EC numbers are selected from the lists of hits and assigned to the ORFs. The
rule ‘best’ implies that the most significant hit is assigned to each ORF. If mul-
tiple best hits are predicted with equal E-values (such as the first two hits in
Figure 2.8a), all of them are assigned, thus resulting in the presence of genes
associated with multiple enzymes in the model.

By default, Algorithm 1 is applied to all reactions imported from KEGG
LIGAND. The reactions violating the balance of any element other than hydro-
gen and those involving polymers or generic metabolites are not included in the
models. The treatment of isostoichiometric reactions is described in Chapter 3.

The lists of EC numbers catalysing reactions to be defined as irreversible,
reversible or to be inverted and the list of the metabolites for which trans-
porters need to be included are defined in the supplementary text files, in a
comma-separated format. These lists are imported by the methods LoadIrrevs,
LoadToInvert and LoadEnv, respectively. The ScrumPy function Complement

calculates the complement of the sets of reactions consuming and producing nu-
cleoside triphosphates, e.g. those reactions only consuming, but not producing
NTPs. These reactions and the ones catalysed by hydrolases are made irre-
versible using the method SetIrrevs. The same method called with the second
optional argument set to False, makes the given reactions reversible. The biosyn-
thetic, spontaneous and expenditure reactions are defined in separate ScrumPy
model files and included into the reconstructions using the method AddModel.

The implementation described above was used for the construction of the
models of all strains. Table 4.7 shows the quantitative characteristics of the
resulting models.
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##annotation

Priam = Source.GetDB(’PRIAM’)

Priam.Run(’genome.seq’, 1e-3, ’genome.out’)

##first model:

system1 = Bio.System(Bioch = ’KEGG’)

system1.OpenAnnoRel(’sag_enzyme.list’)

##second model:

system2 = Bio.System(Bioch = ’KEGG’, Anno = ’PRIAM’)

system2.LoadAnnotation(’genome.out’, rule = ’best’)

##both models in a loop:

for system in [system1, system2]:

##irreversibles:

system.LoadIrrevs(’irrevs.irr’, True)

##hypothetical irreversibles

NTPs = system.GetNTPs()

NTP_consumers = system.GetConsumers(NTPs)

NTP_producers = system.GetProducers(NTPs)

NTP_irrevs = Complement(NTP_consumers, NTP_producers)

hydrolases = system.SelectByClass(’Hydrolases’)

system.SetIrrevs(NTP_irrevs + hydrolases)

##reversibles (phosphoglycerate, acetate and aspartate kinases):

system.LoadIrrevs(’revers_NTP_consumers.rev’, False)

##define proper directions:

system.LoadToInvert(’invert.inv’)

##biosynthesis reactions:

system.AddModel(’growth.spy’)

##expenditure and spontaneous reactions:

system.AddModel(’hypo.spy’)

##transporters:

system.LoadEnv(’transmembrane.env’)

##saving the models:

system1.Save(’1.xspy’)

system2.Save(’2.xspy’)

Figure 4.2: Construction of the first and second-line models of a single strain.
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Table 4.7: The numbers of the elements in the models of the first and second
line. The ∩ symbol denotes the intersections of the sets (the intersections cannot
be calculated for the genes, since their identifiers are strain-dependent).

1-st line 2-nd line
Strain sag sak san ∩ sag sak san coh ∩
Genes 566 595 576 NA 1355 1345 1419 1489 NA
Enzymes 369 389 375 366 608 604 619 599 559
Reactions 498 521 502 494 851 854 841 845 787
Metabolites 488 514 492 484 759 760 735 752 687

4.3 Discussion

The decisions made at the first stage of model construction, such as the selec-
tion of data sources, the treatment of inconsistent data and the inclusion of
hypotheses are crucial for the outcome of the modelling process, since minor in-
accuracies at this stage tend to give rise to serious errors in the analysis results.
Therefore, dubious cases were handled conservatively and potentially problem-
atic data were excluded from the input of the models. The motivations of some
specific solutions are explained below.

The data curation methods described in this chapter are based on a trade-
off between the completeness and specificity of data on the one hand and their
consistency on the other hand. Potentially relevant information is lost because of
the exclusion of unbalanced reactions and polymers. The usage of standardised
metabolite identifiers leads to the loss of distinction between optical isomers.
However, due to these solutions, the risk of a range of serious errors is reduced,
including stoichiometric inconsistencies and network gaps.

The irreversibilities and proper directions of reactions are the most deficient
type of input data. On the model construction stage, we were not aware of
any comprehensive and publicly available source of data describing thermody-
namic constraints in biochemical reactions3. Therefore, literature search was
performed as the only method of data collection. Since the visual inspection
of biochemical diagrams is laborious, the search was limited to the sections de-
scribing carbohydrate metabolism, fermentation and synthesis of amino acid
and nucleotides.

The hypothetical reactions included into the models are intended for the the
solution of certain practical problems, rather than for the complete description
of the metabolic networks. Only five major biosynthetic functions are covered,
aiming for the prediction of potential drug targets. The transporters for most
of the substrates are not included at this stage, assuming that different sets of
transporters could represent variable environmental conditions.

3While writing the thesis, we learned about the group contribution method for thermody-
namic analysis [68, 45]. Unfortunately, because of the lack of time, this method could not be
used for the definition of irreversible reactions.
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The KEGG annotations of S. agalactiae strains contain some incomplete
EC numbers, such as 5.-.-.- and 1.6.4.-. Records corresponding to some of these
numbers are available in KEGG LIGAND (e.g. for 25 out of 43 in the sag

annotation). However, none of these records contained a name and it was not
clear, whether they represented single enzymes or broader groups. Therefore, it
was decided not to include the incomplete EC numbers into the first-line models.

Since RPS-BLAST reports multiple hits with different levels of significance
for most of the ORFs, the resulting annotations do not deliver an ultimate so-
lution to the problem of assigning enzymatic functions to genes. The authors
of PRIAM recommend to detect the best non-overlapping hits in order to de-
tect potential multienzymes. We used a simpler approach, assigning the most
significant hits. These gene annotations, however, were assumed to be subject
to further revisions, depending on the results of model analysis.

The other optional decision was the choice of the threshold E-value for
RPS-BLAST, for which the value of 10−10 was recommended by the authors
of PRIAM. However, we applied the less restrictive threshold of 10−3 in or-
der to generate more encompassing models and to reduce them later, using the
results of constructive interrogation.

The databases KEGG LIGAND, BioCyc and BRENDA were considered as
potential primary sources of biochemical data. The selection of the former was
motivated by the following reasons:

• Availability in the form of flat files.

• Usage of uniform identifiers, which facilitates the data management and
reduces the susceptibility to typographic errors.

• A previous analysis made in our group demonstrated that the models of six
organisms based on KEGG LIGAND covered more reactions than those
based on BioCyc, while the numbers of errors were comparable [84].

The relatively old release 29.0 (January 1, 2004) was used for the current work.
Despite the bigger sizes of the more up-to-date releases (see Table 4.6d), they
were not used because of the following technical problems:

• Absence of empirical formulae for some important metabolites, such as
glucose (C00293).

• Impossibility of tracing mutual correspondences between glycan and com-
pound records (the corresponding database fields were removed).

It must be noted, however, that the completeness and correctness of the un-
derlying databases PRIAM and KEGG LIGAND is one of the major limiting
factors of the quality of the models constructed. This issue is discussed in detail
in the following chapter.
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Chapter 5

Constructive Interrogation

This chapter describes the detection and correction of structural errors, which
arise in models as a result of input errors included at the construction stage
(see Figure 2.9). In addition to the definitions of the classes of errors, we intro-
duce the concept of quality indicators, used to evaluate the general structural
quality of a model, i.e. its consistency with physical and biochemical con-
straints. Following the classification of structural analysis methods into three
major branches (graph-theoretical, mass-balance and flux-balance analysis), we
distinguish topological, flux and stoichiometric consistency of a model, con-
cerning its ability to comply with the three fundamental constraints: network
connectedness, mass conservation and steady state.

5.1 Topological consistency

The methods described below assume that a network is represented as a bipartite
graph. The sets of reactions and metabolites are the disjoint sets of nodes; a
reaction node and a metabolite node are connected if the given reaction uses
the given metabolite. The graph is not directed (i.e. all reactions are assumed
to be reversible).

Connected components are identified by a graph traversal algorithm based
on a depth-first search [14] (see Algorithms 2 and 3). The number of connected
components can be used to measure the degree of network disconnectedness.
However, in our experience, genome-scale reconstructions typically comprise one
large component (containing above 90% of all metabolites) and multiple small
ones [84]. Therefore, we consider the percentage of metabolites in the biggest
component as a more informative indicator of model quality. For instance, in the
network shown in Figure 2.7e, the number of components is 2 and the percentage
is 2

3 ≈ 66.6%.
Orphan metaboles are detected by a simple inspection of the rows of the in-

ternal stoichiometry matrix. A model can be evaluated more precisely using the
‘Core’ algorithm, which iteratively detects and removes the orphan metabolites
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Algorithm 2 Identify the set C of connected components in a network with an
external stoichiometry matrix N̂.

C := ∅
U := metabolites(N̂) ∪ reactions(N̂) //initial set of nodes
while U 6= ∅ do

a := select(U) //any element
S := ∅ //the current component
V isit(a, S, N̂) //Alg. 3
U := U \ S
C := C ∪ {S}

end while

Algorithm 3 Recursive subroutine used for the detection of connected com-
ponents. N̂ is an external stoichiometry matrix, S is a set, a is a reaction or
metabolite; the function InvolvedWith returns the list of metabolites used by
a if it is a reaction or the list of reactions using a if it is a metabolite.

def V isit(a, S, N̂) :

S := S ∪ {a}
for all b ∈ InvolvedWith(N̂, a) do

V isit(b, S)
end for

from the internal stoichiometry matrix, thus extracting the core matrix (see Al-
gorithm 4 and Figure 5.1). Note that none of the reactions removed in the course
of the algorithm is able to carry a steady state flux. The algorithm can be used
in order to reduce a stoichiometry matrix before applying more time-consuming
methods of linear programming or null space analysis; it can be also applied to
an external stoichiometry matrix for mass-balance analysis. For these purposes,
the algorithm is used as an optional preprocessing step in the analysis methods
provided by the integrated metabolic reconstruction classes (see Chapter 3).

A dead-end metabolite can be considered as a structural error only if it is
and orphan or if it is used by irreversible reactions only (e.g. C in Figure 5.1c).
Otherwise, its concentration can be balanced if one of the reversible reactions
using it can operate in the backward direction. However, this may be impossible,
if this reaction is involved in a reaction subset with an irreversible reaction (see
Section 5.3 for more details).

We consider the percentages of non-orphan and non-dead-end metabolites
in the total set of metabolites and the percentage of the reactions in the core
matrix (further referred to as core reactions) in the total set of reactions as
indicators of model quality.

82



orphans: {E, F}
remove: {R7}

a

orphans: {D}
remove: {R6}

b

orphans: ∅
remove: ∅

c

Figure 5.1: Iterations of the ‘core’ algorithm. Initially, the network contains two
orphan metabolites (a). In the second iteration, one more orphan is detected and
removed (b). In the third iteration, no orphans are detected and the algorithm
terminates. Note that the external metabolites (coloured red) are not considered
as orphans
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Algorithm 4 Given an internal stoichiometry matrix N, identify the core ma-
trix Ń.

Ń := copy(N)
O := orphans(Ń)
while O 6= ∅ do

for all m ∈ O do
for all r ∈ InvolvedWith(Ń, m) do

del col(Ń, r) //delete the column
end for

end for
del zero rows(Ń) //delete zero rows
O := orphans(Ń)

end while

5.2 Stoichiometric consistency

The concept of stoichiometric consistency was introduced in the recent publica-
tion of our group: ‘Detection of stoichiometric inconsistencies in biomolecular
models’ [33] (see Appendix A). Any natural metabolic system fulfills two fun-
damental physical constraints: positivity of molecular masses of all metabolites
and mass conservation in all reactions. The conflicts between these constraints
in metabolic models must be considered as structural errors; an example is
shown below:

R1: A ↔ B
R2: A ↔ B + C

(5.1)

Under the assumption of mass conservation it is impossible to assign any posi-
tive molecular mass to C; the only admissible mass is zero. The presence of the
error does not depend on the actual chemical species, denoted A, B and C; it
only depends on the reaction stoichiometries. Therefore, we term such errors
stoichiometric inconsistencies. A metabolic network is stoichiometrically con-
sistent if all metabolites can be assigned some positive molecular masses without
violating mass conservation, and stoichiometrically inconsistent otherwise.

Although in this work we consider only structural models, the concept of
stoichiometric consistency is also applicable to kinetic models of metabolism
and, more generally, to any systems of mass-conserving stoichiometric intercon-
versions. The typical causes of stoichiometric inconsistencies are summarised
below:

• atomically unbalanced reactions,

• generic metabolites referring to multiple substances (e.g. primary alcohol),

• polymers with variable molecular compositions,

• metabolites not referring to actual substances (in conceptual models) .
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In a model where each metabolite represents a unique chemical substance, stoi-
chiometric inconsistencies are always caused by the presence of atomically unbal-
anced reactions. Unfortunately, the atomic balances are often undeterminable
(see Table 4.1a, b). Here we propose a more reliable and universal solution of
the problem.

Verification of consistency We associate each metabolite in a network with
a numerical value specifying its molecular mass; these values comprise a column
vector m of dimension m. Molecular masses of natural substances are positive:

m > 0 (5.2)

The total conservation of mass is described by the equation N̂
T
m = 0 (Eq. 2.7).

We refer to any solution of Equation 2.7 as a mass conservation vector. A
network is called consistent if it has at least one positive mass conservation
vector and inconsistent, otherwise. Equations 5.2 and 2.7 define the following
LP problem:

Minimise
∑m

i=1 mi

Subject to N̂
T
m = 0

Where mi ≥ 1 : 1 ≤ i ≤ m

(5.3)

The program is solvable if the system is consistent. The third line ensures
that the molecular masses are positive (since strict inequalities are not valid in
linear programming, the expression > 0 must be replaced by ≥ α where α is an
arbitrary positive number).

5.2.1 Inconsistent net stoichiometries

The net stoichiometry of any linear combination of reactions is in the column
space of N̂, according to Equation 2.13. By combining this equation with Equa-
tion 2.7, we obtain the following equality, which is true for an any net stoichiom-
etry ċ and any mass conservation vector m:

ċTm = 0 (5.4)

The following proposition and corollary state an important property of in-
consistent networks:

Proposition 1 ([16]) An equation ċTm = 0 has no positive solution m iff ċ
is either semipositive or seminegative.

Proof Necessary condition: Let us assume that ċ is neither semipositive nor
seminegative. If ċ = 0 then the equation is solvable with arbitrary m. Oth-
erwise, let us denote the positive components of ċ by ċi, i = i1, ..., iP and the
negative ones by ċj , j = j1, ..., jN ; P + N = m. Then the given equation can
be written in the form:

iP
∑

i=i1

ċimi = −

jN
∑

j=j1

ċjmj
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and a positive solution is obtained by taking

mi = −

jN
∑

j=j1

ċj : i = i1, ..., iP

mj =

iP
∑

i=i1

ċi : j = j1, ..., jN (5.5)

Sufficient condition: Let us assume that m > 0. If ċ ≥ 0 then ċT m > 0 and if
ċ ≤ 0 then ċTm < 0 �

We term a net stoichiometry inconsistent, if it is either semipositive or sem-
inegative.

Corollary 1.1 A network is inconsistent, iff it has at least one inconsistent net
stoichiometry.

A metabolite set is conservable, if its elements can be assigned positive molec-
ular masses simultaneously in some mass conservation vector and unconservable
otherwise (e.g. {A, C} in Equation 5.1). Since only the terms with zero coef-
ficients can be excluded from an equation ċT m = 0 without changing its solu-
tions set, according to Proposition 1, the metabolites with non-zero coefficients
in an inconsistent net stoichiometry comprise an unconservable set. The full
metabolite set of an inconsistent network is unconservable, but it may contain
conservable subsets (e.g. {A, B} in Equation 5.1).

An unconservable set is minimal if all of its proper subsets are conservable
(e.g. {C} in Equation 5.1 and {A′, B′, C′} in Figure 5.2). An inconsistent net
stoichiometry is minimal if its support is a minimal unconservable set. The fol-
lowing corollary is implied by the criterion of solvability of the equation ċTm = 0
with a positive ċ according to Proposition 1:

Corollary 1.2 If M is a minimal unconserved metabolite set, and |M| = 1,
then the metabolite has zero mass. If |M| > 1, then all metabolites in the mass
conservation vector have zero mass, or if any have a positive mass, then at least
one metabolite has a negative mass.

Let us consider a semipositive mass conservation vector. Corollary 1.2 im-
plies that in this vector, the components corresponding to the elements of min-
imal unconservable sets can be only equal to zero. Since each of the remaining
metabolites can be assigned a positive molecular mass in at least one mass con-
servation vector, there must exist one in which all metabolites not contained in
minimal unconservable sets are assigned positive molecular masses. We refer to
such a vector as a maximal conservation vector. The fact that it is non-negative
helps to prove the following proposition and corollary.

Proposition 2 A metabolite met ∈ M is unconserved iff it is an element of at
least one minimal unconservable set M′ ⊆ M.
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R1 : A + A′ ↔ B
R2 : B + B′ ↔ C
R2 : C + 2 C′ ↔ A

A A′ B B′ C C′

0 1 0 1 0 2

a b

c

Figure 5.2: a) A system with a minimal unconservable set {A′, B′, C′}. b)
An inconsistent minimal net stoichiometry c) Graph representation: A′, B′ and
C′ enter the reaction cycle, but nothing leaves it. If these metabolites would
have positive molecular masses and the cycle would carry an internal flux, it
would create mass from nothing or convert it into nothing, depending on the
reaction directions. Hence, the total mass of the closed system would change
by the masses of the metabolites weighted by the coefficients specified in (b).

Proof Necessary condition: If met is not an element of any minimal unconserv-
able set, then the corresponding component in the maximal conservation vector
of N is positive and met is not unconserved. Sufficient condition: According
to Corollary 1.2, met ∈ M′ cannot obtain a positive value in any non-negative
conservation vector, therefore, met is unconserved. �

Corollary 2.1 A metabolite is unconserved iff its mass is not positive in a
maximal conservation vector.

Hence, a network is inconsistent if it contains some inconsistent net stoichiome-
tries, and a net stoichiometry is inconsistent iff it involves unconserved metabo-
lites. We consider the numbers of unconserved metabolites and minimal incon-
sistent net stoichiometries as indicators of model quality.

5.2.2 Leakage modes

The localisation of stoichiometric inconsistencies requires the detection of in-
consistent subnetworks. In the simplest case, an inconsistent network consists
of only one reaction; such a reaction is also called inconsistent. An example is
shown below:

A ↔ A + B (5.6)
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Proposition 1 implies that the reaction is inconsistent if it has either an empty
set of substrates (ċ ≥ 0) or an empty set of products (ċ ≤ 0), but not both
(ċ = 0). Metabolites occuring on both sides with equal coefficients are for
most purposes represented by zeroes in a stoichiometry matrix, since their net
concentration change is zero. Therefore, the reaction shown in Equation 5.6 is
equivalent to ∅ ↔ B and hence inconsistent.

The more complex network shown below contains no inconsistent reactions.
However, by subtracting the stoichiometry of R2 from that of R1 we obtain
the inconsistent net stoichiometry ∅ ↔ C. Further, the linear combinations
(R1,−R3)

T and (R1,−R2,−R3)
T result in the net stoichiometries ∅ ↔ B and

A ↔ ∅, respectively.
R1 : A ↔ B + C
R2 : A ↔ B
R3 : A ↔ C

(5.7)

Likewise, in the network shown in Figure 5.2a, the sum of all three reaction
stoichiometries is A′ + B′ + 2 C′ ↔ ∅.

The solutions of the system N̂v = ċ for an inconsistent ċ are termed leakage
modes and those with minimal supports are termed elementary, e.g the afore-
mentioned linear combinations in Equation 5.7 and Figure 5.2. In contrast to
the closely related concept of flux modes, the reaction directions and reversibil-
ities in leakage modes are irrelevant. But similarly to elementary flux modes,
elementary leakage modes represent minimal subnetworks able to ‘leak’ (i.e. to
produce in a steady state without consuming anything or vice versa) certain
metabolite compositions. Therefore, they can be defined as precise locations of
stoichiometric inconsistencies and their identification is helpful for the detection
of input errors.

The ability of leakage modes to carry (invalid) steady state fluxes in a closed
network implies that the reactions comprising them are organised in cycles.
These cycles have either of the properties described below:

a) Some metabolites enter the cycle, but nothing leaves it, or vice versa
(see Equations 5.1 and 5.7 and Figure 5.2). So, after each turnover, the total
mass of the system increases or decreases, assuming that the entering or leav-
ing metabolites have positive molecular masses. Therefore, these metabolites
comprise a minimal unconservable set. Elementary leakage modes of this type
can be detected using elementary modes analysis, given that the entering or
leaving metabolites are externalised. In contrast, the algorithms proposed in
this section do not depend on the selection of external metabolites.

b) Inconsistently defined stoichiometric coefficients. So, considering these
coefficients as the edge weights in a graph, the product of all edge weights in a
cycle is greater or less than one, thus increasing or decreasing the total mass of
the system. A simple example is shown below:

R1 : A ↔ B
R2 : A ↔ 2B

(5.8)

Interestingly enough, the reactions involved in such a cycle may comprise more
than one elementary leakage mode with different net stoichiometries, depending
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on the coefficients. So, in Equation 5.8, the leakage modes (R2,−R1)
T and

(R2,−2R1)
T have the net stoichiometries ∅ ↔ B and ∅ ↔ A.

5.2.3 Detection of stoichiometric inconsistencies

Detection of unbalanced metabolites According to Corollary 2.1, con-
served and unconserved metabolites can be distinguished in a maximal conser-
vation vector, which can be calculated by means of the following MILP:

Maximise
∑m

i=1 ki

Subject to N̂
T
m = 0

Where 0 ≤ ki ≤ mi, ki ∈ {0, 1} : 1 ≤ i ≤ m

(5.9)

The number of positive components of m is maximised. The third line ensures
that each component ki of the vector of integers k can be set to 1 if mi ≥ 1
and is 0 otherwise. Since no upper bound is defined for the components of m,
the non-zero components are increased until all of them become greater than
or equal to one. At this point, the number of unit components of k reaches the
possible maximum, thus satisfying the termination criterion.

Detection of minimal inconsistent net stoichiometries Since any solu-
tion of Equation 2.7 can be found in the left null space, Equation 5.4 has the
same solution set as the system shown below:

KT ċ = 0 (5.10)

where K is a left null space matrix. Each solution of this system is some vector
in the column space of N̂, i.e. a net stoichiometry. If the left null space is
empty, then the system has the trivial solution only. Hence, the only conserv-
able molecular mass of each metabolite is zero and the network is inconsistent.
Otherwise, each inconsistent minimal net stoichiometry is an undecomposable
semipositive or seminegative solution of Equation 5.10. As a special case, a
singleton minimal unconservable set is always represented by an all-zero row in
the left nullspace matrix. Further, a minimal inconsistent net stoichiometry in-
volving a given unconserved metabolite with a non-zero coefficient can be found
using the following MILP:

Minimise
∑m

i=1 ki

Subject to KT ċ = 0,
ċj ≥ ǫ

Where 0 ≤ ċi ≤ ki, ki ∈ {0, 1} : 1 ≤ i ≤ m

(5.11)

The program minimises the number of positive components in the vector ċ, thus
ensuring that its support is minimal. The third line states that the mass of the
metabolite corresponding to the j-th row is positive in the solution. However,
the same metabolite can be an element of more than one minimal unconservable
set (given that none of them is singleton). In order to find the next solution,
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the one already found is excluded from the further iterations using an integer
cut. The program must be invoked iteratively until no more solutions can be
found (see Algorithm 5).

Algorithm 5 Identify the set Y of inconsistent minimal net stoichiometries in
a stoichiometry matrix N̂

Y := {}

U := unconserved metabolites(N̂
T
) /* Eq. 5.9 */

K := nullspace mtx(N̂
T
)

for all met ∈ U : do
if Kmet = 0 then

ċ := [0, ..., 0]
ċmet := 1 /* all-zero row → singleton set*/
Y := Y ∪ {ċ}

else
prog := mixed integer program(K)
ċ,k := minimal solution(prog, met) /* Eq. 5.11 */
while is feasible(prog) do

Y := Y ∪ {ċ}
set integer cut(prog,k) /* Eq. 3.7 */
ċ,k := minimal solution(prog, met)

end while
end if

end for

Detection of elementary leakage modes A given inconsistent minimal net
stoichiometry ċ can be augmented at the right side of the stoichiometry matrix.
This is equivalent to including an additional inconsistent reaction into the net-
work; this reaction may be also considered as a transport reaction in an open
metabolic system and will be further referred as the transporter (Figure 5.3, b).
In terms of metabolic modelling, the transporter delivers the molecules which are
then lost in the leakage modes, thus satisfying the steady state condition and en-
abling the calculation of elementary flux modes in the system (N̂|− ċ)(v|1) = 0,
considering all reactions as reversible. The elementary flux modes involving the
transporter have an inconsistent net stoichiometry and the corresponding leak-
age modes in the original network can be obtained from them by removing the
transporter (Figure 5.3, c). The procedure described above must be repeated
for each inconsistent minimal net stoichiometry.

As an alternative solution for large models, we propose instead of a complete
set of elementary modes to calculate only a spanning set, which comprises the
columns of a nullspace matrix of the system (N̂| − ċ)(v|1) = 0, which can be
obtained by Gauss-Jordan elimination. The inspection of this matrix enables
the detection of at least some, if not all of the input errors causing the leakage
of a given metabolite set (Figure 5.3, d). After the error correction, the matrix
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R1 : A ↔ B
R2 : A ↔ B + X
R3 : P ↔ Q
R4 : P ↔ Q + X

a

R1 R2 R3 R4 TX

A −1 −1 0 0 0
B 1 1 0 0 0
P 0 0 −1 −1 0
Q 0 0 1 1 0
X 0 1 0 1 1

b

em1 em2 em3

R1 −1 −1 0
R2 1 1 0
R3 1 0 −1
R4 −1 0 1
TX 0 −1 −1

c

em1 em2

R1 −1 −1
R2 1 1
R3 1 0
R4 −1 0
TX 0 −1

d

Figure 5.3: a) A system with a minimal unconservable set {X}. b) The sto-
ichiometry matrix with the augmented inconsistent minimal net stoichiometry
under the column name TX , which represents the transport reaction ∅ ↔ X . c)
Elementary flux modes: em1 is an internal cycle, whereas em2 and em3 involve
the transporter TX and correspond to the elementary leakage modes (−R1, R2)

T

and (−R3, R4)
T . d) The right nullspace matrix of the augmented matrix: one

out of two elementary leakage modes appears here.
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can be recalculated to detect the remaining errors.
Individual elementary leakage modes with a given net stoichiometry can be

obtained using linear programming methods (see Chapter 7).

5.2.4 Practical applications

We proposed an algorithm detecting the complete set of unconserved metabo-
lites in a network using a MILP. Although the complexity of the latter is much
higher than the complexity of the linear program used in the algorithm proposed
by [73], the MILP needs to be invoked only once for the whole model. Thus
the full computation takes a significantly shorter time. The detection of uncon-
served metabolites enables a simple method for resolving all inconsistencies in
a network, namely by removing the corresponding rows from the stoichiometry
matrices. This solution may be acceptable if the concentrations and conversions
of unconserved metabolites are not relevant for the investigated problem, e.g.
for water. However, in most cases, more sophisticated solutions are needed, for
which the identification of unconserved metabolites is a necessary step.

A more precise characterisation of inconsistent networks is possible by detec-
tion of minimal inconsistent net stoichiometries. Although Algorithm 5 solves
the non-polynomial problem of finding a complete set of minimal solutions in a
system of linear equations, it appears to be feasible even in large genome-scale
models due to a) the relatively small size of the left nullspace matrix, compared
to a whole network and b) usually small numbers of minimal inconsistent net
stoichiometries involving a given metabolite.

In contrast, the calculation of a complete set of elementary leakage modes is
subject to combinatorial explosion and is currently not feasible in genome scale
models. On the other hand, the total number of elementary leakage modes can
be very large. So, in a model of a potato tuber (constructed manually in our
group) containing 30 reactions and 31 metabolites, 7 out of them unconserved,
we found 123 elementary leakage modes, all caused by a single input error. Such
amounts of data are hardly analysable and apparently superfluous. Therefore,
we propose the calculation and analysis of a limited population of elementary
leakage modes using Gauss-Jordan elimination. This result can be used in two
ways: inspection of individual modes and of those reactions which are involved
in large percentages of the calculated modes.

The smallest possible leakage mode with a given net stoichiometry can be
identified using MILP. The advantage of this method is the maximally precise
localisation of input errors, the disadvantage is the high computational cost of
using integer constraints and especially integer cuts in large models. Hence,
the next mode should be calculated after the error in an already found one is
corrected.

Notably the stoichiometric consistency of a network does not depend on the
quality of the underlying annotation, neither on the thermodynamic constraints
and is usually defined by the quality of the biochemical data used for the model
construction. The algorithms presented in this section are applicable to com-
plete biochemical databases and can be used to detect errors in them in order
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to prevent their propagation into the models.

5.3 Flux consistency

Live reactions We assume that a realistic model must be able to operate at
a steady state. A reaction is termed live, if it can carry a steady state flux and
dead, otherwise. The concept of dead reactions is often used interchangeably
with that of strictly detailed balanced reactions, which are represented by zero
rows in a null space matrix. Under this assumption, the definition of dead re-
actions does not depend on the irreversibilities and directions. Therefore, we
term such reactions stoichiometrically dead, to distinguish them from thermo-
dynamically dead reactions, which cannot carry a steady state flux with respect
to the irreversibility constraint. In a general case, the stoichiometrically dead
reactions comprise a subset of the thermodynamically dead ones; in a reversible
network, both sets are equal. Further in the thesis, the terms dead and live
refer to thermodynamic deadness and liveness, unless otherwise stated.

The liveness of an individual reaction can be identified by solving the lin-
ear program shown in Equation 3.12 for its forward and backward directions.
However, solving this LP for each reaction in a network may be costly. In most
cases, the computational time can be considerably reduced by calculating the
core matrix of the network and identifying the live reactions within it, since the
remaining reactions are definitely dead.

The detection of live reactions can be further accelerated by maximising the
number of reactions carrying a positive flux in a solution, using an MILP ap-
proach, similarly to the detection of unconserved metabolites. However, this ap-
proach does not guarantee the detection of all live reactions in one go, since some
reaction flux rates may be negative (unlike metabolite masses). For instance,
in the network shown in Figure 5.4, the maximal positive solution involves the
reactions R1, R2 and R4, although R2 is also live. Clearly, after identifying the
liveness of as many reactions as possible by means of MILP, the remaining ones
can be tested using Equation 3.12. This can be done by iteratively invoking the
following MILP:

Maximise ki, i ∈ T

Subject to N̈v̈ = 0,
−virr = 0,

Where 0 ≤ ki ≤ v̈i, 1 ≤ i ≤ 2n

(5.12)

where T is the set of reactions whose fluxe rates are to be maximised. In the
initial iteration, T is the complete set of reactions; in each further iteration, it
is reduced to those reactions whose liveness is still uknown. Once the MILP
returns an empty solution (i.e. no more positive solutions can be found), the
loop terminates and the remaining reactions are tested individually.

Although we consider a dead reaction as a structural error, its presence does
not necessarily indicate an input error in the annotative or biochemical data,
since it depends on the definition of external metabolites. For instance, the

93



Figure 5.4:

reactions R4, R5, R6 and R7 in Figure 5.1a are dead, but would become live
after declaring E and F external. Another typical condition is the inclusion
of an enzyme catalysing multiple reactions, some of which are live in the given
network while others are dead. We define an enzyme as working if it catalyses at
least one live reaction and unemployed, otherwise. Similarly, a gene is working
if it encodes at least one working enzyme and unemployed, otherwise. We
assume that in a correct reconstruction, each metabolic enzyme must be able
to catalyse at least one steady state flux (given that all external sources and
sinks are present). Therefore, the percentages of working enzymes and genes
are more informative indicators of model quality than the percentage of dead
reactions.

Directional consistency In Figure 5.1c, the dead reactions R4 and R6 are
represented by non-zero rows in the null space matrix. These reactions com-
prise a reaction subset, but since both of them irreversibly produce the dead-end
metabolite C, none of them carries a steady state flux. Since all reactions in
a reaction subset operate symultaneously at any flux mode, if any of them is
dead, the others are dead as well. Reaction subsets consisting of dead reac-
tions are termed directionally inconsistent (Poolman, unpublished), since the
inability to carry a steady state flux is stipulated by the irreversibility con-
straint. We define a model as directionally consistent if it does not contain
inconsistent reaction subsets and directionally inconsistent otherwise. We hy-
pothesise that directional inconsistencies always coincide with the presence of
dead-end metabolites, although these metabolites are not necessarily used by
the reactions of the inconsistent subsets (e.g. in Figure 5.1a, the inconsistency
of the subset {R4, R6} is associated with the dead-end metabolites E and F).
The presence of an innconsistent reaction subset can be caused by one of the
following conditions:

• Incorrectly defined reaction directions (e.g. in Figure 5.1, inverting R6

would resolve the inconsistency)

• Missing reaction (e.g. a reaction consuming C in Figure 5.1c).

• Defining dead-end metabolites as internal (e.g E and F in Figure 5.1a).
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 R00650

S-Adenosyl-L-homocysteine Methionine

S-Adenosyl-L-methionine

 R00177 ->

 R00194 ->

Homocysteine

ATPH2O

Pyrophosphate Orthophosphate

 R01291

S-Ribosyl-L-homocysteine Adenine

D-Ribose

Figure 5.5: A directionally inconsistent reaction subset in the second-line model
of sag. The irreversible reactions are marked with the symbol −>. Adenine
and S-adenosyl-L-methionine are dead-end metabolites.

Note that inconsistent reaction subsets may involve reversible reactions (see
Figure 5.5).

Internal cycles Some flux modes may represent internal cycles with zero net
stoichiometries (e.g. v1 in Figure 2.6). Such flux modes are not thermodynami-
cally feasible, since they are not driven by a difference of free energies. If all the
flux modes involving a given reaction are internal cycles, both LP and null space
analysis based methods would qualify it as live, although it does not operate
at any feasible steady state. Such a reaction can be detected using the reac-
tion correlation method, since its correlation with any transporter is zero [86].
Unfortunately, this method ignores the irreversibility constraint.

The presence of internal cycles often complicates the interpretation of FBA
results. An example is shown in Figure 5.6. Let us try to predict, whether
the presence of R1 in this network is necessary for the ability of R2 to carry
a steady-state flux. After removing R1, R2 would be still live according to
Equation 3.12. However, this ‘liveness’ is only due to the involvement of R2 in
the internal cycle with R4 and R5. In fact, the removal of R1 would lead to
the block of any thermodynamically feasible steady-state flux in R2. This error
could be avoided, if the internal flux were blocked, e.g. by defining R4 and/or R5

as irreversible. However, in large networks, the detection of all internal cycles
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a b

Figure 5.6: a) A network with an internal cycle. R4 and R5 reversibly produce
C. b) The orthogonal null space matrix of the external stoichiometry matrix.
The only column represents the internal flux, the rows corresponding to R1 and
R3 contain values smaller than the computational rounding error and can be
treated as zero rows; hence, these reactions are not involved in internal fluxes.
The reactions correlation coefficients (absolute cosines of the angles) between
R2 and R4 and between R2 and R5 are equal to 1.

involving a given reaction may be computationally infeasible.
Algorithm 6 presents a method enabling the prevention of internal fluxes

through a given reaction, by disallowing the backward fluxes in some minimal
set of reversible reactions. The algorithm is applied to an external stoichiometry
matrix N̂, which represents a closed system; hence, any flux mode detected in
this matrix is internal. The algorithm assumes that the target reaction t is
involved in at least one internal flux. Firstly, the orthogonal null space matrix
K of N̂ is calculated. Then the zero rows are deleted from this matrix (with
respect to the rounding error), since they represent reactions not involved in
internal fluxes (see Figure 5.6b). The list R of candidate reactions is constructed
by removing the irreversible reactions and the target reaction from the list of
remaining row names of K. The function corr(i) is defined as the absolute
value of the cosine of the angle θK

i,t between the rows Ki and Kt; this cosine
is the reaction correlation coefficient between the reactions i and t [86]. Using
the comparison function cmp as an argument for the sorting function, the list
R is ordered by descending absolute values of the correlation coefficients of
the candidate reactions with the target reaction. Hence, the candidates with
stronger correlations with the target are tested first. In the first while-loop, the
candidate reactions are iteratively made irreversible and the target reaction is
tested for liveness, until it becomes dead (i.e. all internal cycles involving it
are blocked). If the loop terminates while the target is still live, the algorithm
returns an empty list and the user is notified that the problem is unsolvable.
Otherwise, the candidate list is reduced by removing the reactions not tested
yet and the second while-loop begins, which iterates over the candidate list
in a reverse order. In each iteration, the current reaction is made reversible
and the target is tested for liveness. If it becomes live, the current reaction
is made irreversible again. Otherwise, it is removed from the candidate list.
Hence, the algorithm ensures that the resulting candidate list is irreducible,
although it does not guarantee that the list has the minimal possible length. The
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candidate reactions suggested by this algorithm may be defined as irreversible
in the original network, thus preventing the internal fluxes through the target
reaction. However, the result does not depend on the actual irreversibilities and
directions of the candidate reactions. As a preprocessing step, the candidate
list can be limited using the available thermodynamic data.

Algorithm 6 Given a network with the external stoichiometry matrix N̂, the
set of irreversible reactions I and a reaction t involved in some internal cycles,
detect a minimal list R of reactions, defining which as irreversible would lead
to the block of all internal fluxes involving t.

K := orthogonal null space(N̂)
del zero rows(K)
R := row names(K) − I − 〈t〉
corr(i) := abs(cos(θK

i,t))
cmp(i, j) := cmp(corr(i), corr(j)))
sort(R, cmp)
i := 0
l := True
while l = True and i < length(R) do

I := I ∪ {i}
l := is live(N̂, I, t) //Equation 3.12
i := i + 1

end while
if l = True then

R := 〈〉 //the problem is unsolvable
else

R := R[: i]
while i > 0 do

i := i − 1
I := I \ {i}
if is live(N̂, I, t) then

I := I ∪ {i}
else

delete(R, i)
end if

end while
end if

5.4 Application to genome-scale models

The methods described above were applied to the first and second-line models
of S. agalactiae, and the analysis results were used to correct the models.
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Table 5.1: Structural indicators of model quality and their dependency of the
input data.

Depend on reaction stoichiometries only:
num. of connected components
% of metabolites in the biggest component
stoichiometric consistency
num. of unconserved metabolites
num. of minimal inconsistent net stoichiometries
Depend on reaction stoichiometries and external metabolites:
% of non-orphan metabolites
% of reactions in the core matrix
Depend on reaction stoichiometries, external metabolites and
reaction directions:
% of non-dead-end metabolites
Depend on reaction stoichiometries, external metabolites,
reaction directions and irreversibilities:
% of live reactions
% of working enzymes
% of working genes
num. of inconsistent reaction subsets

5.4.1 Unconserved metabolites

All models were found to be stoichiometrically inconsistent, with proton (C00080)
being the only unconserved metabolite. In order to resolve the inconsistencies,
proton was removed from all models.

Application to other models In order to illustrate the algorithms detecting
minimal inconsistent net stoichiometries and elementary leakage modes, here we
present the results of their application to genome-scale models of E. coli iJR904
GSM/GPR [95], S. cerevisiae [27] and sag (constructed on the basis of the
KEGG annotation, but without any correction of input data and inclusion of
hypothetical reactions).

The model of E. coli, (931 reactions, 625 metabolites) is stoichiometrically
consistent. The model of S. cerevisiae (1172 reactions, 809 metabolites), in
contrast, contains 359 unconserved metabolites (very similar results describing
these models have been published by [73]). Further, in the model of S. cerevisiae,
4030 minimal unconservable sets have been found, out of which 144 are singleton,
2651 comprise two and 1235 comprise three metabolites. Nullspace calculation
has been used for the detection of elementary leakage modes. An example is
shown in Figure 5.2 (a, c): the same reaction set comprises two elementary
leakage modes, which differ in the flux rate coefficients and produce {H2O2}
and {O2}, respectively. The inconsistency is caused by the incorrect definition
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Table 5.2: Elementary leakage modes in the models of S. cerevisiae (a, c) and S.
agalactiae (b, d). In the right hand side columns, the flux rate coefficients and
the produced minimal unconservable sets are shown. In (a), the same reaction
set comprises two different modes, depending on the coefficients. The names of
unconserved metabolites and incorrectly defined reactions are highlighted bold.

a) {H2O2} {O2}
U82 : ATP + PDLA ↔ PDLA5P +

ADP
-1/2 -1

U83 : ATP + PL ↔ PL5P + ADP 1/2 1
YGR088W: 2 H2O2 ↔ O2 -1 -1
YBR035C: PL + O2 + NH3 ↔ PDLA +

H2O2

-1/2 -1

YBR035C: PDLA5P + O2 ↔ PL5P +
NH3 + H2O2

-1/2 -1

b) {H+}
R04325: GAR + 10-Formyl-THF ↔ N-Formyl-

GAR + THF
1

R04326: GAR + 5,10-Methenyl-THF + H2O ↔
N-Formyl-GAR + THF

-1

R01655: 5,10-Methenyl-THF + H2O ↔ 10-
Formyl-THF + H+

1

c d

of the reaction YGR088W, where two molecules of water are missing on the
right hand side. After correcting this reaction, the subnetwork shown becomes
consistent.

The model of S. agalactiae (718 reactions, 904 metabolites) contains 215 un-
conserved metabolites and 214 minimal unconservable subsets; 212 out of them
are singleton and 2 comprise 2 metabolites. For each minimal unconservable
set, one elementary leakage mode has been detected by nullspace calculation;
the numbers of involved reactions vary between 4 and 96. The analysis of de-
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tected modes revealed that most of them involve reactions, in whose definitions
the same polymeric molecules appear on both sides and are cancelled out in the
stoichiometry matrix. Two examples are shown below:

R07284: ATP ↔ Pyrophosphate
R07283: CTP ↔ Pyrophosphate

According to these reactions, ATP and CTP are isomers of pyrophosphate and
of each other (in KEGG, they are defined as follows: ATP + tRNA ↔ Py-
rophosphate + tRNA and ATP + tRNA ↔ Pyrophosphate + tRNA). These
reactions are involved in 204 and 158 elementary leakage modes, respectively,
out of the detected 214 ones. The whole model contains 18 reactions involving a
polymer on both sides; after removing all of them, only two metabolites remain
unconserved: water and proton.

An elementary leakage mode producing a proton is shown in Figure 5.2 (b,
d); this mode has been obtained using mixed-integer programming. The incon-
sistency is caused by the incorrect definition of the reaction R04326, where one
hydrogen atom is missing on the right hand side. The model contains 71 reac-
tions with incorrect atomic balances; however, even after removing all of them,
proton still remains unconserved due to the 170 reactions with undeterminable
atomic balances.

5.4.2 Environment definition

To enable flux-balance analysis, the exchange of metabolites between the model
and its environment had to be represented in the form of transporter reactions.
Reversible transporters were included for the metabolites listed in Table 5.3.
Note that the transporters for water, NH3, CO2, and O2 had been included at
the model construction stage; they are considered as permanent parts of the
models. The sets of cofactors required and fermentation products were found
in the literature, see [125] and [71], respectively. In addition, a transporter was
included for fumarate, which is released as a by-product in purine biosynthesis.

The biomass components representing protein, RNA, DNA, membrane and
peptidoglycan were declared external; thus, the reactions producing them effec-
tively became transporters.

5.4.3 Model reduction

In Chapter 4 it was mentioned that the second-line models were constructed
applying the relatively relaxed threshold E-value of 10−3 to the in-house anno-
tations, in order to reduce them later, depending on the results of constructive
interrogation. In order to investigate the dependency of the size and quality of
a reconstruction on the annotation threshold, sub-models with different thresh-
olds were extracted from all second-line models and analysed (the integer powers
of ten in the range between 10−30 and 10−3, inclusively were used as threshold
values). Table 5.4 demonstrates that the numbers of metabolites, reactions,
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Table 5.3: Input and output metabolites in the models of S. agalactiae

Small
molecules:

water, ammonia, carbon dioxide, oxygen, phosphate

Sugars: glucose, fructose, lactose, mannose, ribose, galactose, sucrose
Amino acids: alanine, glycine, valine, lysine, leucine, isoleucine, tyrosine,

tryptophan, glutamate, glutamine, aspartate, asparagine, ser-
ine, cysteine, methionine, threonine, phenylalanine, histidine,
proline, arginine

Nucleobases: adenine, guanine, cytosine, uracil, xanthine, thymine
Cofactors: nicotinic acid, pantothenate, pyridoxal, thiamine, biotin, folate,

riboflavin
Fermentation
products:

lactate, acetate, formate, acetoin, ethanol, fumarate

enzymes and genes in the models grow monotonously with increasing threshold
values. To evaluate the quality of the models, the quality indicators described
above were used; the results are shown in Table 5.5. Although the distributions
of quality indicators are not monotonous, all of them (except for the percentages
of metabolites in the biggest connected components) tend to deteriorate, while
relaxing the threshold. Thus, the selection of the threshold E-value involves
a tradeoff between the size of a model and its quality. The table also shows
that all quality indicators in all models abruptly decrease in the region of 10−12

(percentages of non-orphan and non-dead-end metabolites, core and live reac-
tions) or 10−13 (other indicators). The more conservative threshold E-value of
10−13 was selected, and the models generated using this threshold were further
considered as the second-line models.

5.4.4 Internal fluxes

Algorithm 6 was used to prevent internal cycles involving the ATPase reac-
tion. The algorithm was modified, so that certain predefined reactions could
be excluded from the candidate list; the reactions catalysed by the known ATP
producers, namely phosphoglycerate kinase, acetate kinase and aspartate ki-
nase, were excluded. In all models, the algorithm suggested the same pair of
candidate reactions, shown below and catalysed by N-acetylneuraminate lyase
and NADP+-glyceraldehyde phosphate dehydrogenase, respectively:

R01811: N-acetylneuraminate ↔ N-acetyl-D-mannosamine + pyruvate
R01058: NADP+ + G3P + H2O ↔ H+ + NADPH + 3PG

Cycles involving these reactions and ATPase are shown in Figure 5.7. These
reactions were defined as irreversible, thus preventing the internal fluxes through
ATPase.
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Table 5.4: Dependency of the numbers of elements in the second-line models on
the log10 threshold E-value (see the legends).
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Table 5.5: Dependency of quality indicators in second-line models on the log10

threshold E-value (see the legends).
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 ATPase ->

Orthophosphate

ADP R01804

ATP

H2O

 R00200 ->

-  R01811

N-Acetylneuraminate

N-Acetyl-D-mannosamine

Pyruvate

Phosphoenolpyruvate

 ATPase ->

Orthophosphate

ADP R01063

ATP

H2O

-  R01512NADPH

3-Phospho-D-glyceroyl phosphate

NADP+

-  R01058

(2R)-2-Hydroxy-3-(phosphonooxy)-propanal

3-Phospho-D-glycerate

a b

Figure 5.7: Cycles involving ATPase and the reactions suggested by the Algo-
rithm 6.

5.4.5 Implementation

Figure 5.8 shows an example Python code used for the constructive interroga-
tion, correction and subsequent quality evaluation of a second-line model of sag,
constructed using the code shown in Figure 4.2. The method UnconservedMets

returns the list of unconserved metabolites, which are removed using the method
Delete. Then the model is associated with the PRIAM database and reduced
with the threshold E-value of 10−13.

The method LoadEnv complements the model with transporters for a given
set of metabolites, defined in a comma-separated text file. The amino acid trans-
porters are included by the method FeedWithAminoAcids; then the biomass
components are made external.

The method LoadNames reads the list of ATP-producing enzymes from a text
file. The reactions catalysed by these enzymes are excluded from the candidate
list of reactions in Algorithm 6, which is invoked by the method CycleKillers.
The reactions of the suggested list are then made irreversible to block the cycles
involving ATPase.

The same set of operations was applied to the first-line models, except for
model reduction.

5.4.6 Results and discussion

Table 5.6 shows the numbers of elements and the quality indicators of the result-
ing models. Each second-line model contains approximately 10% more genes,
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system = Bio.System(’2.xspy’)

##unconserved metabolites

UM = system.UnconservedMets()

system.Delete(UM)

##attaching the annotative database and reducing the model

P = Source.GetDB(’PRIAM’)

P.Open(’genome.out’)

system.SetSource(’Anno’, P)

system = Bio.ExtractByQual(system, 1e-13)

##defining the transporters

system.LoadEnv(’Rich.env’)

system.FeedWithAminoAcids()

system.Externalise([’PROTEIN’, ’xRNA’, ’xDNA’, ’MEMBRANE’,

’PEPTIDOGLYCAN’])

##blocking the cycles involving ATPase

names = system.LoadNames(’include/NTP.rev’)

k = system.CycleKillers(’ATPase’, system.GetChildren(names))

system.SetIrrevs(k)

##results

unbal = system.UnbalancedReacs()

orphans = system.Orphans()

live_reacs = system.LiveReacs()

working_enzymes = system.GetParents(live_reacs)

working_genes = system.GetParents(working_enzymes)

incons = system.InconsSubsets()

system.Save(’2.xspy’)

Figure 5.8: Constructive interrogation, correction and evaluation of a second-
line model.
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Table 5.6: Numbers of elements and quality indicators in the models after the
corrections. The symbol ∩ denotes intersections.

line 1-st 2-nd ∩
strain sag sak san ∩ sag sak san coh ∩
Genes 566 595 576 NA 622 631 635 698 NA NA
% of working genes 36.0 35.8 37.8 NA 44.2 44.2 45.2 42.3 NA NA
Enzymes 369 389 375 366 424 428 423 419 406 313
% of working enzymes 39.8 39.1 41.1 39.9 40.8 40.2 41.1 39.4 39.4 39
Reactions 560 586 564 556 621 634 615 614 600 508
% of unbal. reacs. 16.1 15.2 15.8 15.5 20.5 20.2 19.5 20.2 18.8 15.6
% of live reacs. 53.6 52.0 55.3 53.6 48.3 47.6 50.2 45.8 46.2 48.0
Metabolites 568 587 571 564 662 671 658 658 644 552
% of orphans 37.7 37.5 37.1 34.2 42 41.7 42.4 42.2 40.1 29.7
Incons subsets 5 7 5 5 7 9 5 6 4 4

enzymes and reactions than the first-line model of the same strain, as well as
higher percentages of working genes. On the other hand, the percentages of
live reactions in the second-line models are slightly lower and those of unbal-
anced reactions and orphan metabolites are higher. In general, we did not find
any considerable and consistent difference in the quality between the first and
second-line models.

In all models, hydrogen is the only atom with violated balance. The high
percentages of unbalanced reactions are caused by the removal of proton from
the models; thus, the balance of hydrogen was violated in some originally correct
reactions.

A number of model properties (including some quality indicators) depend on
the definition of external metabolites. In order to minimise the effect of missing
sources or sinks, a relatively ‘rich’ environment was simulated by including the
corresponding transporter reactions. In principle, any reaction in a model can
be rendered live by externalising some internal metabolites. The same is true
also for inconsistent reaction subsets (an example of such a subset is shown in
Figure 5.5).

Algorithm 6 provides a simple method for the prevention of internal fluxes.
The advantage of this method is the possibility to detect feasible fluxes involving
a target reaction. The payoff is the possibility that the reactions suggested by
the algorithm are physiologically reversible, so making them irreversible in the
model affects its accuracy (especially if they are defined with wrong directions).
Therefore, we applied the model to only one target reaction, namely ATPase,
which is highly important for the investigation of metabolic capabilities of the
network.

The selection of the threshold E-value for model reduction was based on the
hypothesis that the quality indicators introduced in this chapter correlate with
the accuracy of the model, e.g. the percentage of elements (enzymes, reactions
and metabolites) in the model which are actually present in the underlying sys-
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Figure 5.9: Normalised distributions of log10 E-values in the sets of all and
working enzymes, in the second-line model of sag.
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tem. This hypothesis is supported by Figure 5.9, which shows two distributions
of log10 E-values. These distributions were constructed as follows: for each EC
number in the second-line model of sag, the best E-value in the annotation was
included into the first set (the logarithm value for 0.0 was defined as -200). The
second set comprised the E-values corresponding to the working enzymes only.
Both distributions are bimodal and the left peaks (containing the low E-values)
are almost equal, while the right peak of the second distribution is strongly
shifted to the left. A Kolmogorov-Smirnov test demonstrated a significant dif-
ference between the distributions with a p-value of 0.02. Hence, the proportion
of low-quality predictions with high E-values in the set of working enzymes is
smaller than that in the complete set of enzymes.

Taking the above mentioned into consideration, the relatively low percent-
ages of working enzymes in the resulting models might be considered as an evi-
dence of their poor accuracy. In the following chapters, we will propose methods
for a further improvement of the accuracy of the models. It will be also demon-
strated that despite the presence of possible errors, the models demonstrate a
good agreement with the available experimental data.
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Chapter 6

Reannotations

6.1 Introduction

In chapter 4 it was mentioned that the in-house annotations based on the best
hits predicted using RPS-BLAST and PRIAM are subject to further revisions.
We assume that holistic analysis of metabolic models may enable the generation
of hypotheses about the underlying genome annotations. This process is closely
related to the correction of errors in a model itself, since missannotations are
among the major causes of errors. For instance, if a particular enzyme is missing
in the model but has been predicted for one of the genes as a suboptimal hit,
it may be associated with the gene instead of the best hit. Furthermore, even
an enzyme which is absent in the list of predictions (e.g. if it is missing in
the PRIAM database) may be assigned to one of the genes. If the presence of
an enzyme is hypothesised but the gene encoding it is not known, it may be
included into the reannotated model as an ‘orphan enzyme’, e.g. represented
by an empty row in the annotation matrix.

Clearly, each hypothetical annotation needs to be verified experimentally.
Nevertheless, the plausibility of hypotheses may be supported by one or more
of the conditions listed below:

• The missing enzyme is essential for a vital cellular function, e.g. biosyn-
thesis of a biomass component.

• The reannotation and the subsequent regeneration of the model improves
its quality (an example is shown in Figure 6.1).

• The model based on the reannotated genome demonstrates a better agree-
ment with the available experimental data.

• The reannotation agrees with a publicly available annotation (e.g. from
KEGG).

• The reannotation is based on a homology detected by more than one
independent method (e.g. RPS-BLAST and BLASTn).
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• The reannotated gene has a high co-expression with the genes encoding
other enzymes in the pathway (e.g. elementary mode) restored due to the
reannotation.

Here is an example of the latter condition: assume that the genes g1 and g2 in
Figure 6.1 highly correlate in a set of microarray experiments. The reannota-
tions associate these genes with the reactions R1.2 and R2.2, which are involved
in the same reaction subset and terefore have the maximal possible correlation
coefficient of 1.0. We assume that a coincidence of a high reaction correlation
coefficient and a strong gene co-expression can be considered as an experimental
support for a given pair of gene annotations.

A missannotation can be detected by means of general analysis methods; e.g.
if it causes a failure in some expected metabolic function. Reannotations can
be based on a search in the literature or databases. Although such a ‘manual’
approach has been occasionally employed in the present work, its weekness is
demonstrated by Figure 6.1, where the flux between xA and xB can be restored
only through a pair of reannotations. Assuming that each gene is associated
with a single enzyme, the number of possible annotations of a given genome is
∏

i ni, where ni is the number of predictions for the i-th gene. Clearly, in a
genome-scale model, testing all possible combinations of predictions would be
computationally infeasible. In this chapter, we describe methods for automatic
generation of hypotheses about potential reannotations, using two complemen-
tary methods: search space reduction and stochastic optimisation. These meth-
ods aim to improve the quality of the metabolic model by finding an optimal
genome annotation.

6.2 Search space reduction

This method is based on the fact that if a reaction is dead in a metabolic net-
work then it would remain dead in any of its subnetworks obtained by reducing
the reaction set; in other words, it is impossible to render a reaction live by
removing other reactions. To reduce the annotation, we construct a supermodel
containing all reactions catalysed by all enzymes predicted in the annotation,
e.g. it covers all predictions for each gene. Than we detect the unemployed
enzymes in the supermodel and remove them from the lists of predictions, since
they would remain unemployed in any submodel associating the genes with
single predictions or subsets of predictions.

An example is shown in Figure 6.1, where the enzymes e1.1 and e2.1 are
unemployed in the supermodel and can be removed from the annotation, thus
resulting in the correct final model. In a general case, this method does not
necessarily lead to an unambiguous annotation, since some genes may catalyse
multiple working enzymes in the supermodel. However, the method reduces
the number of predictions and thereby diminishes the search space in which an
optimal annotation is to be found.
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e1.1 ⇒ R1.1.: P → Q
e1.2 ⇒ R1.2.: A → B
e2.1 ⇒ R2.1.: L → M
e2.2 ⇒ R2.2.: B → C

a b

c

d

indicator before after
connected components 4 1
orphan metabolites 8 0
dead reactions 4 0
unemployed enzymes 2 0
unemployed genes 2 0

e

f

Figure 6.1: The relationship between a genome annotation and the quality of
the corresponding metabolic model. a) For each gene (black line), two possible
enzymes are predicted (green lines), which are shown in the order of increasing
E-values. Hence, in the initial annotation, g1 and g2 are assigned the enzymes
e1.1 and e2.1, respectively. The reannotations m1 and m2 associate the genes
with the second best predictions. b) Each enzyme catalyses one reaction. c) The
model based on the initial annotation and including predefined transporters for
A and C is disconnected. d) After the reannotations, the gaps in the model are
filled. e) The values of the quality indicators before and after the reannotation.
f) In the supermodel, R1.1. and R2.1. are dead; the corresponding enzymes are
unemployed and can be removed from the annotation.
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6.3 Stochastic search

The problem of finding an optimal annotation has the following important prop-
erties:

• The set of feasible solutions is discrete: each solution can be described in
terms of discrete elements (genes and enzymes) and a transition between
two neighbour solutions is possible by a single reannotation.

• The search space may contain local optima: annotations which are better
than any of their neighbours, yet worse than the ‘true’ global optimum.

The first property implies that the problem belongs to the domain of combina-
torial optimisation [13]: a domain of applied mathematics whose subject is the
development of algorithms for finding minimum or maximum values of a func-
tion of very many independent variables. In this particular case, the number
of variables is equal to the number of genes in the genome, and the number of
possible values of a variable is equal to the number of predicted enzymatic func-
tions. The objective function of the optimisation is the model quality, which
can be measured using one of the indicators described in Chapter 5.

From the second property it follows that the problem cannot be solved by
simple iterative improvement of the annotation (i.e. looking for the best possi-
ble reannotations until no further improvement can be found), since the search
would possibly converge to a local optimum and fail to progress further. To over-
come this problem, a group of stochastic search algorithms has been developed
which incorporate probabilistic (random) choices. In particular, the neighbour
solutions are selected randomly (although the probabilities of different choices
may be weighted), thus enabling an escape from a local optimum.

Simulated annealing In the present work, we used the stochastic search al-
gorithm called simulated annealing [53]. This algorithm is intended to model
the process of annealing in metallurgy, involving heating and controlled cooling
of a material into a crystalline structure. The process begins at a high tem-
perature, which causes the atoms to wander randomly away from their initial
positions. Then the temperature is gradually reduced, thus decreasing the mo-
bility of atoms and increasing the probability of moving ‘downhill’ to the state
with a lower energy. If temperature is reduced slowly enough, the system is
likely to attain the minimum energy state.

This principle can be applied to more general combinatorial optimisation
problems. The system is initialised to some state s ∈ S, where S is the search
space. The internal energy E(s) may represent any objective function. The
global variable T (temperature) is initialised with a high enough value and then
iteratively reduced. At each iteration, a neighbour state s′ is generated by
making some user-defined changes in the current state s. If E(s′) is lower than
E(s), than s is replaced by s′. Otherwise, s is replaced by s′ with the probability
P = exp((E(s) − E(s′))/T ). Thus, at large values of T , the probability of
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accepting a higher-energy state is relatively high, while at small values, this
probability tends to zero and the procedure reduces to iterative improvement.

Algorithm 7 shows the modification of simulated annealing used in the
present work. It uses an exponential cooling scheme, i.e. at each external
iteration, T is multiplied by a constant α, which is smaller than, but close to
1. Within each external iteration, n neighbour states are generated and either
accepted or rejected. Note that in addition to the probability function P , the
acceptance of a new state is determined by its feasibility (a user-defined boolean
function). The variable eb is used to memorise the best energy value achieved
so far; the state with the best energy is saved. The algorithm terminates when
T achieves the final value Tmin.

Algorithm 7 Simulated annealing in a system with an initial state s and the
initial temperature T . n is the number of iterations at each temperature; α is
a constant multiplier; Tmin is the final temperature.

e := E(s)
eb := e
while T > Tmin do

for i = 0 to n do
s′ := neighbour(s)
e′ := E(s′)
if random number(0, 1) < P (T, e, e′) and is feasible(s′) then

s := s′

e := e′

if e < eb then
eb := e
save(s)

end if
end if

end for
T := αT

end while

Mutation operator For a neighbour state generation, a mutation operator
is applied, which selects a random gene in the genome and associates it with
an enzyme selected from the list of predictions. The probability of the selection
of a given enzyme is proportional to the significance of the prediction, which is
measured by the bit score of the alignment. This is achieved by using roulette
wheel selection (a technique widely used in genetic algorithms [26]): a new list is
composed by including q copies of each enzyme, where q is the bit score. From
this list, a single enzyme is selected randomly.

Feasibility test For being accepted, each neighbour state has to pass a feasi-
bility test, which evaluates the viability of the corresponding metabolic network.
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We consider a metabolism as viable if it is capable of synthesising biomass and
ATP.

Objective function Although different quality indicators were used as ob-
jective functions for simulated annealing (such as the percentages of orphan
metabolites, dead reactions and unemployed enzymes), using the number of un-
employed genes was found to lead to optimised models of better quality. This
may be due to the fact that the total number of genes in a reconstruction is con-
stant, while the numbers of enzymes, reactions and metabolites vary depending
on the reannotations.

Practical applications The ultimate objective of an optimisation procedure
is typically the detection of a global optimum. However, since in the case of
genome annotations, it is not clear whether such an optimum can be detected
and if yes, how it should be interpreted, we propose the following practical steps:

1. Run the algorithm n times on the same original model.

2. Find the intersection of the sets of working enzymes in all n optimised
models.

3. Find the set difference of this intersection and the set of all enzymes in
the original model.

The resulting difference comprises the enzymes which are missing in the original
annotation but tend to be included in the optimised ones, regardless of the
variability created by random choices. We assume that these enzymes (further
termed consensus enzymes) and the corresponding genes can be considered as
candidates for reannotations.

6.4 Application to genome-scale models

The methods described above were applied to the models constructed at the
previous stages. The transporter sets were defined as in Table 5.3.

6.4.1 Manual reannotations

It was found that neither the first, nor the second-line models were able to
synthesise peptidoglycan. One of the causes of this inability was the auxotrophy
for the amino acid meso-diaminopimelate (C00680), which is consumed by the
following reaction producing one of the precursors of peptidoglycan:

R02788: UDP-N-acetylmuramoyl-L-alanyl-D-glutamate + meso-
diaminopimelate + ATP → orthophosphate + ADP +
UDP-N-acetylmuramoyl-L-alanyl-D-gamma-glutamyl-meso-
2,6-diaminopimelate
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Table 6.1: Reannotations in the second-line models. The columns from left to
right contain the strain names, the gene names, the KEGG annotations, the
PRIAM best hits and the reannotations. The PRIAM predictions are shown
with their E-values; the ‘+’ symbol in the rightmost bottom column means that
the new enzyme is assigned in addition to the existing one.

strain gene KEGG PRIAM best reannotated

sag SAG1391 6.3.2.13 6.3.2.13: 3e-148 6.3.2.7
SAG0884 6.3.2.13 6.3.2.13: 2e-18 6.3.2.7

sak SAK 1424 6.3.2.13 6.3.2.13: 3e-148 6.3.2.7
SAK 1007 6.3.2.13 6.3.2.13: 2e-18 6.3.2.7

san gbs0901 6.3.2.13 6.3.2.13: 2e-18 6.3.2.7
gbs1461 6.3.2.13 6.3.2.13: 1e-148 6.3.2.7

coh SAN 1499 NA 6.3.2.13: 5e-149 6.3.2.7
SAN 0988 NA 6.3.2.13: 1e-17 6.3.2.7

a
sag SAG1538 2.3.1.157, 2.7.7.23 2.3.1.157: 4e-146 + 2.7.7.23: 1e-74
sak SAK 1561 2.3.1.157, 2.7.7.23 2.3.1.157: 4e-146 + 2.7.7.23: 1e-74
san gbs1594 2.3.1.157, 2.7.7.23 2.3.1.157: 1e-145 + 2.7.7.23: 1e-74
coh SAN 1645 NA 2.3.1.157: 4e-146 + 2.7.7.23: 4e-74

b

The reaction is catalysed by the enzyme UDP-N-acetylmuramoyl-L-alanyl-
D-glutamate-2,6-diaminopimelateligase (6.3.2.13), which was assigned in both
public and in-house annotations of each strain to the same pair of genes (see
Table 6.1a). However, meso-diaminopimelate is known to be used as a com-
ponent of peptidoglycan mostly in Gram-negative species, whereas most Gram-
positive species use lysine instead [120]. Therefore, these genes in the second-line
models were reannotated with the enzyme UDP-N-acetylmuramoyl-L-alanyl-D-
glutamate-L-lysine ligase (6.3.2.7, also known as MurE synthetase), which con-
sumes lysine:

R02786: UDP-N-acetylmuramoyl-L-alanyl-D-glutamate + L-Lysine +
ATP → orthophosphate + ADP + UDP-N-acetylmuramoyl-
L-alanyl-gamma-D-glutamyl-L-lysine

Another enzymatic step was found to be missing in the second-line mod-
els only, namely UDP-N-acetylglucosamine diphosphorylase (2.7.7.23), which
catalyses the following reaction:

R00415: N-Acetyl-D-glucosamine 1-phosphate + UTP → UDP-N-
acetyl-D-glucosamine + pyrophosphate

Table 6.1 shows that this enzyme is predicted for a single gene in all available
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Figure 6.2: KEGG pathway diagram showing the biological functions of the
enzymes 2.3.1.157 and 2.7.7.23 (highlighted red).

Table 6.2: The increase in the values of quality indicators after the reannotations
presented in Table 6.1

strain non-orphan mets. live reactions working enzymes working genes
sag 2 15 12 14
sak 2 15 12 14
san 2 15 12 14
coh 2 17 13 18

KEGG annotations and each PRIAM annotation with an E-value of ≈ 10−74.
This is the second-best hit for each of these genes; while the best hit is 2.3.1.157,
which catalyses the previous step in the pathway:

R05332: Acetyl-CoA + α-D-Glucosamine 1-phosphate ↔ CoA + N-
Acetyl-D-glucosamine 1-phosphate

(both steps are highlighted in Figure 6.2). The KEGG annotations, in con-
trast, associates the same genes with both enzymes. In addition, the BRENDA
database qualifies 2.3.1.157 as a bifunctional enzyme also possessing the activity
of EC 2.7.7.23 in E. coli and S. pneumoniae. Therefore, the second enzyme was
assigned also to the genes in the second-line models.

As a result of two reannotations, the second-line models became capable of
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Table 6.3: The magnitude of the annotation search space of sag before and after
the reduction. The columns ‘1’ to ‘8’ show the numbers of genes with a given
number of predictions or more. The last column shows the numbers of possible
annotations.

enzymes 1 2 3 4 5 6 7 8 comb.
initial 730 622 320 212 163 135 127 123 114 10220

reduced 149 72 72 39 24 16 15 8 6 1036

producing peptidoglycan. In addition, some of the quality indicators were found
to be improved (see Table 6.2).

6.4.2 Optimised annotation

The methods of optimised annotation were applied to the second-line model of
sag. The biomass components were declared internal; hence, external biomass
was represented solely by the hypothetical metabolite of the same name.

Search space reduction A supermodel was constructed and the unemployed
enzymes were detected in it; these enzymes were removed from the search space,
as well as 20 enzymes catalysing the reaction R00086, which is isostoichiometric
to the hypothetical reaction ATPase. The results of the reduction are shown in
Table 6.3, which demonstrates that the number of solutions was reduced by a
factor of 10184.

Simulated annealing Before the annealing, the biomass components were
made internal, so biomass was represented by the single external metabolite of
the same name. The viability test was defined as the liveness of the reactions
syn BIOMASS and ATPase.

The algorithm was run six times, using the number of unemployed genes as
the objective function and the following parameters:

initial temperature 100
final temperature 0.001
decrement factor 0.95
number of iterations at each temperature 10

The initial value of the objective function was 333 and the final values varied
between 303 and 305. Figure 6.3a shows that after the drastic improvement at
the beginning, the value of the objective function decreases almost linearly, so
one could expect a further improvement at lower temperatures. The resulting
optimised models are described in Table 6.4a. The comparison shows relatively
large differences in the compositions of the models. However, the Table 6.4a
demonstrates that the the sets of working enzymes are more similar among
the optimised models, than between the optimised ones and the original one.
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Figure 6.3: The dynamics of model quality improvement in the 6 runs of simu-
lated annealing: the graph shows the dependency of the number of unemployed
genes (y-axis) against the log10 of the temperature.

The distance tree (Table 6.4b) makes evident that the original model is a clear
outlier.

Applying the procedure described in Section 6.3, we identified 5 consenus
enzymes. Some of them were included into a copy of the second-line model of
sag, which is further referred to as the third-line model; the enzymes and the
corresponding changes are presented in the Table 6.5 and described below:

2.7.1.60: N-acylmannosamine kinase catalyses the following reaction:

R02705: N-Acetyl-D-mannosamine + ATP ↔ N-Acetyl-D-mannosamine
6-phosphate + ADP

Table 6.5a shows the genes for which it is predicted among the other hits.
All of these genes already encode working enzymes in the second line model,
but reannotating any of them leads to an improvement of model quality.

For each of the candidate genes, a BLASTn homology search was performed
using the NCBI web service, attempting to detect homologies with sequences
encoding 2.7.1.60. For the gene SAG0040, a number of homologies was found in
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Table 6.4: a) Quantitative characteristics of the optimised models. The last
column shows the number of the identically annotated genes in the two top rows
and the cardinalities of the set intersections in the other rows. b) Cardinalities
of the intersections of the sets of working enzymes in the original (denoted by
0) and optimised models. c) Tree of the set distances.

1 2 3 4 5 6 ∩
Genes 622 622 622 622 622 622 566
Working genes 319 318 317 317 317 318 316
Enzymes 430 432 432 428 435 428 388
Working enzymes 211 212 211 207 214 208 168
Reactions 623 629 668 645 632 624 534
Unbalanced reactions 141 129 165 153 155 141 90
Live reactions 359 361 377 369 354 372 287
Metabolites 656 655 699 679 668 640 601
Orphans 270 267 293 280 276 243 208
Incons. subsets 4 4 4 4 4 3 3

a

0 1 2 3 4 5
1 62
2 57 35
3 52 44 41
4 58 42 51 42
5 65 39 46 39 53
6 67 45 34 41 49 36

 0

 6

 2

 5

 1

 3

 4

b c
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Table 6.5: Candidate genes for the consensus enzymes identified using simulated
annealing. The columns from left to right show the identifiers, KEGG annota-
tions, PRIAM best hits with the E-values, E-values for the identified enzymes
and the increase in the number of working genes as a result of a reannotation
in an otherwise unchanged model.

ID KEGG best new +
2.7.1.60
SAG0471 glk; glucokinase; K00845 glucokinase

[EC:2.7.1.2]
2.7.1.2: 1e-95 1e-52 3

SAG1689 scrK; fructokinase; K00847 fructokinase
[EC:2.7.1.4]

2.7.1.4: 2e-129 8e-16 3

SAG0040 ROK family protein 2.7.1.2: 3e-37 3e-33 3
3.2.1.85
SAG1103 arb; 6-phospho-beta-glucosidase (EC:3.2.1.86);

K01223 6-phospho-beta-glucosidase
[EC:3.2.1.86]

3.2.1.86: 0.0 2e-79 5

SAG0791 bglA; 6-phospho-beta-glucosidase; K01223 6-
phospho-beta-glucosidase [EC:3.2.1.86]

3.2.1.86: 0.0 2e-81 5

1.1.1.36
SAG0703 D-mannonate oxidoreductase (EC:1.1.1.131) 1.1.1.100: 8e-44 1e-29 2
SAG1091 short chain dehydrogenase/reductase family

oxidoreductase
1.1.1.276: 3e-61 4e-15 2

SAG0664 cylG; CylG protein; K11049 CylG protein 1.1.1.100: 6e-79 6e-60 2
SAG1544 fabG; 3-ketoacyl-(acyl-carrier-protein) reduc-

tase (EC:1.1.1.100); K00059 3-oxoacyl-[acyl-
carrier protein] reductase [EC:1.1.1.100]

1.1.1.100: 2e-34 8e-25 2

SAG0348 fabG; 3-ketoacyl-(acyl-carrier-protein) reduc-
tase (EC:1.1.1.100); K00059 3-oxoacyl-[acyl-
carrier protein] reductase [EC:1.1.1.100]

1.1.1.100: 1e-96 6e-61 2

SAG1209 short chain dehydrogenase/reductase family
oxidoreductase; K07124

1.1.1.100: 8e-32 1e-23 2

1.5.1.12
SAG0823 gapN; glyceraldehyde-3-phosphate dehy-

drogenase, NADP-dependent; K00131
glyceraldehyde-3-phosphate dehydrogenase
(NADP) [EC:1.2.1.9]

1.2.1.9: 00 5e-77 4

SAG1124 aldehyde dehydrogenase family protein;
K00135 succinate-semialdehyde dehydroge-
nase (NADP+) [EC:1.2.1.16]

1.2.1.16: 1e-122 8e-58 4

4.3.1.19
SAG0334 cysK; cysteine synthase A; K01738 cysteine

synthase [EC:2.5.1.47]
2.5.1.47: 2e-125 8e-22 1
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the genomes of various strains of Streptococcus pyogenes, Streptococcus equi and
Haemophilus somnus ; the BLAST output for the most significant homologies is
shown below:

>gb|CP000260.1| Streptococcus pyogenes MGAS10270, complete genome

Length=1928252

Features in this part of subject sequence:

N-acetylmannosamine kinase / Transcriptional regulator

Score = 298 bits (330), Expect = 2e-77

Identities = 498/703 (70%), Gaps = 24/703 (3%)

Strand=Plus/Plus

...

>gb|CP000003.1| Streptococcus pyogenes MGAS10394, complete genome

Length=1899877

Features in this part of subject sequence:

N-acetylmannosamine kinase

Score = 298 bits (330), Expect = 2e-77

Identities = 552/791 (69%), Gaps = 28/791 (3%)

Strand=Plus/Plus

Since no homologies were found for the other two genes, the enzyme 2.7.1.60
in the third-line model was assigned to the gene SAG0040.

3.2.1.85: 6-phospho-beta-galactosidase catalyses the following reaction:

R06110: Lactose 6-phosphate + H2O ↔ D-Galactose 6-phosphate +
Glucose

Table 6.5 shows that both candidate genes for this enzyme are associated
with the enzyme 3.2.1.86 in both KEGG and PRIAM annotations. However,
this enzyme is unemployed in the second line model and reannotating any of
the candidate genes leads to a considerable improvement of model quality. The
BLASTn search revealed homological sequences encoding 3.2.1.85 for the gene
SAG1103; a part of the output is shown below:

>dbj|AB003927.1| Lactobacillus gasseri DNA for

phospho-beta-galactosidase 1, complete cds

Length=1449

Score = 168 bits (186), Expect = 5e-38

Identities = 274/391 (70%), Gaps = 4/391 (1%)

Strand=Plus/Plus
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Figure 6.4: Distribution of the p-values of the Pearson’s correlation coefficients
of the genes of the 3-rd-line model in the gene expression data.

Table 6.6: P-values of the Pearson’s correlation coefficients between the candi-
date genes for 3.2.1.85 and the genes encoding 5.3.1.26.

EC 3.2.1.85 5.3.1.26
gene SAG1103 SAG0791 SAG1931 SAG1930

SAG1103 0 0.147 0.011 0.186
SAG0791 0 0.04 0.069
SAG1931 0 0.089
SAG1930 0

For SAG0791, no significant homologies were found. Therefore, in the third-
line model, the enzyme 3.2.1.85 was assigned to the gene SAG1103. Additional
support for this reannotation was found in gene expression data characterising
the strain sak (courtesy of Professor Aamanda Jones, University of Washing-
ton). The data describe the growth of the wild-type strain in tryptic soy broth
in 5% CO2. The expression was measured at 11 time points: 0, 0.5, 1, 2, 2.5,
3.25, 4, 4.5, 5, 6 and 8 hours. The microarray covers 2373 genes, 622 out of
which are present in the 3-rd line model. For each pair of these genes, the
Pearson’s correlation coefficient was measured between the expression values.
The distribution of all p-values is shown in Figure 6.4. Table 6.6 shows the
p-values of the Pearson’s correlation coefficients between the hypothetical genes
encoding 3.2.1.85 and the genes encoding the enzyme galactose-6-phosphate iso-
merase (5.3.1.26). The latter acts as the next step in the lactose consumption
pathway (see Figure 6.5); the reactions catalysed by both enzymes are elements
of the same reaction subset in the third-line model. The genes SAG1103 and
SAG1931 have a significant correlation with a p-value of 0.011, which is lower
than 90% of all values.
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Figure 6.5: KEGG pathway diagram showing the biological functions of the
enzyme 3.2.1.85 and 5.3.1.26 (circled).
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1.1.1.36: acetoacetyl-CoA reductase catalyses the following reaction:

R01977: 3-Hydroxybutanoyl-CoA + NADP+ ↔ NADPH + Acetoacetyl-
CoA

Table 6.5 shows a number of candidate genes for this enzyme; reannotat-
ing any of these enzymes leads to some improvement of model quality. The
BLASTn search revealed no significant matches for the candidate genes. There-
fore, 1.1.1.36 was included into the third-line model as an orphan enzyme.

1.5.1.12: 1-pyrroline-5-carboxylate dehydrogenase catalyses the follow-
ing reactions:

R04444: L-1-Pyrroline-3-hydroxy-5-carboxylate + NAD+ + 2 H2O ↔
NADH + L-erythro-4-Hydroxyglutamate

R04445: L-1-Pyrroline-3-hydroxy-5-carboxylate + NADP+ + 2 H2O ↔
NADPH + L-erythro-4-Hydroxyglutamate

R00245: L-Glutamate 5-semialdehyde + NAD+ + H2O ↔ NADH + Glu-
tamate

R03294: 4-Hydroxy-L-proline + FAD ↔ L-1-Pyrroline-3-hydroxy-5-
carboxylate + FADH2

R00708: NADP+ + 2 H2O + (S)-1-Pyrroline-5-carboxylate ↔ NADPH
+ Glutamate

R00707: (S)-1-Pyrroline-5-carboxylate + NAD+ + 2 H2O ↔ NADH +
Glutamate

R05051: NAD+ + L-erythro-4-Hydroxyglutamate ↔ L-4-
Hydroxyglutamate semialdehyde + NADH + H2O

Both candidate genes for this enzyme (see Table 6.5) encode working en-
zymes in the second line model; however, reannotating any of them leads to
a considerable improvement of model quality. Since BLASTn search revealed
no homologies, 1.5.1.12 was included into the third-line model as an orphan
enzyme.

4.3.1.19: threonine ammonia-lyase catalyses the following reactions:

R00996: L-Threonine ↔ NH3 + 2-Oxobutanoate
R00220: Serine ↔ NH3 + Pyruvate

Table 6.5 shows that the KEGG and PRIAM annotations associate the only
candidate gene with the enzyme 2.5.1.47, which is predicted with the E-value
of 2e-125. Since the enzyme 4.3.1.19 is predicted with a much higher E-value of
8e-22, the BLASTn search revealed no matches and the reannotation increases
the number of working genes by only one, the enzyme was not included into the
third-line model.
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Table 6.7: Numbers of elements and quality indicators in the models after the
reannotations. The symbol ∩ denotes intersections.

line 2-nd 3-rd
strain sag sak san coh sag ∩
Genes 622 631 635 698 622 NA
% of working genes 46.5 46.4 47.4 44.8 48.7 NA
Enzymes 425 429 424 420 429 406
% of working enzymes 43.5 42.9 43.9 42.4 46.6 42.6
Reactions 624 637 618 617 631 599
% of unbalanced reactions 20.4 20.1 19.4 20.1 21.1 18.7
% of live reactions 50.5 49.8 52.4 48.3 53.7 49.1
Metabolites 662 671 658 658 660 640
% of orphans 41.7 41.4 42.1 41.9 41.2 38.9
Incons 7 9 5 6 6 3

6.4.3 Results

Table 6.7 shows the quantitative characteristics of the second-line models after
the manual reannotations and those of the third-line model of sag. A compari-
son with Table 5.6 shows an improvement of the quality indicators as a result of
manual reannotations and a further improvement in the third-line model. The
models of all three lines are presented on the CD attached.

6.5 Discussion

In this chapter, a semi-automated method for reannotations and gap-filling in
genome-scale metabolic models was presented. In contrast to other optimisation-
based gap-filling methods [99, 93], which use a ‘universal’ metabolic database
as a source of reactions to be included into the model, our method employs a
more specific and reliable data source: a set of prediction lists for genes, where
each prediction is based on a homology search and weighted with an alignment
score. Hence, instead of attempting to identify missing reactions in a model, the
method directly optimises the underlying annotation. Since the search space in
this case involves two hierarchical relationships (genes to enzymes and enzymes
to reactions) and cannot be represented as a single matrix, the problem is not
solvable by linear optimisation methods. Instead, we propose a combination of
two complementary approaches: deterministic reduction of the search space and
stochastic optimisation.

The choice of simulated annealing as the stochastic optimisation method
was motivated primarily by the relative ease of implementation. We hypoth-
esise that better results can be achieved using genetic algorithms [124], which
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simulate the natural processes of variability, selection and adaptation. However,
the simultaneous representation of a sufficiently large population of metabolic
reconstructions in a computer memory is technically problematic and was there-
fore not done in the scope of the present work. Nevertheless, we combined the
general framework of simulated annealing with some approaches widely used in
genetic algorithms, including genetic representation (representation of solutions
in the form of arrays of discrete variables), mutation operators and roulette
wheel selection.

Recurrent invocation of the simulated annealing algorithm and the sub-
sequent identification of the consensus enzymes helps to generate hypotheses
about network gaps and reannotations. The reannotations suggested can be
further supported by alternative methods, such as BLAST or other homology
search tools. Another source of evidence could be provided by gene expres-
sion data, since one could expect a co-expression of genes encoding cooperating
metabolic enzymes; an example is shown in Table 6.6.

Another question raised, but not answered in the current chapter is the possi-
bility of identifying a globally optimal annotation and its biological implication.
It is not clear, whether a global optimum of any of the model quality indicators
corresponds or is close to the global minimum of the number of annotation er-
rors. A linear extrapolation of the quality curves shown in Figure 6.3 indicates
that the results obtained are relatively far from the global optimum and a fur-
ther improvement is possible. On the other hand, Table 6.4 demonstrates that
the optimised models are more similar to each other than to the original model.
Hence, the optimisation tends to move in the same ‘direction’, which is possibly
the direction to the global optimum.

Although the methods presented in this chapter can facilitate and accelerate
the process of reannotating a genome, any reannotation requires an experimental
verification. In the next chapter, we describe the biological significance of the
consensus enzymes 3.2.1.85 and 1.5.1.12 and demonstrate the agreement of the
corresponding reannotations with the experimental data found in the literature.
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Chapter 7

Functional Analysis

7.1 Introduction

One of the practically relevant problems to be solved in the framework of stoi-
chiometric analysis is the identification of all minimal (irreducible) media able to
sustain a microorganism. This problem can be reduced to the calculation of min-
imal sets of substrates required by the organism for the synthesis of some target
products. Then, by specifying the complete biomass as the target product, the
minimal media can be identified. The prediction of appropriate proportions of
substrate concentrations would increase the informativeness of such a method.

Handorf et al. [36] describe the calculation of minimal sets of substrates for
a given set of target products using a combination of a greedy algorithm with
the network expansion method [17]. However, this method does not guarantee
a complete enumeration of minimal sets of substrates and does not predict the
appropriate proportions of concentrations. In addition, the expansion method
does not take into account the steady state constraint.

A comprehensive description of a biochemical system, including the nutri-
tional requirements, can be obtained using elementary modes analysis. Unfor-
tunately, the calculation of the complete set of elementary flux modes is sub-
ject to combinatorial explosion and is therefore not computationally feasible in
genome-scale models. Moreover, the number of elementary flux modes in such
models can exceed several millions, so their analysis and classification becomes
an important problem of its own.

Each flux mode is characterised by its net conversion, which represents its
effect on the environment of the organism. Any net conversion can be considered
as a particular metabolic function of an organism; hence, the term functional
analysis was used by Urbanczik and Wagner [118] to describe the analysis of
the interaction of a metabolism with its external chemical environment. The
authors introduced the conversion cone - the set of all possible net conversions.
Further, they proposed a method for the calculation of the elementary vectors of
this cone. The analysis of the conversion cone provides a valuable information
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about the functional capabilities and nutritional requirements of an organism.
However, further we demonstrate that the calculation of elementary net conver-
sions does not enable the enumeration of minimal sets of substrates.

In this chapter, we introduce the concept of feasible substrate compositions
- vectors representing the amounts of substrates which can be converted by the
network into the target set of products, specified with the desired proportions.
We also define the inverse concept of feasible product compositions, represent-
ing the amounts of products which can be synthesised by the network from a
given composition of substrates. The sets of substrate and product composi-
tions are bounded convex polyhedrons in the space of metabolite amounts; we
define the vertices of these polyhedrons as elementary substrate and product
compositions, respectively. We propose algorithms for the calculation of com-
plete sets of elementary net conversions and elementary substrate and product
compositions in a reversible network. Being based on left nullspace analysis,
these methods are highly computationally efficient and scalable to genome-scale
models. Alternatively, we propose methods for calculation of minimal substrate
and product sets (without the appropriate proportions) with respect to reaction
irreversibilities.

To describe the possible practical applications of the methods introduced, we
apply them to the genome-scale metabolic models constructed at the previous
stages of the work.

7.2 Concepts and methods

In this section, we consider a metabolic network N = (N̂, k, r) of n reactions
and m metabolites, as defined in Chapter 2.

7.2.1 Conversion cone

The equation ċ = N̂v (Eq. 2.13) describes the metabolite concentration changes
as a result of any flux in a network. The flux vector v can be decomposed as
(vrev|virr)T , where vrev ∈ Rr and virr ∈ Rn−r are the subvectors of reversible
and irreversible reactions, respectively. Similarly, the conversion vector ċ can
be decomposed as ċ = (ċint|ċext)T , where ċint ∈ Rk and ċext ∈ Rm−k contain
the concentration changes of internal and external metabolites, respectively. At
a steady state, the concentrations of internal metabolites are constant:

ċint = 0 (7.1)

Note that the combination of Equations 2.13 and 7.1 is equivalent to Equa-
tion 2.9. Hence, any non-zero vector v satisfying Equations 2.13, 7.1 and 2.11
is a flux mode. We use the term net stoichiometry to refer to any vector ċ satis-
fying Equation 2.13 and the term net conversion to refer to a net stoichiometry
of a flux mode, e.g. a vector ċ satisfying Equations 2.13, 7.1 and 2.11.

The set of net conversions is a polyhedral convex cone, denoted C and called
the conversion cone [118]. Interestingly, the zero vector may or may not be a
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net conversion, depending on whether the network contains internal cycles with
zero net conversions, since the flux modes themselves are non-zero per definition.
For the sake of consistency, we will assume that any conversion cone includes
the origin:

C = N̂F ∪ {0} (7.2)

We assume that any net conversion of a set of reactants into itself is equivalent
to the zero conversion. We define such net conversions (including the zero
conversion itself) as trivial.

The elementary net conversions [118] represent the simplest possible con-
versions of external substrates to products; we denote their set by E(C). This
concept is illustrated in Figure 7.1. The network depicted contains nine elemen-
tary flux modes, but performs only three non-trivial elementary net conversions,
which can be written as: xA ↔ xB, xA ↔ xC and xB ↔ xC. EM1 is an inter-
nal cycle; hence, its net conversion is trivial. The net conversions of EM2-EM8

are elementary, whereas the net conversion of EM9 can be represented as a sum
of two elementary ones. This example demonstrates that the mapping from the
set of elementary modes into E(C) is neither injective nor surjective. On the
other hand, each elementary net conversion in this network is an image of at
least one elementary mode. However, in Section 7.2.6 we demonstrate that this
property is not generalisable.

7.2.2 Substrate and product compositions

We define a composition as any non-negative vector in Rm. We consider the
components of a composition as numbers of units of amount of substance, such
as molecules or moles. Similarly to net conversions, an external composition
s can be decomposed as (sint|sext)T , sint ∈ Rk, sext ∈ Rm−k. We define s
as external, iff sint = 0; hence, an external composition defines the chemical
composition of some environment of the network. It is convenient to represent
compositions as multisets, using Python dictionary notation and skipping zero
components, e.g. {xA : 1} and {xB : 1} instead of (1 0)T and (0 1)T in the net
conversion shown below:

xA ↔ xB (7.3)

We define the substrate composition and the product composition of a net conver-
sion ċ as external compositions ċ− and ċ+, which satisfy the following condition:

−ċ− + ċ+ = ċ, P (ċ−) ∩ P (ċ+) = ∅ (7.4)

Hence, ċ− and ċ+ contain the absolute values of non-positive and non-negative
components of ċ, respectively. In Equation 7.3, {xA : 1} is the substrate com-
position and {xB : 1} is the product composition.

Assume that this is the only non-zero net conversion in some network which
is used for the synthesis of the target product denoted xB. Clearly, the ability
of the network to produce the required amount of the product depends on the
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R1: B ↔ A
R2: A ↔ C
R3: 2 A ↔ B + C
Atx: xA ↔ A
Btx: B ↔ xB
Ctx: C ↔ xC

a b

R1 R2 R3 Atx Btx Ctx xA xB xC
EM1 -1 1 -1 0 0 0 0 0 0
EM2 2 0 1 0 -1 1 0 -1 1
EM3 0 2 -1 0 -1 1 0 -1 1
EM4 1 1 0 0 -1 1 0 -1 1
EM5 -1 0 0 1 1 0 -1 1 0
EM6 0 -1 1 1 1 0 -1 1 0
EM7 1 0 1 1 0 1 -1 0 1
EM8 0 1 0 1 0 1 -1 0 1
EM9 0 0 1 2 1 1 -2 1 1

c

xA xB xC A B C
-1 -1 -1 0 0 0

d

e

Figure 7.1: a, b) A network; c) the table of elementary flux modes (left part)
and the corresponding net conversions (right part, internal metabolites are omit-
ted); d) transposed external left nullspace matrix; e) its network representation:
the external metabolites here are represented by pseudoreactions, ‘interconvert-
ing’ unspecified metabolites. The elementary modes of this network are the
elementary net conversions of the original one.
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availabily of substrates. We define a substrate composition s as feasible for a
product composition p, if the following condition is satisfied:

∃ċ ∈ C, s = ċ−, ċ+ = p (7.5)

Since the trivial conversion is equivalent to p ↔ p, which produces p, the latter
is feasible for itself; we define it as the trivial substrate composition. The set
of feasible substrate compositions for p is denoted Sp. In the example above, it
is easy to find two feasible substrate compositions for xB, namely s1 ={xA : 1}
and s2 ={xB : 1}. It is less obvious that any convex combination of s1 and s2

is also feasible. We define s ∈ Sp as elementary, if it cannot be represented as
a convex combination of other elements of Sp:

s 6= λs′ + (1 − λ)s′′, λ ∈ (0, 1), s′, s′′ ∈ Sp (7.6)

The only elementary substrate compositions in our example are s1 and s2. The
set of elementary substrate compositions for p is denoted E(Sp).

The concepts of feasible and elementary substrate compositions can be de-
fined geometrically. Unlike flux and conversion cones, Sp is not closed under
non-negative scalar multiplication, i.e. is not a cone. To explain the relation
between C and Sp, we re-write the equalities s = ċ− and ċ+ = p as s = −ċ+p,
which is a necessary condition for s to be an element of Sp. Combining this
with the requirement of non-negativity, we obtain a necessary and sufficient
condition, which can be applied to the whole conversion cone:

Sp = (−C + p) ∩ Rm
+ (7.7)

where Rm
+ is the non-negative orthant. The translate of −C is an unbounded con-

vex polyhedron and its intersection with Rm
+ is a convex polytope. Equation 7.6

is the definition of vertices of Sp, which are thus the elementary substrate com-
positions. Hence, each feasible substrate composition is a convex combination
of some elementary substrate compositions.

The geometry of the set Sp is shown in Figure 7.2b. Interestingly enough,
none of the elementary substrate compositions in this example corresponds to
an elementary net conversion. Hence, the mapping E(C) → E(Sp) is neither
injective nor surjective.

Let us consider the inverse problem: which products can be synthesised from
given substrates. For a substrate composition s, we define a product composition
p as feasible if it satisfies the following condition:

∃ċ ∈ C, p = ċ+, ċ− = s (7.8)

The set of feasible product compositions for s is denoted Ps and can be redefined
as follows:

Ps = (C + s) ∩ Rm
+ (7.9)

Hence, Ps is also a convex polytope contained in the positive orthant. Any of
its elements is a convex combination of its vertices, which are called elementary
product compositions.
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xA xB xC
s1 2 0 0
s2 0 2 0
s3 0 0 2

a

b

xA xB xC −k
1 1 1 -2

c

d

Figure 7.2: a) Elementary substrate compositions for {xB : 1, xC : 1} in the net-
work shown in Figure 7.1; b) the same compositions in a 3-dimensional space;
the shaded triangle is the set of feasible substrate compositions; c) external left
nullspace matrix with the augmented column −k = −Kx

T p; d) its network rep-
resentation: the appropriately scaled elementary modes in this network contain
the minimal substrate compositions in the original one as subvectors.
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7.2.3 Functional analysis of reversible networks

For a network N = (N̂, k, r), we define its reversible version as N 0 = (N̂, k, n),
i.e. the set of reversible reactions is equal to the complete set of reactions. The
sets C,Sp and Ps in this network are denoted as C0,S0

p and P0
s , respectively.

Calculation of net conversions The equation KT ċ = 0 (Eq. 5.10) enables
the calculation of an arbitrary net stoichiometry. In order to restrict the solution
set of this equation to the net conversions, we set the rows of K describing
internal metabolites to zero, thus obtaining the external left nullspace matrix
Kx. The set of net conversions in a reversible network satisfies the following
equality:

C0 = {ċ : Kx

T ċ = 0} (7.10)

To calculate E(C0), we consider Kx

T as a stoichiometry matrix of a reversible
network and ċ as a flux vector (see Figure 7.1(d,e)). Since elementary modes
and elementary net conversions satisfy the same udecomposability condition [37,
118], the set of elementary modes in this system is the set E(C0). This set can
be enumerated by applying one of the existing algorithms for the calculation of
elementary modes [110, 90] to Equation 7.10.

Calculation of elementary compositions Equation ċT m = 0 (Eq. 5.4)
can be re-written, so that it applies to substrate and product compositions of
any ċ = N̂v:

mT ċ− = mT ċ+ (7.11)

This equation represents the obvious fact that the total masses of substrates and
products in any chemical interconversion are equal. As explained in Chapter 5,
the feasible values of m are spanned by K; hence, Kx

T can replace mT in
Equation 7.11, resulting in the following equality:

Kx

T ċ− = Kx

T ċ+ (7.12)

Combining this with the condition of non-negativity, we obtain the following
definition of S0

p :

S0
p = {s : Kx

T s = Kx

T p, s ≥ 0} (7.13)

The product Kx

Tp is fixed and can be denoted k:

S0
p = {s : (Kx

T | − k)(s|1)T = 0, s ≥ 0} (7.14)

If we still consider Kx

T as a stoichiometry matrix of a network, then augment-
ing −k at its right side is equivalent to including a transporter reaction (see
Figure 7.2(c, d)). The non-negativity condition implies that the network in
this case must be considered as completely irreversible. Any flux mode in this
network has a positive value in the last component; since a flux mode (s|0)T

would correspond to a semipositive solution of the system KT ċ = 0, i.e. to an
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inconsistent net conversion. Hence, the set of solutions of form (s|1)T is a cross-
section of the flux cone and the set Sp is a projection of this cross-section. The
vertices of Sp correspond to the vertices of the cross-section, which lie on the
generating vectors of the flux cone. In an irreversible network, the generating
vectors of the flux cone correspond to the elementary modes [37]. Hence, any
elementary substrate composition s corresponds to an elementary mode (s|1)T

and vice versa. To calculate E(Sp), one can detect the elementary modes in the
system described above and scale them appropriately (see Algorithm 8).

Algorithm 8 Detect the elementary substrate compositions for a product
composition p in a reversible network. Input: N 0 = (N̂, k, n), p. Output:
E = E(S0

p )

E := {}

Kx := nullspace(N̂
T
)

for all i ∈ (1, k) : do
Kx(i) := 0T //set the rows describing internal metabolites to zero.

end for
k = Kx

Tp
F := el.modes((Kx

T | − k), irreversible)
for all (s|λ)T ∈ F : do

E := E ∪ { 1
λ
s}

end for

Net conversions, substrate and product compositions in a reversible network
have the following properties:

1. A linear combination of net conversions is a net conversion.

2. A net conversion, substrate or product composition is elementary iff it is
minimal, i.e. its support is irreducible.

3. An elementary net conversion is uniquely defined by its support up to
scalar multiples.

4. For any composition, the set of minimal substrate compositions is equal to
the set of minimal product compositions.

In particular, (1) follows from Equation 7.10; (2) is a property of elementary
modes [110]; (3) is proved in Proposition 3 (see below); (4) follows from the
reversibility of conversions. Hence, Algorithm 8 can be also used for the calcu-
lation of elementary product compositions.

Proposition 3 In a reversible network, if ċ and ċ′ are net conversions and ċ
is elementary, then P (ċ) = P (ċ′) implies ċ = λċ′, λ ∈ Rm

+ .

Proof Let ċ∗ = ċ − λċ′, such that ċ∗i = 0 for some i ∈ P (ċ). If ċ∗ = 0, then
ċ = λċ′. Otherwise, P (ċ∗) ⊂ P (ċ), hence ċ is not minimal and therefore not
elementary �
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a

Atx Btx Ctx R1 R2 R3 xA xB xC
EM1 1 0 1 1 0 1 -1 0 1
EM2 0 1 0 1 0 1 -1 0 1
EM3 0 0 1 2 1 1 -2 1 1

b

Figure 7.3: a) A completely irreversible network; b) elementary flux modes and
the corresponding net conversions. All net conversions are irreversible; two of
them are elementary, but only one is minimal.

7.2.4 Feasibility of net conversions

Irreversibility of fluxes may result in limitations on the possible interconversions
in a metabolic network: some of them may become infeasible in either one or
both directions. An example is shown in Figure 7.3, which is a completely
irreversible version of the network depicted in Figure 7.1. The feasibility of a
net conversion can be identified using the following equation, which is equivalent
to the equation ċ = N̂v:

(N̂| − ċ)(v|1)T = 0 (7.15)

Augmenting a negated net conversion at the right side of N̂ is equivalent to
including an exchange reaction, which consumes the products and returns the
substrates, thus satisfying the steady state condition. So, ċ is feasible, iff the
exchange reaction is able to carry a steady state flux in the opposite direction.
This ability can be tested in a linear program:

Maximise λ

Subject to (N̂| − ċ)(v|λ)T = 0,
Where −1 ≤ vrev ≤ 1,

0 ≤ virr ≤ 1

(7.16)

ċ is feasible, iff the objective value is positive.
The feasibility of a substrate composition s for p or vice versa can be tested

by applying the linear program to ċ = −s + p. In Figure 7.3, the elementary
substrate compositions for {xB : 1, xC : 1} are {xA : 2}, {xA : 1, xB : 1} and
{xB : 1, xC : 1}.
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7.2.5 Calculation of flux modes

A slight modification of Equation 7.15 enables the detection of a flux mode
performing the net conversion ċ in the split external stoichiometry matrix
N̈ = (N̂| − N̂). Similarly to Equation 7.15, the negated net conversion can
be augmented at the right side of the split matrix:

(N̈| − ċ)(v̈|1)T = 0 (7.17)

Then we use linear or mixed-integer programming to calculate a non-negative
solution satisfying Equations 3.9 and 7.17. For instance, the sum of all flux
rates can be minimised in the following LP:

Minimise
∑2n

i=1 v̈i

Subject to (N̈| − ċ)(v̈|1)T = 0,
−virr = 0,

Where v̈ ≥ 0

(7.18)

The MILP used in the method ShortestMode (calculates the shortest flux mode
involving a given reaction, see Eq. 3.15) enables the minimisaion of the num-
ber of non-zero flux rates in the solution. The use of integer cuts enables the
exclusion of solutions already found from the feasible solution set.

The objective function in the first line can be also redefined as the minimisa-
tion or maximisation of the flux rate in some target reaction. This enables, for
instance, the calculation of a fermentation flux mode with a given net conversion
and maximal yield of ATP, by maximising the flux rate of ATPase.

7.2.6 Functional analysis of standard networks

For practical purposes, it is often useful to know the sets of feasible substrates
and products, even if the exact proportions are unknown. We define a set of
external metabolites as a minimal substrate set or a minimal product set if it
represents a support of a minimal substrate or product composition, respec-
tively.

Clearly, the minimal substrate and product sets can be easily found in the
sets of elementary substrate or product compositions, respectively (e.g. in
Figure 7.3, {xA : 1} is the only non-trivial minimal substrate composition for
{xB : 1, xC : 1} and the corresponding minimal substrate set is {xA}). In this
section, we propose an alternative method, which enables a direct calculation
of these sets, with respect to the irreversibility of reactions.

We define a network as standard, if for each i > k, N̂(i) contains exactly one
nonzero component. We denote its index by tx(i). In other words, each external
metabolite is involved in exactly one reaction, which acts as its transporter. The
transporter flux rates and the net conversions in a standard network are related
as follows:

ċi = N̂i,tx(i)vtx(i), k < i ≤ m (7.19)
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R1: xA ↔ B
R2: xA ↔ C
Btx: xB ↔ B
Ctx: xC ↔ C

a
b

Figure 7.4: A non-standard network. The elementary net conversion xB ↔ xC
corresponds only to the non-elementary flux mode involving all reactions.

This implies, in particular, that the support of a net conversion can be easily
derived from the set of non-zero transporter flux rates and vice versa, thus
enabling the proof of the following proposition, which states that in a standard
reversible network (such as the network shown in Figure 7.1), each elementary
net conversion is an image of at least one elementary flux mode:

Proposition 4 In a standard reversible network with a stoichiometry matrix
N̂, for each elementary net conversion ċ there exists at least one elementary
flux mode v′, such that ċ = N̂v′.

Proof Let ċ = N̂v∗, where v∗ is not elementary. There exists an elementary
mode v′, such that P (v′) ⊂ P (v∗). We consider three possible relations between
ċ and ċ′ = N̂v′:

1. If P (ċ′) ⊂ P (ċ), then ċ is not minimal and therefore not elementary.

2. If P (ċ) ⊂ P (ċ′), then v∗
tx(i) = 0 and v′

tx(i) 6= 0, for each i ⊂ P (ċ′) \ P (ċ);

hence, P (v′) * P (v∗).

3. If P (ċ) = P (ċ′), then, according to Proposition 3, either ċ is not elemen-
tary or ċ = ċ′ = N̂v′

�

Figure 7.4, in contrast, shows the violation of this property in a non-standard
network.

Equation 7.19 provides the possibility of finding net conversions in distribu-
tions of transporter fluxes, which can be calculated using linear programming
methods. For each i > k, we define the index of the import flux rate as follows:

in(i) =

{

tx(i), N̂i,tx(i) < 0

tx(i) + n, N̂i,tx(i) > 0
(7.20)

We also define the index of the export flux rate as out(i) = (in(i) + n) % 2n.
To find some feasible substrate composition s for p, we assign the export flux
rates as follows:

v̈out(i) = pi, k < i ≤ m (7.21)
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Note that only the flux rates of the products involved in p are fixed; this is
to allow the synthesis of by-products. Then we calculate any non-negative
solution v̈ satisfying the equations N̈v̈ = 0 (Eq. 3.8), −virr = 0 (Eq. 3.9) and
Equation 7.21. The distribution of net flux rates is v =+ v −− v, the net
conversion is ċ = N̂v and the substrate composition is s = −ċ + p. To ensure
that s is minimal, we minimise the number of positive import flux rates using
MILP:

Minimise
∑m

i=k+1 qin(i)

Subject to N̈v̈ = 0,
−virr = 0
v̈out(i) = λpi, k < i ≤ m

Where 0 ≤ v̈i ≤ qi, qi ∈ {0, 1}, 0 ≤ i ≤ 2n

(7.22)

Here λ is a scaling factor. Since the upper bound of the components of v̈ is 1, λ
must be sufficienly small, so that all scaled flux rates remain in this range. Using
integer cuts, it is possible to calculate all feasible solutions. The supports of the
compositions detected represent all minimal substrate sets (see Algorithm 9).

Algorithm 9 Identify the set M of minimal substrate sets for a product
composition p. Input: N = (N̂, r, k), p, λ. Output: M .

M := {}
N := internal(N̂, k)
N̈ = split(N̂)
prog := MILP(N̈, r, ǫ) /* Eq. 7.22*/
q, (+v|−v) := minimal solution(prog)
while is feasible(prog) do

v := 1
λ
(+v −− v)

ċ := N̂v
s := −ċ + p
M := M ∪ {P (s)}
set integer cut(prog,q) /* Eq. 3.7*/
q, (+v|−v) := minimal solution(prog)

end while

Similarly, a minimal feasible composition p for s can be calculated using the
MILP shown in Equation 7.23, where p = ċ + s:

Minimise
∑m

i=k+1 qout(i)

Subject to N̈v̈ = 0,
−virr = 0
v̈in(i) = ǫsi, k < i ≤ m

Where 0 ≤ v̈i ≤ qi, qi ∈ {0, 1}, 0 ≤ i ≤ 2n

(7.23)

A slight modification of Algorithm 9 enables the detection of all minimal product
sets for s.
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Table 7.1: Elementary substrate compositions for one unit of lactate. The
composition shown in column 6 is only present in the models of san and the
third-line model of sag.

1 2 3 4 5 6
Glucose 1/2
Fructose 1/2
Lactose 1/4
Mannose 1/2
Ribose 3/5
Galactose
Sucrose 1/4
H2O 1/4 1/4

Inclusion of by-products It is often not possible or not desirable to precisely
define the complete composition, since only one or a few target products are of
practical interest. For instance, if the target product is protein, its synthesis may
be combined with the release of water and ammonia, whose exact proportions
vary in different compositions. To allow the export of by-products in arbitrary
proportions, we define the export flux rates of the target products only:

v̈out(i) = pi, i ∈ P (p) (7.24)

The fourth line in Equation 7.22 is modified correspondingly. Then, in the
resulting substrate composition s = −ċ+p, the by-products occur with negative
coefficients.

7.3 Application to genome-scale models

The methods described above were applied to the first, second and third-line
models of S. agalactiae, to investigate the processes of fermentation and protein
biosynthesis. The set of transporters in each case was completely redefined
(apart from a permanent transporter for water).

7.3.1 Fermentation substrates

Since the organism is known to perform lactic acid fermentation, an irreversible
exporter was included for lactate. To identify the possible fermentation sub-
strates, irreversible importers were included for the sugars shown in Table 5.3.
The elementary substrate compositions were calculated for one unit of lactate,
using the methods for reversible and standard networks; the results of both
methods were identical for each model.

The results are shown in Table 7.1 and are summarised in the following
conclusions:
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Table 7.2: Genes in sak and coh for which the enzyme 3.2.1.85 was predicted
as a suboptimal hit and the results of reannotations in second-line models. The
columns from left to right show the gene or strain identifiers, KEGG annota-
tions, PRIAM best hits with the E-values, E-values for 3.2.1.85 and the increase
in the number of working genes as a result of a reannotation.

ID, strain KEGG best 3.2.1.85 +
sak
SAK 1188 3.2.1.86 3.2.1.86: 0.0 7e-79 5
SAK 0916 3.2.1.86 3.2.1.86: 0.0 2e-81 5
coh
SAN 0887 NA 3.2.1.86: 0.0 6e-82 5
SAN 1223 NA 3.2.1.86: 0.0 3e-79 5
SAN 1249 NA 3.2.1.86: 6e-101 5e-34 5

• All models ferment glucose, fructose, mannose, ribose, and sucrose.

• None of the models ferments galactose.

• Both models of san and the third-line model of sag ferment lactose.

The inability of the first and second-line models of sag, san and coh to fer-
ment lactose is caused by the absence of the enzyme 3.2.1.85 (6-phospho-beta-
galactosidase, see Figure 6.5), which is present in both annotations of san and
was included into the third-line model (see Chapter 6). This enzyme is predicted
as a suboptimal hit also in the other PRIAM annotations and a reannotation in
each case leads to an improvement of model quality (see Table 7.2). Note that
the best hit in each case is the 3.2.1.86 which has the same name but operates
on different substrates.

7.3.2 Fermentation products

To identify the fermentation types present in the organism, transporters were in-
cluded for glucose (irreversible importer) and for typical fermentation products,
namely CO2, lactate, acetate, formate, acetoin, ethanol, diacetyl, fumarate, pro-
pionate, H2, butyrate, acetone, methane and succinate (irreversible exporters).

In order to reflect the dependency of fermentation modes upon the availabil-
ity of oxygen and the possibility of oxidative phosphorylation, the hypothetical
NADH and NADPH oxidases were redefined as follows:

NADH Oxidase: O2 + 2 NADH → 2 NAD+ + 2 H2O
NADPH Oxidase: O2 + 2 NADPH → 2 NADP+ + 2 H2O

(7.25)

Hence, these reactions were effectively blocked in the absence of an oxygen
transporter. Then, compositions of fermentation products were calculated in
anaerobic and aerobic conditions.
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Anaerobic conditions The substrate composition was defined as one unit of
glucose and two units of water, to allow hydrolysis reactions.

Table 7.3a shows the union of the compositions calculated in all models using
left null space analysis, under the assumption of reversibility. Each composition
except {ethanol : 1.5, formate : 3} is directionally feasible in at least one of
the models. The compositions involving diacetyl are not present in the first-line
models of sag and san because of the absence of acetoin dehydrogenase.

Table 7.4a shows the results calculated using MILP (note that these com-
positions are not necessarily elementary, although definitely minimal). The
compositions involve all experimentally known fermentation products of the or-
ganism [71], plus diacetyl and fumarate. For each composition, in each model
an elementary flux mode was calculated with a maximised flux rate of ATPase.
The composition {acetate : 3} is of particular interest, since to our knowledge,
fermentation of glucose into three molecules of acetate has not been described in
the biochemical literature. Figure 7.5 shows a possible pathway of this fermen-
tation, which is strongly different from typical glycolytical pathways. Instead, it
involves a number of enzymes used in the pentose-phosphate pathway and photo-
synthesis, such as transketolase, phosphoketolase, ribose-5-phosphate isomerase,
ribulose-phosphate 3-epimerase and triose-phosphate isomerase. Aldolase is also
used in a manner which is typical for photosynthesis, converting glycerone phos-
phate and erythrose 4-phosphate into sedoheptulose 1,7-bisphosphate. The only
reactions consuming and producing ATP are those of glucokinase and acetate
kinase, respectively; the net production of ATP is 2 per 1 mole of glucose. The
pathway is not present in the first-line models of sag and san because of the
absence of phosphoketolase. It is also not present in the second and third-
line models, since fructose-bisphosphatase was not predicted for any genes by
RPS-BLAST. Interestingly enough, analysis of elementary modes revealed that
because of the absence of fructose-bisphosphatase these models are also not able
to convert glucose into diacetyl and CO2.

The maximal ATP yields shown in Table 7.4a varies between 0 and 2, except
for the compositions {acetate : 2, formate : 1, ethanol : 0.5} and {acetate :
1.71, ethanol : 0.64, formate : 1.29}, which yield 3 molecules of ATP in most
of the models. An elementary mode corresponding to the former composition
is shown in Figure 7.6. It consists of two parallel routes: The route shown in
the upper part of the figure involves glycolytical enzymes, yields ATP in the
phosphoglycerate kinase reaction and ends up with ethanol and formate. The
route in the lower part involves the enzymes of pentose-phosphate pathway,
yields ATP in the acetate kinase reaction and ends up with acetate. The first-
line models of sag and san cannot operate the latter route because of the absence
of phosphoketolase.

Aerobic conditions A reversible transporter was included for oxygen and
the substrate composition was defined as one unit of glucose, two units of water
and six units of oxygen. The results are shown in Tables 7.3b and 7.4b; the
rows named ‘O2 balance’ show the balance of oxygen in the corresponding net
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Table 7.3: Elementary compositions of fermentation products in anaerobic (a)
and aerobic (b) conditions, calculated using left null space analysis. The lower
part of each table shows the presence of the corresponding conversions in the
reversible versions of the models (non-empty cells) and their directional feasi-
bilities (‘+’).

1 2 3 4 5 6 7 8 9 10 11
Acetate 3
Acetoin 1 3/4 6/5
CO2 2 6/5 2/3
Diacetyl 6/5 1 4/3
Ethanol 1 2 3/2
Formate 3 2 6/5
Fumarate 1 3/4 1/2
Lactate 2
1-st line:
sag + + - + - + - -
sak + + + + - + + + + + +
san + + - + - + - -
2-nd line:
sag + + - + - + + + + + -
sak + + - + - + + + + + -
san + + - + - + + + + + -
coh + + - + - + + + + + -
3-rd line:
sag + + - + - + + + + + -

a

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Acetate 1 3
Acetoin 1/2 3/2
CO2 6 2/3
Diacetyl 1/3 3/2
Ethanol 2 5/2 2 2 2 8/3 7/3
Formate 2 6
Fumarate 1/4 3/2
Lactate 2/3 2
O2 balance 5/2 3/2 -6 9/4 2 -3/2 1 0 2 -3 2 0 5/2 3/4
1-st line:
sag - - - - - - - + - - - -
sak - - - - - - - + - - - + - -
san - - - - - - - + - - - -
2-nd line:
sag - - - - - - - + - - - - - -
sak - - - - - - - + - - - - - -
san - - - - - - - + - - - - - -
coh - - - - - - - + - - - - - -
3-rd line:
sag - - - - - - - + - - - - - -

b
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Table 7.4: Minimal compositions of fermentation products in anaerobic (a) and
aerobic (b) conditions, calculated using MILP. The lower part of each table
shows the presence in the models (non-empty cells) and maximal yields of ATP
per unit of glucose.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Acetate 2 3 2.52 0.80 1.71
Acetoin 1 0.75 1.2
CO2 2 0.67 1.2
Diacetyl 1 1.2 1.33
Ethanol 1 0.5 2 0.24 1.1 0.64
Formate 2 1 1.2 0.48 2.2 1.29
Fumarate 1 0.5 0.75
Lactate 2
1-st line:
sag 2 0 2 2 2 2.29
sak 2 0 2 3 2 0 2 0 1.2 0.33 1.2 2.48 3
san 2 0 2 2 2 2.29
2-nd line:
sag 2 1 2 3 2 0.5 0.75 1.2 1.2 0.78 1.2 3
sak 2 1 2 3 2 0.5 0.75 1.2 1.2 0.78 1.2 3
san 2 1 2 3 2 0.5 0.75 1.2 1.2 0.78 1.2 3
coh 2 1 2 3 2 0.5 0.75 1.2 1.2 0.78 1.2 3
3-rd line:
sag 2 1 2 3 2 0.5 0.75 1.2 1.2 0.78 1.2 3

a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Acetate 2 2 1 3 2.71 1.1 2.08 1.95 2.68 1.89 2.59 2.73
Acetoin 1 1
CO2 2 2 2 0.58 1.84 0.63 0.53
Diacetyl 1
Ethanol 2
Formate 2 2 2 2.10 2.22 0.82
Fumarate 1 0.95
Lactate 2
O2 balance -1 -1 -2 -1 -0.5 -0.58 -0.95 -1.84 -1.05 -0.63 -1.11 -0.41 -0.53
1-st line:
sag 2 2 4 2 4 1 2
sak 2 2 4 2 4 1 2 2 2 2.87 1.1 3.92 2.95 3.24 2.80
san 2 2 4 2 4 1 2
2-nd line:
sag 2 2 4 2 4 2 2 2 0.33 2.05 3.92 3.12 0.74 2.16 2.18 0
sak 2 2 4 2 4 2 2 2 0.33 2.05 3.92 3.12 0.74 2.16 2.18 0
san 2 2 4 2 4 2 2 2 0.33 2.05 3.92 3.12 0.74 2.16 2.18 0
coh 2 2 4 2 4 2 2 2 0.33 2.05 3.92 3.12 0.74 2.16 2.18 0
3-rd line:
sag 2 2 4 2 4 2 2 2 0.33 2.05 3.92 3.12 0.74 2.16 2.18 0

b
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5.3.1.9: glucose-6-phosphate isomerase

D-Fructose 6-phosphate

D-Glucose 6-phosphate

4.1.2.9: phosphoketolase

3.1.3.11: fructose-bisphosphatase

Sedoheptulose 7-phosphate Orthophosphate

Sedoheptulose 1,7-bisphosphate

2.2.1.1: transketolase

H2O

5.3.1.6: ribose-5-phosphate isomerase

D-Ribulose 5-phosphate

D-Ribose 5-phosphate

5.1.3.1: ribulose-phosphate 3-epimerase

D-Xylulose 5-phosphate

4.1.2.9: phosphoketolase

(2R)-2-Hydroxy-3-(phosphonooxy)-propanal

5.3.1.1: triose-phosphate isomerase

2.7.1.2: glucokinase

ADP

ATP Glucose

Acetyl phosphate

H2O D-Erythrose 4-phosphate

2.7.2.1: acetate kinase

Orthophosphate

4.1.2.13: fructose-bisphosphate aldolase

AcetateATP

ADP H2O

Orthophosphate

Glycerone phosphate

Figure 7.5: Elementary mode converting one mole of glucose into three moles
of acetate, yielding two moles of ATP. Hypothetical reactions are not shown.
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1.2.1.12: glyceraldehyde-3-phosphate dehydrogenase (phosphorylating)

3-Phospho-D-glyceroyl phosphate NADH

2.7.2.3: phosphoglycerate kinase

NAD+

(2R)-2-Hydroxy-3-(phosphonooxy)-propanal

2.2.1.1: transketolase

Orthophosphate

5.4.2.1: phosphoglycerate mutase

2-Phospho-D-glycerate

3-Phospho-D-glycerate

4.2.1.11: phosphopyruvate hydratase

1.2.1.10: acetaldehyde dehydrogenase (acetylating)

CoANAD+Acetaldehyde

2.3.1.54: formate C-acetyltransferase

Acetyl-CoA

2.3.1.8: phosphate acetyltransferase

NADH

1.1.1.1: alcohol dehydrogenase

2.2.1.2: transaldolase

Sedoheptulose 7-phosphate

D-Fructose 6-phosphate

4.1.2.9: phosphoketolase

D-Erythrose 4-phosphate

ATP

ADP

2.7.1.69: protein-N(pi)-phosphohistidine-sugar phosphotransferase

D-Glucose 6-phosphateProtein histidine

5.3.1.9: glucose-6-phosphate isomerase

GlucoseProtein N(pi)-phospho-L-histidine

2.7.3.9: phosphoenolpyruvate-protein phosphotransferase

Acetyl phosphate

H2O

2.7.2.1: acetate kinase

Orthophosphate

4.1.2.9: phosphoketolase

H2O

D-Xylulose 5-phosphateOrthophosphate

5.3.1.6: ribose-5-phosphate isomerase

D-Ribulose 5-phosphate

D-Ribose 5-phosphate

5.1.3.1: ribulose-phosphate 3-epimerase

Formate

Pyruvate

Acetate ATP

ADP

Orthophosphate

EthanolNAD+

NADH

PhosphoenolpyruvateH2O

Figure 7.6: Elementary mode converting one mole of glucose into the composi-
tion {acetate : 2, formate : 1, ethanol : 0.5} and yielding three moles of ATP.
Hypothetical reactions are not shown.
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conversions.
Most of the elementary product compositions in Table 7.3a are infeasible in

all models; the only exceptions correspond to the conversions of glucose into two
molecules of lactate or three molecules of acetate with no net uptake or yield of
oxygen. Note that in most of the other conversions, oxygen is produced.

Forty minimal product compositions were calculated using MILP. Because
of the space limit, in Table 7.4b only the ones yielding more than two moles
of ATP in at least one of the model are shown. The compositions involve the
same products as in anaerobic conditions. However, no compositions involving
acetate, ethanol and formate simultaneously are found. This decoupling of
products is enabled by the influx of NAD+ and NADP+ due to the availability
of oxygen. The most efficient conversion in terms of ATP output per input of
glucose and oxygen corresponds to the composition {acetate : 2, formate : 2}.
An elementary flux mode performing this conversion is shown in Figure 7.7.

7.3.3 Minimal amino acid compositions

To identify the minimal substrate compositions required for protein biosynthesis,
the following irreversible transporters were included into the models: importers
for amino acids and glucose and exporters for lactate, CO2 and ammonia (glu-
cose and lactate transporters were needed to enable fermentation, thus providing
ATP required for amino acid interconversions). The target product composi-
tion was defined as 1 unit of protein; the other biomass components and biomass
itself were declared internal.

Table 7.5 shows the results calculated using MILP. The table shows only the
inclusion of the amino acids in the compositions, ignoring the coefficients and the
other substrates. The compositions corresponding to the first-line models and
those corresponding to the second and third-line models comprise two distinct
sets; further, most of the compositions sufficient for the third-line model are not
feasible for the second-line ones. Figire 7.9a shows the distances between the
sets of amino acid sets which are sufficient for the different models.

The amino acids in Table 7.5 can be subdivided into three groups (delimited
with vertical bars): the group of 10 amino acids which are essential in all models
and two other groups, such that each composition includes at least one member
of each of them. The composition ‘36’ is the only one including exactly one
amino acid out of each of these groups, namely glutamate and threonine; this
composition is sufficient for the third-line model only. The numbers of amino
acids involved in the other compositions vary between 13 and 18.

Table 7.7 compares the sets of essential amino acids found in the models with
those reported by three independent literature sources, based on experimental
results. Note that proline is essential in all first and second-line models but is
not essential in the third-line one. This is due to the inclusion of the enzyme
1.5.1.12 (1-pyrroline-5-carboxylate dehydrogenase) which is involved in proline
biosynthesis (see Figure 7.8). The experimental sources confirm the prototrophy
for proline; hence, the inclusion of the enzyme improves not only the quality of
the model (see Chapter 6) but also the consistency with experimental results.
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4.1.2.13: fructose-bisphosphate aldolase

Glycerone phosphate

(2R)-2-Hydroxy-3-(phosphonooxy)-propanal

D-Fructose 1,6-bisphosphate

5.3.1.1: triose-phosphate isomerase

1.2.1.9: glyceraldehyde-3-phosphate dehydrogenase (NADP+)

NADPH 3-Phospho-D-glycerate

NADP+ H2O

5.4.2.1: phosphoglycerate mutase

4.2.1.11: phosphopyruvate hydratase

Phosphoenolpyruvate H2O

2.7.1.40: pyruvate kinase

2-Phospho-D-glycerate

Pyruvate ATP

2.3.1.54: formate C-acetyltransferase

ADP

Acetyl-CoA Formate

CoA

2.3.1.8: phosphate acetyltransferase

2.7.1.2: glucokinase

D-Glucose 6-phosphate ADP

5.3.1.9: glucose-6-phosphate isomerase

ATP Glucose

2.7.1.11: 6-phosphofructokinase

ADP

D-Fructose 6-phosphate ATP

2.7.2.1: acetate kinase

Acetate ATP

Acetyl phosphateADP

Orthophosphate

Figure 7.7: Elementary mode converting one mole of glucose into the composi-
tion {acetate : 2, formate : 2}, consuming 1 mole of O2 and yielding 2 moles of
ATP. Hypothetical reactions are not shown.
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Table 7.5: Minimal amino acid sets required for protein biosynthesis. The right
part of the table shows the feasibility of the compositions in the models.

Amino acids Models, lines
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1 + + + + + + + + + + + + + + + + + + + + +
2 + + + + + + + + + + + + + + + + + + + +
3 + + + + + + + + + + + + + + + + + +
4 + + + + + + + + + + + + + + + + + + + + +
5 + + + + + + + + + + + + + + + + + + + +
6 + + + + + + + + + + + + + + + + + + +
7 + + + + + + + + + + + + + + + + + + + + +
8 + + + + + + + + + + + + + + + + + + + +
9 + + + + + + + + + + + + + + + + + + + + +

10 + + + + + + + + + + + + + + + + + + +
11 + + + + + + + + + + + + + + + + + + + +
12 + + + + + + + + + + + + + + + + + + +
13 + + + + + + + + + + + + + + + + +
14 + + + + + + + + + + + + + + + + +
15 + + + + + + + + + + + + + + + + + +
16 + + + + + + + + + + + + + +
17 + + + + + + + + + + + + + + + + + + + + +
18 + + + + + + + + + + + + + + + + +
19 + + + + + + + + + + + + + + + +
20 + + + + + + + + + + + + + + + + +
21 + + + + + + + + + + + + + + + +
22 + + + + + + + + + + + + + + + + +
23 + + + + + + + + + + + + + + +
24 + + + + + + + + + + + + + + + +
25 + + + + + + + + + + + + + + + + +
26 + + + + + + + + + + + + + + + +
27 + + + + + + + + + + + + + + + + +
28 + + + + + + + + + + + + + + + +
29 + + + + + + + + + + + + + + + + + +
30 + + + + + + + + + + + + + + + + +
31 + + + + + + + + + + + + + +
32 + + + + + + + + + + + + + + +
33 + + + + + + + + + + + + + +
34 + + + + + + + + + + + + + +
35 + + + + + + + + + + + + + +
36 + + + + + + + + + + + + +
37 + + + + + + + + + + + + +
38 + + + + + + + + + + + + +
39 + + + + + + + + + + + + +
40 + + + + + + + + + + + + +
41 + + + + + + + + + + + + +
42 + + + + + + + + + + + + +
43 + + + + + + + + + + + + +
44 + + + + + + + + + + + + +
45 + + + + + + + + + + + + +
46 + + + + + + + + + + + + +
47 + + + + + + + + + + + + +
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Table 7.6: Genes in sak, san and coh for which the enzyme 1.5.1.12 was pre-
dicted as a suboptimal hit and the results of reannotations in second-line models.
The columns from left to right show the gene or strain identifiers, KEGG an-
notations, PRIAM best hits with the E-values, E-values for 1.5.1.12 and the
increase in the number of working genes as a result of a reannotation.

ID, strain KEGG best 1.5.1.12 +
sak
SAK 1211 1.2.1.16 1.2.1.16 : 1e-122 8e-58 4
SAK 0947 1.2.1.9 1.2.1.9 : 0.0 5e-77 4
san
gbs0841 1.2.1.9 1.2.1.9 : 0.0 3e-76 4
gbs1192 1.2.1.16 1.2.1.16 : 1e-122 8e-58 4
coh
SAN 0923 NA 1.2.1.9 : 0.0 1e-76 4
SAN 1246 NA 1.2.1.16 : 1e-122 8e-58 4

Similarly to 3.2.1.85, this enzyme was also predicted as a suboptimal hit in the
PRIAM annotations of the other strains and a reannotation in each case leads
to an improvement of model quality (see Table 7.6).

Each of the remaining predictions in the table is confirmend by at least
one of the experimental sources, except phenylalanine, which is essential in all
experiments but non-essential in the second and third-line models. However,
Figure 7.9 demonstrates that the differences between the modelling predictions
and experimental results are not larger than those based on the results from
different experiments. Hence, the quality of modelling predictions is at least
comparable to that of experimental results.

7.4 Discussion and conclusion

In the current chapter, we introduced the concepts of elementary substrate and
product compositions - a structurally invariant property of metabolic networks.
We proposed algorithms identifying these compositions, as well as elementary
net conversions, in a reversible network. In addition, we introduced the con-
cept of a standard network and proposed a method for the detection of minimal
substrate and product sets in such networks. The following remarks describe ap-
plication fields, possible limitations and theoretical implications of the methods
introduced.

The results presented demonstrate that the calculation of elementary com-
positions under the assumption of reversibility is computationally tractable in
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Figure 7.8: KEGG pathway diagram showing the biological functions of the
enzyme 1.5.1.12 (circled).
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Table 7.7: Essential amino acids identified in the model of S. agalactiae
(columns 2 - 4) compared to the experimental results reported by [72], [91]
and [98]. In the fifth column: cystine was used instead of cysteine, threonine is
essential under aerobic conditions only.

source 1-st line 2-nd line 3-rd line Milligan Rajagopal Samen
strain cross-strain cross-strain sag cross-strain Ia, A909 Ia, O90R
Valine + + + + + +
Lysine + + + + +
Leucine + + + + + +
Isoleucine + + + + + +
Tyrosine + + + + + +
Tryptophan + + + + + +
Cysteine + + + +
Methionine + + + + +
Histidine + + + + + +
Arginine + + + + + +
Proline + +
Phenylalanine + + + +
Threonine + + +
Glycine + +
Aspartate
Asparagine
Glutamate +
Glutamine
Alanine
Serine +

Figure 7.9: Set distance trees: a) based on the feasibility of minimal amino acid
compositions (Table 7.5; b) based on the essentiality of amino acids (Table 7.7).
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genome-scale models, due to the relatively small size of an external left nullspace
matrix in comparison with a stoichiometry matrix. It must be stressed, how-
ever, that the computational feasibility of the algorithm strongly depends on the
number of external metabolites. Therefore, it is preferable to select the minimal
set of external metabolites necessary for the solution of a given problem (i.e.
amino acids do not need to be declared external for the prediction of glucose
fermentation products).

Unfortunately, the methods described do not enable the calculation of a
complete set of elementary compositions with respect to irreversible reactions.
The solution of this problem is subject to future developments and would provide
more precise characterisation of the networks analysed. However, our results
demonstrate that the calculation of elementary compositions in the reversible
version of a network provides a range of practically relevant data. In fact, any
feasible composition is a convex combination of the elementary compositions
calculated in the reversible version, regardless of their feasibility.

As an alternative, minimal substrate and product sets can be calculated
using linear programming methods, which take irreversibility of reactions into
account. Although the methods described are applicable to standard networks
only, this does not diminish their universality, since any non-standard network
can be easily converted into a standard one by appending additional trans-
porters. The results can be further analysed using set-theoretical and logical
methods (e.g. the combination of sets {A, B} and {A, C} can be represented
as a logical expression ‘A and (B or C)’).

Detection of elementary substrate compositions enables a comprehensive
analysis of nutritional requirements of the modelled organisms. It must be taken
into consideration, however, that the correctness of the results depends on the
exact definition of the target product compositions. In our models, we defined
protein simply as a combination of twenty amino acid molecules; more precise
results could be obtained if the proportions of the amino acids in the organism’s
proteome were known. Considering a hypothetical metabolite representing the
whole biomass of an organism (e.g. BIOMASS in the present work) as the tar-
get product would enable the prediction of elementary substrate compositions
representing complete media sufficient for growth. This perspective appears to
be widely applicable to various biotechnological problems.

Elementary substrate compositions represent the extreme environments in
which an organism is able to survive and to synthesise the desired products.
These conditions are not necessarily optimal from an economic and energetic
point of view; in fact, the optimal conditions are more likely to correspond to
the interior points of the substrate composition polyhedron then to its vertices.
For instance, the most favourable environment for any organism would include
all amino acids in those proportions in which they are present in the proteome.
In this environment, protein biosynthesis would require no amino acid intercon-
versions consuming energy and resulting in loss of carbon and nitrogen atoms.

The number and variability of the elementary substrate compositions for
biomass (or geometrically, the volume of Sp) can be considered as a measure
of the ecological versatility of an organism; e.g. Table 7.5 makes clear that the
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third-line model of sag is capable of synthesising protein in a broader range of
environments than the other models. A comparison of the sets of elementary
or minimal compositions can be used for the classification of organisms into
ecotypes (see Figure 7.9a).

Equations 2.13 and 5.4 define a connection between flux modes and con-
servation relationships and hence between left and right nullspace analyses.
Although the left nullspace of a stoichiometry matrix is commonly used in
metabolic modelling for the detection of relationships between metabolite con-
centrations [37, 73], we demonstrated that its analysis provides a wide range
of data characterising nutritional requirements and functional capabilities of
the modelled organisms. Future developments in this direction may lead to
the discovery of other interesting and practically useful properties of metabolic
networks.
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Chapter 8

Essentiality Analysis

8.1 Introduction

Metabolic enzymes are particularly attractive as drug target candidates [6].
However, the identification of essential enzymes in vitro is laborious and ex-
pensive and can be considerably facilitated by computational prediction meth-
ods. The existing algorithms for the prediction of essential enzymes include the
detection of ‘chokepoint reactions’, which uniquely consume or produce specific
metabolites [127], and the calculation of reaction damage, defined as the set
of metabolites whose production becomes impossible in a system by deleting a
given reaction [61]. These methods are based on graph-theoretical analysis of
networks and hence do not take into account the ability of reactions to carry
steady-state fluxes. Further, both methods use quantitative criteria of essen-
tiality, namely the uniqueness of the consuming or producing reaction and the
size of the damage, regardless of the necessity of these reactions for survival
and growth. However, even a non-‘chokepoint’ reaction with a small damage
is essential for an organism if its deletion leads to inability to produce protein,
DNA or energy.

In this chapter, we present a target-oriented approach to the identification
of essential reactions and enzymes. We define essentiality of reactions as their
necessity for vital cellular processes, such as protein biosynthesis or energy pro-
duction, which are represented by single hypothetical reactions.

We denote by N (R) a network with a reaction set R. Let us consider
reactions Rq, Rt ∈ R, named the query and the target reaction, respectively.
Rq is essential for Rt if Rq is live in N (R) and dead in N (R \ {Rt}). In
other words, the presence of an essential reaction in the network is necessary
for the ability of the target reaction to carry steady state flux (Figure 8.1a, b).
Essentiality is a non-reflexive, transitive binary relation over the set of reactions
and can be represented as a square binary matrix (Figure 8.1c).
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a b

R1 R2 R3 R4

R1 + + +
R2

R3

R4 + + +

R1

R2

R3

R4









1 1
1 0
0 1
1 1









c d

R1: {R4}, {R2, R3}
R2: {R4}, {R1}
R3: {R4}, {R1}
R4: {R1}, {R2, R3}

e

Figure 8.1: a) Network of four reactions. Considering R4 as the target reaction,
R1 is essential (a) and R3 is not essential (b). c) Essentiality matrix: each row
represents the reactions for which the given reaction is essential; each column
represents the reactions which are essential for the given reaction. d) Right null
space matrix: R1 and R4 comprise a reaction subset. e) Reactions followed by
the lists of their minimal cut sets.
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The numbers of reactions essential for vital functions tend to be very limited,
since most of the removals can be substituted by redundant pathways. However,
an objective function may be blocked by the removal of a group of reactions.
A subset R′ ⊂ R is called a cut set for a reaction Rt if the latter is live in
N (R) and dead in N (R \ R′). R′ is a minimal cut set (MCS) for Rt if none
of its proper subsets is a cut set for Rt (see Figure 8.1e). Clearly, any essential
reaction comprises a singleton minimal cut set. The application of the concept
of MCS to metabolic networks has been suggested by Klamt et al. [55], who
also proposed an algorithm for their calculation. Unfortunately, this algorithm
is computationally inefficient, since it involves the calculation of elementary
modes. In this chapter, we propose an alternative algorithm which calculates a
complete list of disjoint (i.e. non-overlapping) minimal cut sets.

8.2 Methods

Below we present methods for the detection of essential reactions and minimal
cut sets.

8.2.1 Detection of essential reactions

Some information about essential reactions can be derived by means of right
nullspace analysis. In particular, the elements of a reaction subset are essen-
tial for each other, since they are involved simultaneously in all elementary flux
modes (Figure 8.1c). The converse statement is true only in a network of re-
versible reactions (Poolman, unpublished). In such a network, essentiality is a
symmetric relation and mutually essential reactions are obviously involved si-
multaneously in all elementary modes, thus being elements of the same reaction
subsets. In a network containing irreversible reactions, the essentiality relation
is asymmetric. So, in Figure 8.1, R4 is essential for R2 and R3, but neither of
them is essential for and involved in a common reaction subset with R4.

The essentiality of a reaction q for a given target t can be tested by comple-
menting the linear program shown in Equation 3.12 (used to test the liveness
of t) with two lines stating that both directions of q are blocked:

Minimise

Subject to N̈v̈ = 0,
−virr = 0,
v̈t ≥ ǫ,
v̈opp(t) = 0,
v̈q = 0,
v̈opp(q) = 0

Where v̈ ≥ 0

(8.1)

Similarly to Equation 3.12, the program must be solved twice, with the forward
and backward fluxes of the target reaction taken as v̈t; q is qualified as essential
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if the program is not solvable for both directions (e.g. the target reaction cannot
operate in either direction).

8.2.2 Detection of minimal cut sets

Algorithm 10 presents a method for the detection of a complete set of disjoint
minimal cut sets for a given live target reaction. Similarly to Algorithm 6, the
list R of candidate reactions is ordered by descending absolute values of the cor-
relation coefficients with the target reaction, ensuring that the candidates with
stronger correlations with the target are tested first (lines 2-14). To accelerate
the algorithm, the essential reactions for the target are detected, removed from
the candidate list and included into the result as singleton sets.

In each outer while-loop (lines 17-43), a cut set R′ is constructed and then
reduced, if possible. In the first inner while-loop (lines 22-27), the candidate
reactions are iteratively included into the set R′ and the target reaction is
tested for liveness in the network N (R \ R′). After the target becomes dead,
in the second while-loop (lines 30-37) the reactions are iterated in the order of
ascending correlation coefficients and in each iteration it is tested whether after
removing a given reaction from R′ the latter remains a cut set for t. Thus, a
cut set is minimised. Then the minimal cut set is appended to the result and
its elements are removed from the candidate list, thus ensuring that all detected
sets are disjoint. If after the first inner while-loop, the target is still live (see
the IF operator in line 28), the algorithm terminates, since no further cut sets
can be detected.

8.3 Applications to genome-scale models

The methods described above were applied to the models constructed as de-
scribed in Chapter 4, 5 and 6. The minimal cut sets (including the ones con-
sisting of essential reactions) were identified for the reactions producing the
biomass components and for the ATPase reaction. The results are summarised
in Table 8.1. Figure 8.2 shows the results of the comparison of the sets of es-
sential reactions and MCS detected in the models for all targets except for the
peptidoglycan synthesis reaction (since the latter is dead in the first-line mod-
els). The differences between these sets are discussed in detail in the following
subsections.

8.3.1 Protein biosynthesis

In all models, the only essential reactions for protein biosynthesis are the trans-
porters of essential amino acids (see Table 7.7). The smallest remaining minimal
cut sets are shown in Table 8.2.

The table reveals some differences in the sets of MCS between the first-line
and other models. In particular, MCS 4 is not a cut set in the first-line models
due to the presence of alanine transaminase, which catalyses the conversion of
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Algorithm 10 Given a network N (R) and a live reaction t, detect a set S of
disjoint MCS for t.

1: S = {}
2: K := orthogonal null space(N)
3: del zero rows(K)
4: R := row names(K) − 〈t〉
5: for all q ∈ R do
6: //Equation 8.1
7: if is essential(q, t,N (R)) then
8: S := S ∪ {q}
9: delete(R, q)

10: end if
11: end for
12: corr(i) := abs(cos(θK

i,t))
13: cmp(i, j) := cmp(corr(i), corr(j)))
14: sort(R, cmp)
15:

16: l := False
17: while l = False and length(R) > 0 do
18: i := 0
19: l := True
20: //cut set construction
21: R′ := {}
22: while l = True and i < length(R) do
23: q := R[i]
24: R′ := R′ ∪ {q}
25: l := is live(N (R \R′), t)
26: i := i + 1
27: end while
28: if l := False then
29: //cut set reduction
30: while i > 0 do
31: i := i − 1
32: q := R[i]
33: R′′ := R′ \ {q}
34: if not is live(N (R′ \ R′′), t) then
35: R′ := R′′

36: end if
37: end while
38: for all r ∈ R′ do
39: delete(R, r)
40: end for
41: S := S ∪ {R′}
42: end if
43: end while
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Figure 8.2: Set distance trees based on the sets of essential reactions (a) and
MCS (b).

Table 8.1: Numbers of minimal cut sets detected for different target reactions.
The columns 3-13 show the numbers of MCS of given lengths.

Target all 1 2 3 4 5 6 7 8 9 10 >10
syn PROTEIN 40 12 8 4 6 2 0 0 2 0 0 6
syn RNA 101 8 14 13 12 13 3 12 5 3 1 17
syn DNA 120 11 24 18 9 20 9 3 3 5 4 14
syn MEMBRANE 74 12 6 7 3 12 5 6 1 5 3 14
syn PG 89 28 9 7 3 9 9 3 3 0 4 14
ATPase 47 0 3 6 3 2 3 9 2 1 3 15
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Table 8.2: Minimal cut sets of length 2-3 for protein biosynthesis.

1-st 2-nd 3-rd
Minimal cut sets sag sak san sag sak san coh sag

1
C02057 tx: X Phe ↔ Phe
R03083: DAHP ↔ Pi + 3-Dehydroquinate

+ + + + + + + +

2
C02057 tx: X Phe ↔ Phe
R03084: 3-Dehydroquinate ↔ H2O +

3-Dehydroshikimate
+ + + + + + + +

3
C00188 tx: X Thr ↔ Thr
R01466: H2O + O-Phospho-homoserine

→ Pi + Thr
+ + + + + + + +

4
C01401 tx: X Ala ↔ Ala
R00401: Ala ↔ D-Ala

+ + + + +

5
C02057 tx: X Phe ↔ Phe
R02413: NADP+ + Shikimate ↔ NADPH

+ 3-Dehydroshikimate
+ + + + + + + +

6
C00302 tx: X Glu ↔ Glu
C00303 tx: X Gln ↔ Gln

+ + + + + + + +

7
C02057 tx: X Phe ↔ Phe
R01826: Erythrose 4-P + H2O + PEP ↔

Pi + DAHP
+ + + + + + + +

8
C01401 tx: X Ala ↔ Ala
R00258: 2-Oxoglutarate + Ala ↔ Glu +

Pyr
+ + +

9
C00033 tx: X Acetate ↔ Acetate
C00152 tx: X Asn ↔ Asn
R00658: 2PG ↔ H2O + PEP

+ + + + + + + +

10

C00716 tx: X Ser ↔ Ser
R00220: Ser ↔ NH3 + Pyr
R00943: THF + Formate + ATP → Pi +

10-FormylTHF + ADP

+ +

11

C00148 tx: X Pro ↔ Pro
R00707: (S)-1-Pyrroline-5-carboxylate +

NAD+ + 2 H2O ↔ NADH + Glu
R00708: NADP+ + 2 H2O +

(S)-1-Pyrroline-5-carboxylate
↔ NADPH + Glu

+ + + + + + + +

12

C00049 tx: X Asp ↔ Asp
R00345: CO2 + PEP + H2O →

Oxaloacetate + Pi
R00485: Asn + H2O → Asp + NH3

+ + +
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glutamate into alanine:

R00258: 2-Oxoglutarate + Alanine ↔ Glutamate + Pyruvate

However, this enzyme was predicted in all RPS-BLAST annotations as a sub-
optimal hit. Hence, this difference may be due to an artefact in the second-line
models.

MCS 8 is not a cut set in the second and third-line models due to the presence
of glycine oxidase, which catalyses the following reaction:

R05861: O2 + D-Alanine + H2O ↔ H2O2 + NH3 + Pyruvate

MCS 10 is not a cut set in the second and third-line models due to the pres-
ence of aminomethyltransferase, which converts gycine to 5,10-MethyleneTHF,
which is further used by glycine hydroxymethyltransferase to synthesise serine:

R01221: THF + Glycine + NAD+ ↔ NH3 + CO2 + 5,10-MethyleneTHF
+ NADH

R00945: 5,10-MethyleneTHF + H2O + Glycine ↔ Serine + THF

In the first-line model of san, this MCS is not a cut set due to the presence
of phosphoserine transaminase (see Figure 8.3).

MCS 12 is not a cut set in the second and third-line models due to the
presence of malate dehydrogenase, which produces oxaloacetate. The latter is
further used by aspartate transaminase to produce aspartate:

R00342: NAD+ + Malate ↔ Oxaloacetate + NADH
R00355: Aspartate + 2-Oxoglutarate ↔ Oxaloacetate + Glutamate

8.3.2 Nucleic acid biosynthesis

The smallest minimal cut sets for RNA and DNA biosynthesis are shown in Ta-
bles 8.3, 8.4 and 8.5. The essential reactions include the phosphate transporter;
apart from the amino acids, phosphate is the only essential substrate for all
models.

A number of MCS listed in these tables are only found in the model of
coh, because of the absence of cytidylate kinase, which catalyses the following
reaction:

R00158: UMP + ATP → ADP + UDP

This enzyme was predicted by RPS-BLAST in the coh annotation for a number
of genes as a suboptimal hit, but with E-values higher than 10−8, so its presence
in the strain coh is under question.

MCS 16 in Table 8.3 is a cut set in the first-line models of sag and sak

because of the absence of phosphoketolase.
MCS 23 in Table 8.4 and MCS 24 in Table 8.5 both contain the reaction

R00945. MCS 23 is found in the second and third-line models because of the
absence of methylenetetrahydrofolate dehydrogenase (NADP+), which catalyses
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1.2.1.12: glyceraldehyde-3-phosphate dehydrogenase (phosphorylating)

NADPH3-Phospho-D-glyceroyl phosphate

NADP+

2.7.2.3: phosphoglycerate kinase

(2R)-2-Hydroxy-3-(phosphonooxy)-propanal Orthophosphate

1.1.1.95: phosphoglycerate dehydrogenase

3-Phosphonooxypyruvate NADH

2.6.1.52: phosphoserine transaminase

3-Phospho-D-glycerate NAD+ATP

ADP

1.4.1.4: glutamate dehydrogenase (NADP+)

NADP+H2O Glutamate

2-OxoglutarateNH3 NADPH

5.3.1.1: triose-phosphate isomerase

Glycerone phosphate

3.1.3.3: phosphoserine phosphatase

SerineOrthophosphate

H2O O-Phospho-L-serine

4.1.2.13: fructose-bisphosphate aldolase

D-Fructose 1,6-bisphosphate

2.7.1.11: 6-phosphofructokinase

ADP

D-Fructose 6-phosphateATP

2.7.1.4: fructokinase

ADP

D-Fructose ATP

Figure 8.3: Serine biosynthesis using phosphoserine transaminase in the 1-st
line model of san.
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Table 8.3: Minimal cut sets of length 1-2 for RNA biosynthesis.

1-st 2-nd 3-rd
Minimal cut sets sag sak san sag sak san coh sag

1
R01066: 2-Deoxy-ribose 5-P ↔

Acetaldehyde + G3P
+

2
R02483: Deoxyuridine + Pi ↔ Uracil +

2-Deoxy-ribose 1-P
+

3 C00009 tx: X Pi ↔ Pi + + + + + + + +

4 R00127: AMP + ATP → 2 ADP + + + + + + + +

5
R02099: Deoxyuridine + ATP → dUMP

+ ADP
+

6 R00004: PPi + H2O → 2 Pi + + + + + + + +

7 R02098: dUMP + ATP → dUDP + ADP +

8
R02749: 2-Deoxy-ribose 1-P ↔

2-Deoxy-ribose 5-P
+

9
R00315: Acetate + ATP ↔

Acetyl phosphate + ADP
R01512: 3PG + ATP ↔ BPG + ADP

+ + + + + + + +

10
R00158: UMP + ATP → ADP + UDP
R02749: 2-Deoxy-ribose 1-P ↔

2-Deoxy-ribose 5-P
+ + + + + + + +

11

R00190: PPi + AMP ↔
5-Phospho-α-ribose 1-diphosphate
+ Adenine

R01135: GTP + Asp + IMP → GDP + Pi
+ N6-(1,2-Dicarboxyethyl)-AMP

+ + + + + + + +

12
C00033 tx: X Acetate ↔ Acetate
R00658: 2PG ↔ H2O + PEP

+ + + + + + + +

13

R02018: dUDP + Oxidized thioredoxin +
H2O ↔ Thioredoxin + UDP

R02023: Oxidized thioredoxin + dUTP +
H2O ↔ Thioredoxin + UTP

+

14
R00332: ATP + GMP → GDP + ADP
R01066: 2-Deoxy-ribose 5-P ↔ G3P +

Acetaldehyde
+ + + + + + + +

15
R00332: ATP + GMP → GDP + ADP
R02749: 2-Deoxy-ribose 1-P ↔

2-Deoxy-ribose 5-P
+ + + + + + + +

16
R00230: Acetyl-CoA + Pi ↔ CoA +

Acetyl phosphate
R00658: 2PG ↔ H2O + PEP

+ +

17
R00158: UMP + ATP → ADP + UDP
R01066: 2-Deoxy-ribose 5-P ↔

Acetaldehyde + G3P
+ + + + + + + +

18
C00122 tx: X Fumarate ↔ Fumarate
C00147 tx: X Adenine ↔ Adenine

+ + + + + + + +

19

R02016: NADP+ + Thioredoxin ↔
NADPH + Oxidized thioredoxin

R02101: 5,10-MethyleneTHF + dUMP →
dTMP + Dihydrofolate

+

20

R00571: NH3 + ATP + UTP ↔ Pi + ADP
+ CTP

R00573: ATP + H2O + UTP + Gln ↔ Pi
+ ADP + CTP + Glu

+ + + + + + + +

21
C00033 tx: X Acetate ↔ Acetate
R01518: 2PG ↔ 3PG

+ + + + + + + +

22
C00033 tx: X Acetate ↔ Acetate
R01512: 3PG + ATP ↔ BPG + ADP

+ + + + + + + +
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Table 8.4: Minimal cut sets of length 1-2 for DNA biosynthesis.

1-st 2-nd 3-rd
Minimal cut sets sag sak san sag sak san coh sag

1
R01066: 2-Deoxy-ribose 5-P ↔

Acetaldehyde + G3P
+

2
R02749: 2-Deoxy-ribose 1-P ↔

2-Deoxy-ribose 5-P
+

3
R02483: Deoxyuridine + Pi ↔ Uracil +

2-Deoxy-ribose 1-P
+

4
R02101: 5,10-MethyleneTHF + dUMP →

dTMP + Dihydrofolate
+ + + + + + + +

5
R02099: Deoxyuridine + ATP → dUMP

+ ADP
+

6 C00009 tx: X Pi ↔ Pi + + + + + + + +

7 R00127: AMP + ATP → 2 ADP + + + + + + + +

8 R00004: PPi + H2O → 2 Pi + + + + + + + +

9 R02098: dUMP + ATP → dUDP + ADP +
10 R02094: dTMP + ATP → ADP + dTDP + + + + + + + +

11 R02093: dTDP + ATP ↔ dTTP + ADP + + + + + + + +

12

R00190: PPi + AMP ↔
5-Phospho-α-ribose 1-diphosphate
+ Adenine

R01135: GTP + Asp + IMP → GDP + Pi
+ N6-(1,2-Dicarboxyethyl)-AMP

+ + + + + + + +

13
C00033 tx: X Acetate ↔ Acetate
R00658: 2PG ↔ H2O + PEP

+ + + + + + + +

14
R00315: Acetate + ATP ↔

Acetyl phosphate + ADP
R01518: 2PG ↔ 3PG

+ + + + + + + +

15

C00122 tx: X Fumarate ↔ Fumarate
R00190: PPi + AMP ↔

5-Phospho-α-ribose 1-diphosphate
+ Adenine

+ + + + + + + +

16

R02018: dUDP + Oxidized thioredoxin +
H2O ↔ Thioredoxin + UDP

R02023: Oxidized thioredoxin + dUTP +
H2O ↔ Thioredoxin + UTP

+

17
R02100: dUTP + H2O → PPi + dUMP
R02483: Deoxyuridine + Pi ↔ Uracil +

2-Deoxy-ribose 1-P
+ + + + + + + +

18
R00158: UMP + ATP → ADP + UDP
R02099: Deoxyuridine + ATP → dUMP

+ ADP
+ + + + + + + +

19

R00937: Dihydrofolate + NADH ↔
NAD+ + THF

R00939: NADPH + Dihydrofolate ↔
NADP+ + THF

+ + + + + + + +

20
R02099: Deoxyuridine + ATP → dUMP

+ ADP
R02100: dUTP + H2O → PPi + dUMP

+ + + + + + + +

21
R00315: Acetate + ATP ↔

Acetyl phosphate + ADP
R00658: 2PG ↔ H2O + PEP

+ + + + + + + +

22
R00158: UMP + ATP → ADP + UDP
R02483: Deoxyuridine + Pi ↔ Uracil +

2-Deoxy-ribose 1-P
+ + + + + + + +

23

R00945: Gly + 5,10-MethyleneTHF +
H2O ↔ Ser + THF

R01221: Gly + THF + NAD+ ↔ NH3

+ CO2 + 5,10-MethyleneTHF +
NADH

+ + + + +
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the reaction R01220, involved in MCS 24. The latter, in turn, is found in
the first-line models because of the absence of aminomethyltransferase, which
catalyses R012201, involved in MCS 23. Interestingly enough, these enzymes
are predicted for different genes, so the discrepancies between the models are
not caused by alternative annotations.

8.3.3 Membrane biosynthesis

The smallest minimal cut sets for membrane biosynthesis are shown in Table 8.6.
The only non-hypothetical essential reaction is R00004, catalysed by inorganic
diphosphatase.

The reaction R00512 is essential in the second and third-line models because
of the absence of 5’-nucleotidase, which catalyses the following reaction:

R00511: CMP + H2O → Cytidine + Orthophosphate

MCS 16 is found in the first-line models of sag and sak because of the
absence of phosphoketolase and in the model of coh because of the absence of
cytidylate kinase.

8.3.4 Cell wall biosynthesis

Since the peptidoglycan synthesis reaction is dead in the first-line models, the
minimal cut sets were only detected in the second and third-line models. The
smallest MCS are shown in Tables 8.7 and 8.8. The only discrepancies are
between the model of coh and the other models; all of them are caused by the
absence of cytidylate kinase in the model of coh.

8.3.5 ATP production

The smallest minimal cut sets for ATP production are shown in the Table 8.9.
No essential reactions were found and only three MCS consist of pairs of reac-
tions, namely (i) phosphoglycerate kinase and acetate kinase, (ii) acetate trans-
porter and phosphoglycerate kinase and (iii) acetate transporter and phospho-
pyruvate hydratase. The only discrepancies between the columns are caused by
the absence of phosphoketolase in the first-line models of sag and san.

8.4 Discussion

The framework of essentiality analysis presented in this section is based on the
assumption that the survival and growth of an organism depend on its ability
to carry out certain metabolic processes, which can be represented in a model
by a relatively small group of target reactions. Hence, essentiality analysis
is a hypothesis-driven and reductionist method, since the target reactions are
selected or defined by the investigator and they by far do not cover all the
essential functions of a cell. However, the production of biomass and energy
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Table 8.5: Minimal cut sets of length 1-2 for DNA biosynthesis (continued).

1-st 2-nd 3-rd
Minimal cut sets sag sak san sag sak san coh sag

24

R00945: 5,10-MethyleneTHF + H2O +
Gly ↔ Ser + THF

R01220: NADP+ + 5,10-MethyleneTHF
↔ NADPH +
5,10-MethenylTHF

+ + +

25
R00332: ATP + GMP → GDP + ADP
R02090: dGMP + ATP → ADP + dGDP

+ + + + + + + +

26
R00332: ATP + GMP → GDP + ADP
R01066: 2-Deoxy-ribose 5-P ↔ G3P +

Acetaldehyde
+ + + + + + + +

27
C00122 tx: X Fumarate ↔ Fumarate
C00147 tx: X Adenine ↔ Adenine

+ + + + + + + +

28

R02014: H2O + Oxidized thioredoxin +
dATP ↔ Thioredoxin + ATP

R02017: Oxidized thioredoxin + H2O +
dADP ↔ Thioredoxin + ADP

+ + + + + + + +

29

R01066: 2-Deoxy-ribose 5-P ↔ G3P +
Acetaldehyde

R02016: NADP+ + Thioredoxin ↔
NADPH + Oxidized thioredoxin

+ + + + + + + +

30
R00332: ATP + GMP → GDP + ADP
R01967: Deoxyguanosine + ATP →

dGMP + ADP
+ + + + + + + +

31

R00571: NH3 + ATP + UTP ↔ Pi + ADP
+ CTP

R00573: ATP + H2O + UTP + Gln ↔ Pi
+ ADP + CTP + Glu

+ + + + + + + +

32

R02022: dCTP + Oxidized thioredoxin +
H2O ↔ CTP + Thioredoxin

R02024: Oxidized thioredoxin + dCDP +
H2O ↔ Thioredoxin + CDP

+ + + + + + + +

33
C00033 tx: X Acetate ↔ Acetate
R01518: 2PG ↔ 3PG

+ + + + + + + +

34
R00332: ATP + GMP → GDP + ADP
R01969: Deoxyguanosine + Pi ↔

2-Deoxy-ribose 1-P + Guanine
+ + + + + + + +

35

R02016: NADP+ + Thioredoxin ↔
NADPH + Oxidized thioredoxin

R02749: 2-Deoxy-ribose 1-P ↔
2-Deoxy-ribose 5-P

+ + + + + + + +
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Table 8.6: Minimal cut sets of length 1-2 for membrane biosynthesis.

1-st 2-nd 3-rd
Minimal cut sets sag sak san sag sak san coh sag

1 syn PHOSPHATIDATE + + + + + + + +

2 R00004: PPi + H2O → 2 Pi + + + + + + + +

3 syn CDP DIACYLGLYCEROL + + + + + + + +

4
R00742: Acetyl-CoA + HCO−

3 + ATP →
Malonyl-CoA + Pi + ADP

+ + + + + + + +

5 syn CARDIOLIPIN + + + + + + + +

6 syn PHOSPHATIDYL SERINE + + + + + + + +
7 C00009 tx: X Pi ↔ Pi + + + + + + + +

8 R00512: CMP + ATP → ADP + CDP + + + + +

9 Carboxyanhydrase: HCO−
3 ↔ CO2 + H2O + + + + + + + +

10 syn FATTY ACID + + + + + + + +
11 syn PHOSPHATIDYL GLYCEROL + + + + + + + +

12 syn PHOSPHATIDYL ETHANOLAMINE + + + + + + + +

13
R00315: Acetate + ATP ↔

Acetyl phosphate + ADP
R01512: 3PG + ATP ↔ BPG + ADP

+ + + + + + + +

14
R00315: Acetate + ATP ↔

Acetyl phosphate + ADP
R00658: 2PG ↔ H2O + PEP

+ + + + + + + +

15
C00033 tx: X Acetate ↔ Acetate
R01518: 2PG ↔ 3PG

+ + + + + + + +

16
R00230: Acetyl-CoA + Pi ↔ CoA +

Acetyl phosphate
R00658: 2PG ↔ H2O + PEP

+ + +

17
R00512: CMP + ATP → ADP + CDP
R01878: Cytidine + H2O → NH3 +

Uridine
+ + + + + + + +

18
C00033 tx: X Acetate ↔ Acetate
R00658: 2PG ↔ H2O + PEP

+ + + + + + + +
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Table 8.7: Essential reactions for peptidoglycan biosynthesis.

2-nd 3-rd
Minimal cut sets sag sak san coh sag

1
R05030: NH3 + C05893 + ATP → Pi +

ADP + C05894
+ + + + +

2
R01066: 2-Deoxy-ribose 5-P ↔

Acetaldehyde + G3P
+

3
R04573: Alanyl-Ala + C05892 + ATP →

Pi + ADP + C04702
+ + + + +

4
R03193: UDP-N-acetylmuramate + Ala

+ ATP → Pi + ADP +
UDP-N-acetylmuramoyl-alanine

+ + + + +

5
R00742: Acetyl-CoA + ATP + HCO−

3 →
Malonyl-CoA + Pi + ADP

+ + + + +

6
R00660: UDP-N-acetyl-glucosamine +

PEP ↔ C04631 + Pi
+ + + + +

7
R00768: F6P + Gln ↔ Glucosamine 6-P

+ Glu
+ + + + +

8 R00260: Glu ↔ Glu + + + + +

9 Carboxyanhydrase: HCO−
3 ↔ CO2 + H2O + + + + +

10 syn UDC P + + + + +

11 syn FATTY ACID + + + + +

12
R02483: Deoxyuridine + Pi ↔ Uracil +

2-Deoxy-ribose 1-P
+

13 C00047 tx: X Lys ↔ Lys + + + + +

14
R01150: 2 Ala + ATP → Pi + Alanyl-Ala

+ ADP
+ + + + +

15
R02783: Glu +

UDP-N-acetylmuramoyl-alanine
+ ATP → C00692 + Pi + ADP

+ + + + +

16
R02060: α-Glucosamine 1-P ↔

Glucosamine 6-P
+ + + + +

17
R02786: C00692 + Lys + ATP ↔ Pi +

ADP + C05892
+ + + + +

18 C00009 tx: X Pi ↔ Pi + + + + +

19
R00966: PPi + UMP ↔ Uracil +

5-Phospho-α-ribose 1-diphosphate
+

20
R05629: Undecaprenyl phosphate +

C04702 ↔ C04851 + UMP
+ + + + +

21 R00127: AMP + ATP → 2 ADP +

22
R06173: UDP-N-acetyl-glucosamine +

C04851 ↔ C05893 + UDP
+ + + + +

23
R05332: Acetyl-CoA +

α-Glucosamine 1-P ↔ CoA
+ N-Acetyl-glucosamine 1-P

+ + + + +

24 R00004: PPi + H2O → 2 Pi + + + + +
25 R02098: dUMP + ATP → dUDP + ADP +

26

R00415: N-Acetyl-glucosamine 1-P
+ UTP ↔
UDP-N-acetyl-glucosamine
+ PPi

+ + + + +

27
R02099: Deoxyuridine + ATP → dUMP

+ ADP
+

28
R02749: 2-Deoxy-ribose 1-P ↔

2-Deoxy-ribose 5-P
+
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Table 8.8: Minimal cut sets of length 2 for peptidoglycan biosynthesis.

2-nd 3-rd
Minimal cut sets sag sak san coh sag

29
R00315: Acetate + ATP ↔

Acetyl phosphate + ADP
R01512: 3PG + ATP ↔ BPG + ADP

+ + + + +

30
R00158: UMP + ATP → ADP + UDP
R02749: 2-Deoxy-ribose 1-P ↔

2-Deoxy-ribose 5-P
+ + + + +

31
R02018: dUDP + Oxidized thioredoxin +

H2O ↔ Thioredoxin + UDP
R02331: dUDP + ATP ↔ ADP + dUTP

+

32
C01401 tx: X Ala ↔ Ala
R05861: O2 + Ala + H2O ↔ H2O2 + NH3

+ Pyr
+ + + + +

33
R00158: UMP + ATP → ADP + UDP
R01066: 2-Deoxy-ribose 5-P ↔

Acetaldehyde + G3P
+ + + + +

34

R03191: NAD+ +
UDP-N-acetylmuramate ↔
C04631 + NADH

R03192: NADP+ +
UDP-N-acetylmuramate ↔
NADPH + C04631

+ + + + +

35
R00158: UMP + ATP → ADP + UDP
R02483: Deoxyuridine + Pi ↔ Uracil +

2-Deoxy-ribose 1-P
+ + + + +

36
R02016: NADP+ + Thioredoxin ↔

NADPH + Oxidized thioredoxin
syn DNA

+

37
C00302 tx: X Glu ↔ Glu
C00303 tx: X Gln ↔ Gln

+ + + + +
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Table 8.9: Minimal cut sets of length 2-4 for ATP production.

1-st 2-nd 3-rd
Minimal cut sets sag sak san sag sak san coh sag

1
R00315: Acetate + ATP ↔

Acetyl phosphate + ADP
R01512: 3PG + ATP ↔ BPG + ADP

+ + + + + + + +

2
C00033 tx: X Acetate ↔ Acetate
R00658: 2PG ↔ H2O + PEP

+ + + + + + + +

3
C00033 tx: X Acetate ↔ Acetate
R01512: 3PG + ATP ↔ BPG + ADP

+ + + + + + + +

4

R00315: Acetate + ATP ↔
Acetyl phosphate + ADP

R01015: G3P ↔ Glycerone phosphate
R01529: Ribulose 5-P ↔ Xylulose 5-P

+ + + + + + + +

5

R00230: Acetyl-CoA + Pi ↔ CoA +
Acetyl phosphate

R01061: Pi + NAD+ + G3P ↔ NADH +
BPG

R01063: NADP+ + G3P + Pi ↔ NADPH
+ BPG

+ +

6
C00033 tx: X Acetate ↔ Acetate
R01015: G3P ↔ Glycerone phosphate
R01529: Ribulose 5-P ↔ Xylulose 5-P

+ + + + + + + +

7
C00033 tx: X Acetate ↔ Acetate
R01015: G3P ↔ Glycerone phosphate
R01056: Ribose 5-P ↔ Ribulose 5-P

+ + + + + + + +

8

R00315: Acetate + ATP ↔
Acetyl phosphate + ADP

R01015: G3P ↔ Glycerone phosphate
R01056: Ribose 5-P ↔ Ribulose 5-P

+ + + + + + + +

9

C00033 tx: X Acetate ↔ Acetate
R01061: Pi + NAD+ + G3P ↔ NADH +

BPG
R01063: NADP+ + G3P + Pi ↔ NADPH

+ BPG

+ + + + + + + +

10

C01401 tx: X Ala ↔ Ala
R00220: Ser ↔ NH3 + Pyr
R00658: 2PG ↔ H2O + PEP
R00704: NAD+ + Lactate ↔ NADH +

Pyr

+ +

11

R00230: Acetyl-CoA + Pi ↔ CoA +
Acetyl phosphate

R01058: NADP+ + G3P + H2O →
NADPH + 3PG

R01061: Pi + NAD+ + G3P ↔ NADH +
BPG

R01063: NADP+ + G3P + Pi ↔ NADPH
+ BPG

+ + + + + + +

12

C00011 tx: X CO2 ↔ CO2

C00058 tx: X Formate ↔ Formate
R01061: Pi + NAD+ + G3P ↔ NADH +

BPG
R01063: NADP+ + G3P + Pi ↔ NADPH

+ BPG

+ +
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can be safely assumed to be vital in most of the microorganisms. Therefore,
the method is reliable and universal enough to be applicable to a wide range of
genome-scale metabolic reconstructions.

Algorithm 10 has some important differences from the original algorithm
for the detection of minimal cut sets [55]. Firstly, the resulting set of MCS
is incomplete, since only disjoint MCS are detected. Further, although the
reactions are ordered by correlation coefficients with the target, the result may
depend on the initial order of reactions and the low-level implementation of
the sorting function used, since some reactions may have equal coefficients. On
the other hand, the algorithm is highly computationally efficient, since it does
not involve a calculation of elementary modes. Finally, due to the ordering of
reactions, the algorithm favours the smaller minimal cut sets.

Small minimal cut sets (involving two or three reactions or corresponding
enzymes) have a great practical significance as potential drug targets. Apart
from the rarity of single essential reactions, such cut sets are advantageous due
to the fact that it is almost impossible for an organism to develop resistance
to multiple enzymes simultaneously. Hence, the detection of minimal cut sets
promises to be a productive method of rational drug design.
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Chapter 9

General Discussion

Although the ultimate objective of the present work was to create and analyse a
genome-scale metabolic reconstruction of Streptococcus agalactiae, considerable
efforts were made to develop methods enabling the achievement of this objec-
tive. The original methods introduced in the scope of the work include quan-
titative evaluation of model quality, optimised genome annotation, detection of
stoichiometric inconsistencies, calculation of elementary substrate and product
compositions and detection of non-overlapping minimal cut sets. These meth-
ods are intended to be widely applicable to computational analysis of metabolic
networks in general; their practical and theoretical implications are discussed in
the final sections of the corresponding chapters. In this chapter, we summarise
and discuss the results of reconstruction and analysis of the modelled organism.
Further, we give an outlook of the possible future directions.

9.1 Modelling results

Genome-scale metabolic models of four strains of Streptococcus agalactiae were
constructed. The primary input data were obtained from two alternative sources:
publicly available annotations from the KEGG database and de novo annota-
tions generated using the tools RPS-BLAST and PRIAM. These data were used
to construct two alternative lines of models for each strain (except for coh, for
which no KEGG annotation is available).

A range of curation techniques were developed and applied to the input data.
In particular, standardised identifiers were used to avoid name conflicts between
metabolites defined on different semantic levels, such as glucose and α-D-glucose.
Isostoichiometric reactions, those involving polymers or generic metabolites and
those violating the balance of atomic species other than hydrogen were excluded
from the input. Irreversible reactions were defined manually, based on a litera-
ture search. A number of hypothetical reactions were included into the models,
such as transporters, generic ATPase, NADH and NADPH oxidases and reac-
tions representing the synthesis of major biomass components, namely protein,
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RNA, DNA, membrane and peptidoglycan. Hence, the resulting models repre-
sented small molecule metabolism, were atomically balanced (except for hydro-
gen), purified of redundancies and ambiguities, included some thermodynamic
constraints and covered the processes of substrate uptake, growth and energy
production.

Indicators of model quality were introduced, based on consistency with fun-
damental physical and biological constraints, such as mass conservation, network
connectedness and ability to achieve a steady state. As a result of applying
these indicators, the second-line models were reduced to the threshold E-value
of 10−13, which appeared to be an optimal tradeoff between the coverage and
the quality of the models (see Table 5.4 and 5.5).

The proton was found to be the only unconserved metabolite in all models;
after its removal, the models became stoichiometrically consistent. Although
the removal of the proton increases the percentage of unbalanced reactions and
may possibly result in violations of redox balance, these did not appear to affect
any of the further analysis results. Algorithm 6 was used to block all internal
cycles involving ATPase, thus enabling the calculation of energetic efficiency of
catabolic pathways. The values of quality indicators depending on the steady-
state constraint remained relatively low (see Table 5.6) and required a further
improvement.

Several reannotations were made in the second-line models using two al-
ternative approaches: (i) manual inspection of the ‘failed’ pathways and (ii)
search-space reduction followed by stochastic optimisation (namely simulated
annealing). The former approach enabled restoring the peptidoglycan biosyn-
thesis pathway by means of two reannotations. The repeated application of
the simulated annealing algorithm resulted in the detection of five consensus
enzymes, two out of which were thereafter assigned to certain genes and a fur-
ther two were included as orphan enzymes. Thus an optimised third-line model
of sag was constructed. The biological significance of two consensus enzymes,
namely 6-phospho-beta-galactosidase and 1-pyrroline-5-carboxylate dehydroge-
nase was revealed by the further analysis.

Functional analysis was used to identify the possible fermentation substrates,
and minimal compositions of fermentation products and of amino acids. The
ability to ferment lactose was found in some of the models depending on the
inclusion of 6-phospho-beta-galactosidase. We are not aware whether the ex-
perimentally confirmed ability of the organism to ferment lactose after multiple
passages in a lactose-rich substrate [46] is due to a spontaneous mutation or
increased expression of an enzyme. A similar process has been observed in
E.coli, where a beta-galactosidase activity was restored after the deletion of the
lacZ gene due to a sequence of mutations in other genes [3]. Hence, the opti-
mised model represents an over-adapted state of the organism, which may be
different from its known physiology in vitro but predicts the highly probable
mutations or over-expressions, which may arise, in particular, during a disease.
This agrees with the clinical observations confirming the role of breast milk in
the late-onset infection [30, 123, 60]. The fact that in the KEGG annotations,
6-phospho-beta-galactosidase is predicted only for san and not for sag and sak
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could be a possible explanation of the role of serotype III (which includes san)
in the epidemiology of the late-onset disease. However, the difference in the
ability of the strains to grow in milk should be confirmed experimentally.

The analysis of minimal compositions of fermentation products revealed
some pathways which strongly diverge from the typical glycolytical routes. In
particular, an elementary mode converting one mole of glucose into three moles
of acetate was found (see Figure 7.5), which involves a number of enzymes typ-
ically involved in the pentose-phosphate pathway and photosynthesis. Further,
fermentation pathways yielding three moles of ATP per one mole of glucose
in anaerobic conditions were detected (see Figure 7.6). The fact that these
conversions have (to our knowledge) not been observed experimentally may be
possibly explained by the lack of thermodynamic gradient and the high numbers
of enzymes involved, which increases the expression costs (so that it cannot be
compensated even by the extra molecule of ATP).

Although the oxidative phosphorylation pathway was not explicitly included
into the models, the inclusion of oxygen into the NADH and NADPH oxidase re-
actions (see Equation 7.25) enabled the coverage of the respiration process. The
analysis of minimal compositions of fermentation products in aerobic conditions
revealed two important differences from anaerobic conditions: (i) decoupling of
acetate, ethanol and formate due to the availability of NADP+ and (ii) increase
of the maximal yield of ATP per mole of glucose to four moles. However, a
maximal yield of five moles in aerobic conditions has been observed experimen-
tally [71].

The predictions of essential amino acids (see Table 7.7) demonstrated a good
agreement with experimental results. Only two predictions were not confirmed
by any of the available experimental data: Firstly, proline was found to be es-
sential in the first and second-line models, but the prototrophy for proline was
restored in the third-line model by including 1-pyrroline-5-carboxylate dehydro-
genase. Secondly, phenylalanine was found to be non-essential in the second
and third-line models. Interestingly enough, these models could be made aux-
otrophic for phenylalanine by reducing the threshold E-value to 10−15. How-
ever, in terms of essentiality analysis and drug target prediction, it is safer to
overestimate rather than to underestimate the metabolic capabilities of an or-
ganism. On the other hand, the auxotrophy for phenylalanine in vivo could be
also caused by thermodynamic or regulatory constraints not included into the
models.

Essentiality analysis was performed using biosynthesis reactions and ATPase
as targets. The results presented in Chapter 8 suggest a number of essential
reactions and small minimal cut sets which can be screened as potential drug
targets. In general, DNA and cell wall synthesis appear to be the most vulnera-
ble target functions (see Table 8.1), whereas ATP production is extremely robust
(no essential reactions and only three cut sets of length two were detected).

No separate chapter was dedicated to the comparative analysis of the models
and strains, but the results described in Chapter 7 and 8 elucidate some im-
portant differences, which can be attributed to the variations in the presence of
relatively few enzymes, summarised in Table 9.1. Note that this is only a small
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Table 9.1: Variations in the presence of enzymes in the models, which affect the
results of functional and essentiality analysis.

1-st 2-nd 3-rd
EC name sag sak san sag sak san coh sag

3.1.3.5 5’-nucleotidase + + +
3.2.1.85 6-phospho-beta-galactosidase + + +
1.1.1.5 acetoin dehydrogenase + + + + + +
2.1.2.10 aminomethyltransferase + + + + +
2.7.4.14 cytidylate kinase + + + + + + +
3.1.3.11 fructose-bisphosphatase + + +
4.1.2.9 phosphoketolase + + + + + +
1.5.1.12 1-pyrroline-5-carboxylate dehydrogenase +

part of all the enzymes which are present in some of the models and absent in
the others. Hence, the results of functional and essentiality analysis are much
more sensitive in terms of detecting the crucial differences between the models
than a simple comparison of enzyme sets.

The inspection of Table 9.1 and of the distance trees shown in Table 7.9a
and 8.2 leads to one of the principal conclusions of the whole work: the models
of different strains constructed using the same methods are more similar than
the models of the same strains constructed using different methods. Hence,
the analysis results of metabolic reconstructions strongly depend on the sources
of input data and the differences in the behaviour of the models are largely
attributable to artefacts. On the other hand, Table 7.9b demonstrates that the
accuracy of computational predictions is comparable with that of experimental
results. This observation confirms the informativeness and reliability of genome-
scale metabolic reconstructions.

9.2 Future developments

A better quality of the metabolic reconstructions could be achieved by the in-
clusion of some additional data, which are not currently available. A precise
definition of the biomass composition (including cofactors and ions) would en-
able the prediction of minimal media using the methods described in Chapter 7.
The inclusion of the oxidative phosphorylation pathway would help to elucidate
the behaviour of the organism in aerobic conditions, such as neonatal lung. The
definition of transporters based on experimental data rather than hypotheses
would strongly increase the reliability of all flux-balance analysis results.

The group contribution method [68, 45] calculates the free energy changes
in reactions based on the analysis of the molecular structures of the reactants.
Unfortunately, the results derived using this method were not included into
the models because of the lack of time. In the future, these results can be
used to define the feasible reaction directions more precisely. Moreover, the
free energy changes in net conversions can be calculated and used as important
characteristics of flux modes.
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The following developments can possibly improve the results of optimised
genome annotation: Firstly, Figure 6.3 indicates the possibility of a further
movement of the systems towards the global optimum, which can be achieved
by changing the annealing parameters, e.g. by extending the temperature range.
Secondly, it may be possible to obtain better results by using other methods of
stochastic optimisation, such as genetic algorithms. Further, the adaptation of
the organism in extreme conditions can be simulated using alternative objec-
tive functions based on biological assumptions, e.g. minimisation of nutritional
requirements. Finally, instead of hypothetical assumptions, the objective func-
tion can evaluate the consistency of a model with experimental results, e.g. by
comparing the correlation of reactions in a model with the coexpression of the
genes in a microarray.

Experimental validation would immensely increase the value of the results
presented in the thesis. This should include, in particular, the verification of
the reannotations and essentiality predictions by means of gene knockout ex-
periments. The minimal substrate and product compositions can be tested by
metabolomic methods.

The results of essentiality analysis include hundreds of small minimal cut
sets, which should undergo a computational screening before being proposed to
cheminformaticians and experimentalists. The enzymes with a high similarity
to human proteins should be detected by sequence analysis and excluded from
the list of drug target candidates. Similarly, a comparison with the sequences of
other bacteria of the normal microflora would help to develop narrow-spectrum
antibiotics. The essential enzymes already known as drug targets would be of
particular interest, since the corresponding drugs can be possibly used as al-
ternative methods of chemotherapy. The ability of the organism to develop
resistance against the deletion of the given cut sets can be tested by means
of stochastic optimisation, namely by simulating the mutations restoring the
blocked functions. The cut sets with the highest ‘resistance cost’ (measured
as the number of iterations required for developing resistance) could be con-
sidered as potential targets for highly effective drugs. The author hopes that
the methods and results presented in the thesis will attract the interest of the
pharmaceutical community.
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[111] S. Schuster and T. Höfer. Determining all extreme semi-positive conser-
vation relations in chemical reaction systems: a test criterion for conser-
vativity. J.Chem.Soc.Faraday Trans., 87:2561–2566, 1991.

[112] S. Schuster, S. Klamt, W. Weckwerth, M. Moldenhauer, and T. Pfeiffer.
Use of network analysis of metabolic systems in bioengineering. Bioprocess
Biosys. Eng., 24:363–373, 2002.

[113] S. Schuster and R. Schuster. Detecting strictly detailed balanced sub-
networks in open chemical-reaction networks. J.Math.Chem., 6(1):17–40,
1991.

[114] R. Schwarz, P. Musch, A. von Kamp, B. Engels, H. Schirmer, S. Schuster,
and T. Dandekar. YANA - a software tool for analyzing flux modes,
gene-expression and enzyme activities. BMC Bioinformatics, 6:135, 2005.

[115] H. Tettelin, V. Masignani, M. Cieslewicz, C. Donati, D. Medini, N. Ward,
S. Angiuoli, J. Crabtree, A. Jones, A. Durkin, R. Deboy, T. Davidsen,
M. Mora, M. Scarselli, I. Margarit y Ros, J. Peterson, C. Hauser, J. Sun-
daram, W. Nelson, R. Madupu, L. Brinkac, R. Dodson, M. Rosovitz,
S. Sullivan, S. Daugherty, D. Haft, J. Selengut, M. Gwinn, L. Zhou,
N. Zafar, H. Khouri, D. Radune, G. Dimitrov, K. Watkins, K. O’Connor,
S. Smith, T. Utterback, O. Whitem, C. Rubens, G. Grandi, L. Madoff,
D. Kasper, J. Telford, M. Wessels, R. Rappuoli, and C. Fraser. Genome
analysis of multiple pathogenic isolates of Streptococcus agalactiae: im-
plications for the microbial ”pan-genome”. Proc Natl Acad Sci U S A.,
102(39):13950–5, 2005.

[116] A. B. Tucker and R. E. Noonan. Programming Languages. Principles and
Paradigms. McGraw-Hill, 2007.

[117] R. Urbanczik. SNA–a toolbox for the stoichiometric analysis of metabolic
networks. BMC Bioinformatics., 7(129), 2006.

[118] R. Urbanczik and C. Wagner. Functional stoichiometric analysis of
metabolic networks. Bioinformatics., 21(22):4176–80, Nov. 2005.

[119] L. Vaserstein. Introduction to Linear Programming. Pearson Education,
Inc., New Jersey, US, 2003.

[120] W. Vollmer, D. Blanot, and M. de Pedro. Peptidoglycan structure and
architecture. FEMS Microbiol Rev., 32(2):149–67., 2008.

185



[121] K. Voss, M. Heiner, and I. Koch. Steady state analysis of metabolic
pathways using Petri nets. In Silico Biol., 3(3):367–87, 2003.

[122] A. Wagner and D. Fell. The small world inside large metabolic networks.
Proc. Roy. Soc. London B, 268:1803–1810, 2001.

[123] L. Wang, C. Chen, W. Liu, and Y. Wang. Recurrent neonatal group B
streptococcal disease associated with infected breast milk. Clin Pediatr
(Phila)., 46(6):547–9, 2007.

[124] D. Whitley. A genetic algorithm tutorial. Technical report, Colorado State
University, 1993.

[125] N. Willett and G. Morse. Long-chain fatty acid inhibition of growth of
Streptococcus agalactiae in a chemically defined medium. J Bacteriol.,
91(2245-50):6, 1966.

[126] Y. Yamamoto, C. Poyart, P. Trieu-Cuot, G. Lamberet, A. Gruss, and
P. Gaudu. Respiration metabolism of Group B Streptococcus is activated
by environmental haem and quinone and contributes to virulence. Mol
Microbiol., 56(2):525–34, 2005.

[127] I. Yeh, T. Hanekamp, S. Tsoka, P. Karp, and R. Altman. Computational
analysis of Plasmodium falciparum metabolism: organizing genomic in-
formation to facilitate drug discovery. Genome Res., 14(5):917–24, 2004.

[128] I. Zevedei-Oancea and S. Schuster. Topological analysis of metabolic net-
works based on Petri net theory. In Silico Biol., 3(3):323–45, 2003.

186



Appendix A

Published material

187


