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Abstract

A minimal structural model encompassing the flow of carbon through the cen-

tral metabolism of Saccharopolyspora erythraea was built and used to assess the

application of hierarchical clustering techniques for the grouping and, subsequent

interpretation of elementary modes. The results indicate that clustering techniques

may prove to be a valuable tool for the functional characterisation and grouping

of the potentially large datasets yielded by elementary modes analysis, whether

clustered by their reaction usage or net stoichiometry. In another study, clustering

methods were also used for the reconstruction of phylogenetic trees based on the

enzyme complement of 369 prokaryotes. A comparison of the resulting phyloge-

netic trees with 16S rRNA-based trees indicated some interesting phenotypic and

taxonomic discrepancies. The availability of more reliable database information

will help elucidate the positions of both the anomalous and well-defined organ-

isms in the enzyme-based trees. Genome-scale metabolic networks created in such

an automated manner are far from being complete and require verification and

refinement before they are suitable for modelling purposes. An investigation was

carried out as part of a group effort to address the problems encountered therein,

and to identify potential steps that can be taken to improve the quality of the

model in order to generate more reliable phenotypic predictions. Taken together,

the investigations reported here indicate that co-ordinated research efforts at the

systems-level may need to be reevaluated in order to increase the potential knowl-

edge that can be gained from building and interpreting genome-scale models of

metabolism.
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CHAPTER 1

Metabolic Modelling

1.1 Introduction

Mathematical modelling is an important research area in biology and the rela-

tively newer field of bioinformatics1. The representation of a metabolic network in

a mathematical form is called a metabolic model. Once built, such a model can

be analysed to characterise the properties of the system as a whole or for com-

puting the theoretical limits of the systems capabilities. Furthermore, metabolic

modelling techniques can be utilised for hypothesis generating and testing, driv-

ing both in silico and in vivo experimentation. The two most commonly used

approaches to metabolic modelling are kinetic and structural modelling:

• Kinetic modelling

Represents a quantitative approach to metabolic modelling. Such a model

can be used to describe the time-dependent changes of the variables of the

system (e.g. metabolite concentrations, reaction rates) when the experimen-

tal system is perturbed [1]. Therefore, along with reaction stoichiometries,

further information is also required as to the kinetic parameters (e.g. Km

and Vmax) for each enzymatic reaction. Kinetic modelling is the method of

choice for small hand-built models in which kinetic parameters have been, or

are, possible to quantify. However, it is practically impossible to build a ki-

netic model for genome-scale2 models since the availability of specific enzyme

reaction rates is one of the major limiting factors. Additionally, due to model

size, the ensuing analysis becomes computationally intensive and, without

the necessary theoretical and computational tools, the results obtained from

the analysis will be difficult to interpret. A number of kinetic models for

various metabolic systems as well as for membrane transport processes have

been investigated [1] (see Section 1.4 for an example).

1 the collection, organisation and analysis of large amounts of biological data, using networks of
computers and databases.

2 in this context, all of the metabolic reactions that could be determined to take place in an
organism based on genome annotation and biochemical literature.
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Chapter 1 1.2. Data requirements

• Structural modelling

Whereas the aim of kinetic modelling is to predict the system properties on

the basis of the knowledge of the network topology3 and the kinetic parame-

ters of enzymes, structural modelling only requires the former information as

input data. Analysis of the structure of the network requires mainly reaction

stoichiometries, which are often well-known. This implies that for the most

part structural models are reconstructed based on the biochemical reactions

assumed to be present within the network. The exclusion of kinetic data

restricts structural models in terms of the level of predictions that can be

made for a given system. Nevertheless, this is in some ways compensated by

the ability to build larger structural models from which useful conclusions

can be drawn regarding the invariant properties of the network.

The investigations described in this dissertation have solely employed structural

modelling techniques, owing to their simplicity and scope of use for larger genome-

scale models.

1.2 Data requirements

A structural metabolic model typically consists of a list of biochemical reactions

and their associated metabolites. In order to reflect the characteristics of the

system under interrogation certain rules apply when defining these entities for

modelling purposes [2].

1.2.1 Metabolites

When carrying out any modelling investigation two types of metabolite4 may be

defined; external and internal. Those metabolites that flow across the system

boundary and are made available to the system as buffers are termed external

metabolites. Externality is determined by:

• source or sink metabolites which are consumed (e.g. glucose) and/or pro-

duced (e.g. ethanol) by the system to mimic media conditions.

• metabolites that are likely to be in constant exchange with the extracellular

environment in living cells (e.g. water, oxygen and carbon dioxide).

3 the most basic feature of any network used to describe the pattern of interactions between its
components.

4 a substance which participates in a biochemical reaction and represent the intermediates and
products of metabolism.
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Chapter 1 1.3. Data resources

Internal metabolites are defined within the model as those which are likely to

be generated and utilised as part of the intracellular metabolism of the system.

In some cases, the decision to make a particular metabolite internal or external

depends more on the modelling investigation than the ability to reflect the genuine

properties of the system. For example, external definitions may be expanded to

include:

• metabolites that are highly connected (i.e. used by many reactions) within

the model definition (e.g. ATP/ADP and NADP+/NADPH). Depending on

the modelling objectives these ‘hub’ metabolites [3] may be made external

to reduce the connectivity within the model and, as discussed later (Section

1.6.3.1) to reduce the computational issues that arise during the analysis of

the model [4, 5].

• polymeric metabolites (e.g. starch and DNA) since the reaction stoichiome-

try does not imply the net amount of monomers incorporated into the poly-

mer.

1.2.2 Reactions

A biochemical reaction can be defined as a process in which one or more reac-

tants interact and produce one or more products, usually catalysed by an enzyme.

Reactions that can proceed without the need for an enzyme are termed sponta-

neous. Transport reactions are those reactions that bring about for the movement

of metabolites between cellular compartments and are not necessarily mediated by

enzymic conversions or facilitated diffusion (i.e. can also occur by concentration

gradients).

The reaction data for metabolic modelling includes a reaction equation, its cor-

responding directionality (i.e. reading the reaction from left to right or vice versa)

and reversibility criteria (i.e. whether the reaction can be catalysed in both direc-

tions or not). Additional information regarding the cellular compartmentation of

the system metabolites is also essential. Integration of this information into the

model definition will allow the system to reflect in vivo conditions as accurately

as possible.

1.3 Data resources

The reductionist approach to biology, which over the years has generated informa-

tion about individual cellular components and their functions, is now being accel-

3
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erated by the emergence of genomics5. The advent of comprehensive measurement

technologies yield large-scale datasets on many cellular components and their in-

teractions [6]. As a consequence, there has been a vast expansion in academic

(e.g. European Bioinformatics Institute† and National Center for Biotechnology

Information†; note that † superscript will be used throughout the thesis to direct

the reader to the List of URLs section) and commercial (e.g. Celera genomics†)

organisations which provide the bioinformatics infrastructure necessary to tabu-

late, curate, and retrieve the required data [7]. Visualisation tools and statistical

analysis methods for data analysis are also becoming available within these frame-

works.

Large-scale sequencing projects have not only provided complete sequence in-

formation for a number of genomes, but also allowed the development of inte-

grated pathway-genome online databases that provide organism-specific connec-

tivity maps of metabolic and, to a lesser extent, other cellular networks (see Path-

way Resource List†). Several databases are available to reconstruct a metabolic

network from genome information (Section 4.2), these may be of two types:

• General-purpose

The KEGG† [8], MetaCyc† [9] and Reactome† [10] databases are the most

popular in this category and contain sequence data for a large spectrum of

organisms. A variety of additional information on genes, enzymes, proteins,

and ligands is also included.

• Organism-specific

Include the EcoCyc† [11] and Saccharomyces Genome Database† [12] for

Escherichia coli and yeast, respectively. Databases of this type are used to

provide a user-friendly interface for the access and inspection of the metabolic

characteristics (i.e. experimental and sequence data) of a single genome.

Additional organism-specific information such as viability of mutants and

availability of clones may also be available.

While the recent dramatic increase in the number of pathway databases is

beneficial for biologists, it also presents several important challenges. Existing

databases are very heterogeneous; data can be incomplete, inconsistent or approx-

imate (i.e. annotating by homology as opposed to experimentally). This multiplic-

ity of information sources can be overwhelming for researchers who simply wish

to find information about genes or pathways of interest in a standardised fashion.

During the course of this project it has become apparent that database-derived

information has many discrepancies when used to create large metabolic models

(Section 4.5).

5 the study of an organism’s entire genome.
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Chapter 1 1.4. Hand built vs. genome scale models

1.4 Hand built vs. genome scale models

Hand-built metabolic models are very useful for studying small structural net-

works (e.g. glycolysis) or for kinetic investigations where reaction parameters are

also essential. Models built in this manner tend to be a very precise reflection

of the system under study since the size of the system permits the individual er-

ror screening of all the reactions before and after their inclusion in the model.

The first whole-cell model was developed in the late 1980’s for the human red

blood cell (RBC) in order to simulate its kinetic behaviour [13]. The small RBC

metabolic network consists of four well-documented pathways (i.e. glycolysis, the

pentose pathway, adenosine nucleotide metabolism, and the Rapoport-Luebering

shunt). The model has continually been updated [14, 15, 16] and has, for example,

been investigated to simulate common RBC pathologies stemming from hereditary

glucose-6-phosphate dehydrogenase deficiency [17].

The increasingly thorough genome-sequencing and annotation efforts currently

being undertaken permit the reconstruction of organism-specific biochemical net-

works of metabolism. When building models of this size (i.e. typically in excess

of 250 reactions) the precision attributed to small hand-built models is in some

ways compensated for by the ability to investigate a substantial fraction of the re-

actome6 of the organism. To date, a number of genome-scale networks have been

derived from annotated genome data [18]. Furthermore, mathematical models and

their computer simulation allow us to examine the integrated function of the re-

constructed metabolic network [19]. Prokaryote genome-scale reconstructions such

as those for E. coli [20] and Streptomyces coelicolor [21] have been used to predict

cellular behaviour under different physiological conditions. When compared to

other cell types, the whole-cell RBC network reconstruction has proved to be the

most fruitful metabolic model created thus far. Therefore, aside from its usefulness

as a kinetic model it has also been used as a model system to examine and validate

structural analysis procedures [22]. Structural modelling techniques can be a very

useful tool as the first step towards cataloguing and characterising an organism in

terms of its metabolic properties, and will be discussed further in Section 1.6 and

Chapter 4.

1.5 Structural modelling: theory

The following sections will aim to elaborate on the level of theoretical understand-

ing that is required for the investigation of structural metabolic models.

6 the entire reaction complement to be found within a biological sample, such as a single organ-
ism.
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Figure 1.1 – A simple network consisting of 4 reactions (R1–R4), 2 internal
metabolites (S1 and S2) and 2 external metabolites (X0 and X1).

1.5.1 Stoichiometry matrix

Under a given set of conditions, the stoichiometry matrix (N) is a compact math-

ematical representation of a biochemical network. The stoichiometry matrix for

the system in Figure 1.1 is:

N =

(

1 −1 1 0

0 1 −1 −1

)

(1.1)

where the dimensions m × n of N are such that m (number of rows) is equal to

the total number of metabolites7 and n (number of columns) is equal to the total

number of reactions. Each element in N is called a stoichiometric coefficient and

it indicates:

• whether a metabolite takes part in a particular reaction or not.

• the number of molecules of metabolite participating in that reaction.

• whether it is a reactant or product, according to the sign of the element.

Stoichiometric network reconstructions and their ensuing mathematical analy-

ses can be used further to determine the total potential of an organisms reaction

network (reviewed in [1]) (Section 1.6). Analytical methods based on the direct

interrogation of N can be employed for a purely stoichiometric analysis and are

described further in Section 1.6.1.

1.5.2 The steady state concept

The mass balance of a metabolite is defined as the difference between its rate(s) of

production and the rate(s) of consumption. Consider the single metabolite system

shown in Figure 1.2, the rate of change of internal metabolite, S, is given by:

7 unless stated otherwise N only includes the stoichiometry of internal metabolites.
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Figure 1.2 – Illustration to demonstrate the steady state concept.

dS

dt
= v1 + v2 + v3 − v4 (1.2)

Alternatively, employing basic linear algebra, Equation 1.2 can be expressed as a

product of the stoichiometry matrix and a column vector of reaction rates (v):

dS

dt
=
(

1 1 1 −1
)

.













v1

v2

v3

v4













(1.3)

The steady state assumption allows the modeller to equate the total rate of

production for any internal metabolite to the total rate of its consumption (i.e.

indicating that the macroscopic variables - flux and metabolite concentrations -

change only to a tolerable extent over a specific time span) [1, 23]. Taking this

into account, the three inputs to the system in Figure 1.2 must equal the total

output in order to keep [S] constant. Therefore, Equation 1.3 becomes:

dS

dt
=
(

1 1 1 −1
)

.













v1

v2

v3

v4













= 0 (1.4)

Furthermore, Equation 1.4 can be summarised as:

N.v = 0 (1.5)

where for any given system N describes the network topology and can be consid-

ered as a constant, and v represents its variables.
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1.5.3 Null space matrix

Structural modelling does not require any kinetic information as represented by

the vector of reaction rates in Equation 1.5. Thus, by taking the stoichiometric

matrix and steady state conditions into account, Equation 1.5 can be solved in

order to estimate the possible flux distributions of the system. One valid solution

is v = 0, however, this is not very informative since it identifies a state within

which all the reactions in the system are incapable of carrying flux. Alternatively,

linear algebraic methods (represented by a set of homogeneous equations8) may

be utilised to calculate the subspace of all possible solutions to Equation 1.5. This

subspace is called the null space of N and can be described mathematically by a

kernel matrix K9 [1], whose columns are linearly independent10 vectors spanning

this subspace (i.e. they form a basis) [24], to give the equation:

N.K = 0 (1.6)

where each column of K is a possible solution to Equation 1.5 and each row

represents a single reaction. The dimension of K (i.e. number of linear basis

vectors) is the difference between the number of metabolites (m) and the rank of

N (rank(N)). If m is equal to rank(N), there may be a unique solution to the

system of equations, otherwise, it has infinitely many solutions.

Gaussian elimination [1] or singular value decomposition [25] methods may be

used to determine the null space. The former method is easier to understand and

to implement algorithmically whereas the latter is more complex but suited for

larger stoichiometry matrices [26]. Using these algorithms, multiple instances of

K may be obtained which satisfy Equation 1.5, indicating that the basis of the

null space is not unique. Using Figure 1.1 as an example, two possible instances

of K are:

K1 =

R1

R2

R3

R4













1 0

1 1

0 1

1 0













K2 =

R1

R2

R3

R4













−1 0

−1 −1

0 −1

−1 0













(1.7)

All the reactions in Figure 1.1 have been defined as irreversible. As mentioned

earlier, the columns of K can be interpreted as potential flux distributions through

the network. This implies that the first column of K1 is the forward conversion

8 set of linear equations without a constant term whereby right hand side is equal to zero.
9 unless stated otherwise, K will represent the (right) null space of N henceforth in the disser-

tation.
10 none of the vectors in K can be written as a linear combination of finitely many other vectors

in the collection.
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of X0 to X1 via R2 and the second is the cyclic flux between R2 and R3. The

opposite scenario is apparent in K2, and although, it is a valid set of solutions to

the system, it violates the irreversibility criteria that has been laid down for the

network. As discussed more extensively in the next section, the constraint-based

approaches to structural analysis, mainly developed by Palsson and co-workers [27]

take reaction irreversibility into account by imposing a non-negativity constraint

on those components to determine all the possible routes through the network

(Section 1.6.3). Additional constraints such as experimentally determined flux

values can also be declared to calculate the remainder of unknown fluxes (Section

1.6.3.3).

1.6 Structural modelling: analysis

Structural models have been investigated using a variety of approaches [1]. As

introduced in the following sections there are three general approaches that are

considered:

• Non-steady state analysis

The stoichiometry matrix forms the most basic feature of a biochemical net-

work and direct analysis of its components (i.e. how metabolites are con-

nected to each other by reactions) is both trivial and also very useful to

identify the underlying properties of the system.

• Null space analysis

Interrogation of the null space of the stoichiometry matrix can be used to

identify the characteristics of the system at steady state (e.g. determining

whether a reaction can carry flux at steady state).

• Constraint-based analysis

The incorporation of additional constraints into a structural model helps to

reduce the possible flux distributions at steady state and thereby limits the

range of allowable phenotypes (e.g. imposing a thermodynamic constraint

for irreversible reactions).

The section structure described above is not mutually exclusive and certain an-

alytical techniques may be calculated at more than one level within the hierarchy.

1.6.1 Non-steady state analysis

Pure stoichiometric analyses, in the simplest case, is analogous to tracing the

route from a substrate to a product in a metabolic pathway from a biochemistry

9



Chapter 1 1.6. Structural modelling: analysis

textbook and reporting the number of steps involved. In other words, the static

representation of the network is used to draw useful conclusions regarding the

inherent pathway structure and organisation of the metabolites in the network.

1.6.1.1 Graph theoretic analysis

Graph theory can be defined as the study of graphs to model the pairwise relations

between objects from a certain collection. A graph G(V, E) is a mathematical ob-

ject that represents a system of elements that interact or regulate each other, where

V is the set of nodes (points or vertices), and E is the set of edges (links) connect-

ing pairs of nodes [28]. Graphs may be supplemented by additional information

for their constituents:

• Edges may be directed to represent the flow of material from a source (head)

to a target (tail), or non-directed for mutual interactions.

• More than one type of node can be represented in multi-partite graphs as

explained later.

• Weights, strengths or reaction speeds may be assigned to edges to indicate

information from experimental sources [29].

Types of graphical representations The four primary graph representations

used for metabolic networks include:

• Compound graphs

Used to model a set of chemical reactions. Nodes represent the chemical

compounds and the edges between them represent a shared reaction. The

main limitation with this type of graph is its poor descriptive power owing

to the fact that it is impossible to distinguish whether any two reactants are

involved in the same reaction.

• Reaction graphs

Nodes are reactions and an edge is placed between two nodes if they share

at least one chemical compound (i.e. product or substrate). Reversibility

information may also be taken into account by employing directed edges.

• Bipartite graphs

Form of multi-partite graph with two classes of node whereby no edges can

form a relationship between nodes of the same set. Therefore, for the graph

definition G(V, E), V can be divided into two disjoint sets V1 (reactions)

and V2 (compounds) where V = V1 ∪ V2 and every edge connects a node in

10
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V1 to one in V2. The KEGG database employs bipartite graphs for pathway

visualisation which contain two types of node (i.e. reactions and metabolites)

and edges which represent their interactions.

• Hypergraphs

Forms a generalisation of a compound graph where a edge relates a set of

products to a set of substrates. This type of graph can be easily converted

into a bipartite graph and vice versa. The MetaCyc database contain path-

way representations of this type.

Compound and reaction graphs were employed by Wagner and Fell [30] to

carry out a graph theoretical analysis of central routes of energy metabolism and

small-molecule building block synthesis in E. coli ; a selection of the analytical

methods used will be introduced later. Jeong et al. [31] modelled the metabolic

networks of 43 organisms from all three domains of life as bipartite graphs, permit-

ting a comparative analysis showing that they have the same topological scaling

properties.

Network measures Once a metabolic network has been reconstructed in terms

of its respective interactions, a graph theoretical analysis can be carried out to

provide biological insights into the structural organisation and potential function-

ality of the system. Numerous measures have been defined for this purpose, they

include:

• Degree and degree distribution

The degree of a node is simply the number of edges that it is involved with

or the number of adjacent nodes. For directed graphs this can be separated

into in-degree (number of edges that point to that node) and out-degree

(number of edges that start at that node). The degree distribution P (k)

of the whole network can also be calculated and indicates the proportion

of nodes that have degree k. It can be calculated by counting the number

of nodes N(k) with k = 1,2,3... edges and dividing by the total number

of nodes [3]. Scale-free metabolic networks are characterised by a degree

distribution that follows a power law P (k) ∼ k−γ , where γ is the degree

exponent [32]. The value of γ is important for determining the importance

of the hubs (highly connected nodes) in the system [3]. In other words, a

scale-free network typically contains a few hubs (e.g. ATP) that are involved

in numerous reactions and vice versa [30, 31, 33].

• Shortest path and mean path length

The number of edges to get from one node to another in a network is defined

11
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Figure 1.3 – A graphical representation of a metabolic network containing one
orphan metabolite (A) and one dead-end metabolite (C ).

as the distance or path length [3]. Therefore, the shortest path is the route

that has the smallest distance between any given pair of nodes. This measure

does not apply for those pairs of nodes between which a route does not exist.

When applied to the entire network, the average of shortest path lengths

over all pairs of nodes in a network is called the network diameter [32].

1.6.1.2 Orphan and dead-end metabolites

Orphan metabolites11 are those metabolites that are only produced or consumed

by one reaction within the model. Metabolites of this type clearly cannot be

balanced and hence reactions involved with them, and quite possibly additional

reactions, must be dead12. Dead-end metabolites are those that are only produced

or consumed by more than one reaction within the model. They pose similar but

less serious problems than those incurred by orphan metabolites, since it may be

possible to balance a dead-end metabolite if one of the reactions involved with it

is reversible. All orphan metabolites are dead-end metabolites but not vice versa

(Figure 1.3).

A list of orphan metabolites may be obtained from the stoichiometry matrix

by finding those rows with only one positive or negative coefficient. Similarly,

dead-end metabolites can be identified by rows with only positive or negative

coefficients in the stoichiometry matrix. The issues with orphan and dead-end

metabolites become more apparent when building genome-scale metabolic models

in an automated fashion, and are discussed further in Chapter 4.

1.6.1.3 Damage analysis

Damage analysis is a method that can be used to investigate the extent of loss

induced in a metabolic network by the removal of a single enzyme [34]. The

11 a term coined within our group.
12 reactions that cannot carry flux at steady state (Section 1.6.2.1).
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analysis is initiated by the removal13 of all those reactions that are exclusively

associated with an enzyme of interest. The ensuing damage analysis can then be

used to assign a damage score to the enzyme based on, for example, the number

of metabolites whose production the absence of the enzyme prevents. Ultimately,

this method may be used as a potential indicator of the importance of an enzyme

within the metabolic network.

Lemke et al. carried out damage analysis alongside in vivo enzyme knockouts

to correlate the removal of a particular enzyme with the viability of E. coli [34].

Single knockout of 91% of the enzymes caused little damage to the network and

the remainder caused serious damage. Experimental validation using the enzymes

in the latter set confirmed that these enzymes were essential to the viability of E.

coli.

1.6.1.4 Conserved moieties

Conserved moieties are those chemical entities (atoms, ions, assemblies of atoms

or ions) whose total concentration remains constant in a system, regardless of

the kinetics of individual reactions [1]. Typical examples include ATP, ADP and

AMP forming a group of metabolites that conserves the adenylate moiety, whereas

NAD+ and NADH conserve the pyridine nucleotide. Conservation relations can

be detected from the stoichiometry matrix by identifying linearly dependent rows

[2, 24]. The number of independent conservation relationships can be determined

directly by subtracting the rank of N from the number of internal metabolites in

the system. Since the total concentration of a conserved moiety does not change

with respect to time, Equation 1.8 can be used to describe the relationship between

N and the set of conserved moieties:

NT .τ = 0 (1.8)

where NT is the transpose of N and τ is the conserved moieties matrix14 and 0 is

a zero column vector. Alternatively, conservation relationships can be calculated

from the left null space of N [35]:

N.τT = 0T (1.9)

where τT is the left null space of N or the transpose of the conserved moieties

matrix. For interpretive purposes, it is convenient that all coefficients in τ are

non-negative in order to represent conservation of chemical units [36]. Sauro and

13 from the model definition.
14 rows represent metabolites participating in a conservation relationship and coefficients indicate

a particular conserved sum with respect to the reactions in the network.
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Ingalls described several methods and their corresponding algorithms for the de-

termination of conservation relationships [26].

1.6.2 Null space analysis

Analytical procedures that fall into this category are those that involve the direct

investigation of the kernel of the null space matrix.

1.6.2.1 Dead reactions

Dead reactions15 also called strictly detailed balanced reactions [37] or blocked

reactions [38] can be identified from the kernel of the null space as those reactions

with all zero row entries. This indicates that they cannot carry flux for any possible

steady state solution to the system. Further investigation of dead reactions could

identify potential errors (i.e. incorrect reaction stoichiometries) or provide insights

into the incompleteness of the system in question (i.e. missing reactions due to

incorrect annotations) and thereafter, to maximise the number of reactions that

produce flux by amending the model definition. This is an example of how a

structural model can be iteratively refined (Chapter 4).

1.6.2.2 Enzyme subsets analysis

An enzyme subset is defined as a group of enzymes that carry flux in a fixed ratio

at steady state [39, 40]. Despite this definition, an enzyme subset can actually be

better described as a reaction subset since it is the reactions that carry flux through

the subset, and additionally, an enzyme may catalyse more than one reaction, all

of which may not be part of the same subset. For a linear system all reactions are

part of a single subset, however, in more complex networks non-adjacent reactions

may also belong to the same subset. By replacing those reactions in each subset

with an overall reaction for the whole subset it is possible to reduce the size of the

structural model. This not only aids in the interrogation of the model but also

simplifies it for other more computationally intensive analysis methods (Section

1.6.3.1).

Proportional rows in the kernel of the null space are used to identify reactions

within the same subset [1, 39]. Using Figure 1.4 as an example there are five

subsets. These may be classified according to the number of reactions they contain

i.e. subsets with a single reaction and those with two or more reactions. A kernel

for this system is shown below:

15 a term coined within our group.
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Figure 1.4 – Enzyme subsets as highlighted for an example reaction scheme de-
rived from the top half of glycolysis leading to the production of glyceraldehyde-3-
phosphate and dihydroxyacetone phosphate from glucose. Metabolites preceded
by ‘X ’ have been made external to the system. External ADP and ATP are
included in reactions R2 and R4 but have not been included here for purposes of
clarity. See List of Abbreviations section for metabolite abbreviations.
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(1.10)

where each row represents a single reaction (R1–R9) and each column represents

a possible solution space. It is evident that those reactions that are part of the

same subset have proportional rows (R1–R5, R6, R7, R8 and R9). For the largest

subset (R1–R5) the ratio of fluxes is 1:1 for any pair of reactions. Dead reactions

show up in the same subset as those reactions with all zero row entries (R9). The

algorithm for detecting enzyme subsets as outlined in [39] is given below:

• Detect all row vectors of K that are null (i.e. imply dead reactions).

• Normalise each of the remaining row vectors of K by dividing by its greatest

common divisor.

• Compare any normalised row vector with any other. If they are the same

and there are no contradictions in the directionalities of irreversible reactions,

the corresponding reactions belong to the same subset. The quotient of the

normalisation factors gives the flux ratio.

The ratio of fluxes obtained within a particular enzyme subset may indicate

a proportional level of transcription at the genome-level. Using a genome-scale

model of E. coli, Reed and Palsson [41] found a substantial correlation between
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the enzyme subsets from the model and the available gene expression data for

the organism. Schuster et al. [42] showed that the enzyme subsets obtained for

yeast central metabolism are correlated with expression data measured during the

diauxic shift in the same organism. Moreover, within our group, enzyme subset

analysis has been used with a number of microbial genomes to establish the rela-

tionship between the genetic regulation of a set of enzymes and their metabolic

activities. Ultimately, these analyses may provide important clues as to the con-

sistency of both the transcription and annotated genome data used in the subsets

analysis [43].

1.6.3 Constraint-based analysis

The constraint-based analysis approach is based on the assumption that organisms

exist in particular environments that typically have scarce resources [19, 27]. If the

number of reaction fluxes is greater than the number of intracellular metabolites

in a system, it is referred to as underdetermined and has infinitely many solutions.

Therefore, additional constraints such as measurable fluxes can be used to reduce

the number of unknown fluxes and, subsequently, to uniquely determine the flux

distribution. In contrast to individual reaction rates, these measurements are

largely available for metabolic networks. There are two fundamental types of

constraints [19]:

• Balances

Constraints that are associated with conserved quantities, such as energy,

mass and redox potential.

• Bounds

Constraints that limit numerical ranges of individual variables and parame-

ters such as concentrations, fluxes or kinetic constraints.

By identifying and stating these constraints mathematically, they can be used

to perform an in silico analysis. In mathematical terms, the range of allowable

network states is contained within a solution space that represents the phenotypic

potential of an organism [44, 45]. A set of valid solutions to Equation 1.5 subject

to the defined constraints can be described within the solution space as a high-

dimensional16 polyhedral cone, by allowing the use of convex analysis [46] (Figure

1.5).

All structural analyses are constrained by the conservation of mass criteria

imposed by the network stoichiometry. The analyses defined within this section

16 number of dimensions equals the number of reactions.
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Figure 1.5 – By imposing successive constraints to a set of reactions in a
metabolic network at steady state, it is possible to narrow down the range of
possible solutions (i.e. flux distributions). (a) A three dimensional space where
the axes represent individual fluxes through the network. (b) The mass balance
constraint imposed by the stoichiometry matrix limits the steady state fluxes to
a subspace. (c) If thermodynamic (i.e. irreversibility) constraints are taken into
account so that all fluxes are positive this further limits the solution space to a
convex cone. (d) Capacity constraints close the convex cone and can be searched
for optimal solutions. Adapted from [47].

assume that under any given environmental condition, the system in question will

reach a steady state that satisfies the following additional constraints in differing

combinations:

1. Reversibility (bound)

Only positive fluxes are allowed for irreversible reactions to satisfy thermo-

dynamic criteria.

2. Capacity (bound)

Defines lower and upper bounds for reaction capacities (e.g. maximum up-

take rate of a transporter).

3. Optimality (bound)

Minimise or maximise a linear objective function (e.g. optimise biomass

17
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production).

By imposing constraint 1 on the network, it is possible to explore the phenotypic

solution space for the feasible pathways (i.e. all possible steady state flux distribu-

tions) in the network [48]. Non-optimisation based techniques such as elementary

modes analysis [49] and extreme pathways [50] fall into this category. With ad-

ditional information on optimal network performance, metabolic flux analysis [51]

and flux balance analysis [20] aim to identify alternate and usually more precise

flux distributions according to some measured criteria. The scope of the work

carried in this dissertation only employs elementary modes analysis, therefore,

the remainder of techniques described above will be discussed to a supplementary

extent.

1.6.3.1 Elementary modes analysis

Elementary modes (EMs) form a central theoretic concept for the structural anal-

ysis of metabolic pathways [23, 49, 52, 53]. An EM is a minimal set of reactions

that could operate at steady state, such that all irreversible reactions in the mode

are operating in the appropriate direction [52]. “Minimal” implies that if only the

reactions belonging to this set were operating, removal of one of these would lead

to cessation of any steady state flux in the rest of the mode. At steady state, an

EM has no net consumption or production of any internal metabolite and, the

reactions within the mode are weighted by the relative fluxes they need to carry

for the mode to function. An EM may be thought of as a unique minimal route

through a metabolic network which cannot be decomposed further to obtain other

modes.

Convex analysis returns the spanning vectors of the convex solution cone that

describes the steady-state equation system, and every actual flux distribution is

a linear combination of the obtained EMs (Figure 1.5(c)). Several algorithms

have been developed to calculate EMs [54, 55, 56]. The computation of EMs for

larger genome-scale networks meets the problem of a combinatorial explosion in

the requirement for computer memory and processing power. To demonstrate this

issue Klamt et al. [40] built a model containing 110 reactions and 89 metabo-

lites involved in E. coli central metabolism. With the use of four external source

metabolites (i.e. glucose, acetate, succinate and glycerol) the model was found

to have 507,632 EMs. Consequently, a number of preprocessing steps have been

suggested to improve the efficiency of the calculation procedure including:

• lumping reactions into their enzyme subsets before the calculation reduces

the size of the network [54]. This has no effect on the resulting pathways since

the individual reaction information can be restored after the calculation.
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Figure 1.6 – The four possible EMs for the simple metabolic network introduced
in Figure 1.4. Flux values are indicated on the reactions that participate in each
mode.

• metabolites with a connectivity above a certain user-defined threshold can

be made external to split the network into sub-networks, which are easier

and possibly more convenient to analyse [5].

The various computational issues for generating the modes are compounded

with the problem of analysing and assigning biological significance to the vast

amount of data generated. Using Figure 1.4 as an example system there are four

possible EMs (Figure 1.6). Excluding net ATP to ADP conversions the first mode

uses half a glucose (GLC) to produce one dihydroxyacetone (DHAP) (flux of half

for R1–R6 and one for R7). The second is the same except that all stoichiometries

are doubled and glyceraldehyde-3-phosphate (GAP) is produced instead of DHAP

(flux of one for R1–R5, minus one for R6 and two for R8). The third produces one

each of DHAP and GAP by utilising 1 GLC (flux of one for R1–R5 and R7–R8).

The fourth mode is the simplest, and utilises external GAP to produce external

DHAP (flux of one for R6–R7 and minus one for R8). Additionally, all modes
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except for the fourth are irreversible since they are involved with at least one

irreversible reaction (R2). The carbon balance is as would be expected in vivo

for a six carbon sugar (i.e. GLC) going to three carbon sugars (i.e. GAP and

DHAP). From this example, it has become evident that an EM is simply a route

for the conversion of external metabolites. There is sometimes an exception to

this generalisation whereby a mode may be formed by complete balancing of only

internal metabolites. In other words, by starting and ending at the same internal

metabolite via two or more reactions. Such modes are called futile (or substrate)

cycles since they are thought to be biologically wasteful [57].

Elementary modes analysis (EMA) has been used in many model systems to

interrogate various aspects of network topology. The number of EMs may be an

important index in order to characterise the functional richness and capabilities of

biochemical systems. Therefore, it is also possible to determine the level of struc-

tural versatility in a given network using EMA. Stelling et al. [58] demonstrated

this concept from a model of E. coli central metabolism. Poolman et al. [59]

built a model of chloroplast metabolism (i.e. Calvin cycle and oxidative pentose

phosphate pathway enzymes) to compare light/dark metabolism using EMs.

EMA has proved to be very useful for the computation of maximal conversion

yields by investigating all the possible routes from a particular substrate to prod-

uct. Patnaik et al. [60] used EMA in E. coli to identify ways in which to maximise

the yield of aromatic amino acids by increasing the availability of central metabo-

lites such as phosphoenolpyruvate. Carlson et al. [61] used a recombinant E. coli

system to study the effect of altered culturing conditions to optimise poly-(R)-3-

hydroxybutyric acid yield using EMA.

1.6.3.2 Extreme pathway analysis

Extreme pathways (EPs) are a unique and minimal set of vectors that completely

characterise the steady-state capabilities of any given metabolic network [50]. Ex-

treme pathways analysis (EPA) and EMA both return the edges of the convex

solution cone for the network as pathways (Figure 1.5(c)). In addition, EMA also

returns all the possible non-decomposable pathways through the network. Extreme

pathways and EMs share the following properties:

• There is a unique set for a given network.

• They are non-decomposable, therefore, if a reaction is removed from an EP

or EM then the steady-state flux through it becomes zero.

EPs have an additional property of systemic independence, which means that

an EP cannot be represented as a non-negative linear combination of any other EP.
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When using EPA, negative reaction fluxes are avoided by splitting all reversible

internal reactions into two separate irreversible reactions. EPs form a subset of

the EMs (i.e. combination of extreme pathways), with the exception that if all

the reactions in the network are irreversible then identical sets are obtained [62].

Therefore, the number of EPs is less than or equal to the number of EMs, how-

ever, the computational issues realised with EMA also applies to EPA [50, 53].

The subtle differences between the theoretical definitions of EPs and EMs can

lead to different descriptions of network properties, such as pathway redundancy

(due to differing number of EP and EM sets) and the yield of products from sub-

strates. Several recent publications discuss the difference between EPA and EMA

[48, 62, 63]. EPA has been used to show that there is more redundancy in the

production of amino acids by the Haemophilus influenzae metabolic network than

in the Helicobacter pylori metabolic network [64]. The complete set of EPs has

been obtained for human red blood cell metabolism and has been used to conser-

vatively predict values that describe the maximal ATP:NADPH yield ratios the

cell can sustain under a load, calculated from the kinetic model [22].

1.6.3.3 Metabolic flux analysis

At steady state, metabolic flux analysis (MFA) aims to shrink the possible solution

space of Equation 1.5 by inclusion of measured reaction rates (i.e. uptake or

excretion rates) [51]. The measured reaction rates are then used to calculate a

subset of all the unknown rates. For the purposes of MFA, Equation 1.5 becomes:

0 = Nv = Nbvb + Nnvn (1.11)

Nnvn = −Nbvb (1.12)

where N and v are partitioned into known (Nbvb) and unknown (Nnvn) parts.

All unknown rates (vn) can only be calculated if the stoichiometry matrix Nn is a

square matrix (number of unknown reactions is equal to the number of unknown

metabolites) and invertible. In reality, all unknown rates are rarely calculable,

however, in some cases it is possible to determine the values of a subset of the

unknown rates [65, 66]. Klamt et al. [66] developed an improvement on the

algorithm by van der Heijden et al. [65], with which to find the reaction rates

that can be uniquely calculated in underdetermined metabolic networks. In the

same study, Klamt et al. applied their algorithm to a metabolic model of the

central metabolism in purple nonsulfur bacteria. 13C labelling has also been used

to determine the intracellular fluxes of Corynebacterium glutamicum for use in

MFA to calculate all reaction rates [67].
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1.6.3.4 Flux balance analysis

Additional constraints are imperative to uniquely determine the steady-state flux

distribution for underdetermined systems. Like all constraint-based approaches,

flux balance analysis (FBA) [20] aims to further restrict the solution space imposed

by the mass balance constraint from the stoichiometry of the system. Commonly,

ranges of allowable flux values are incorporated as additional constraints to re-

semble the performance capability of the network. Subsequently, the system is

assumed to be optimised in order to find the optimal value of a specified objec-

tive function17 (i.e. maximisation of biomass production, minimisation of ATP

utilisation or any other estimated function) [68]. Linear programming (LP) is the

method of choice to calculate the maximum potential of the objective function,

and therefore, when using FBA, a single solution or flux distribution is found [69].

Furthermore, the metabolic capabilities of the system can then be investigated

using this flux distribution.

The outcomes from FBA are highly dependent on the declared constraints and,

while specifying known flux data reduces the possible flux space, it still allows for

infeasible phenotypic predictions. In addition, LP does not guarantee a unique

solution and, numerous solutions can be found which satisfy the metabolic network

constraints and optimal objective value [19]. Methods for interpreting alternate

optima have been developed and include:

• Mixed-Integer Linear Programming (MILP)

Used to find all the extreme points of the convex polytope (the feasible con-

strained solution space) that have the same optimum objective function value

[70]. The method has been used to design NMR experiments for measuring

in vivo intracellular fluxes for the central metabolic network of E. coli [71].

• Minimisation of Metabolic Adjustment (MOMA)

Employs a quadratic programming approach for predicting metabolic flux

distributions after gene knockout [53]. Subject to the new constraints im-

posed, the algorithm aims to finds a point (i.e. flux distribution) in the

altered solution space that is closest to an optimal point in the wild-type

solution space [68].

• Flux Variability Analysis

Determines the maximum and minimum values (i.e. feasible range) of each

flux in the network, while still satisfying the given constraints and optimising

a particular objective function [72]. Using this approach the range of flux

17 represents probable physiological function, and is defined in context of the system under in-
vestigation.

22



Chapter 1 1.7. Structural modelling: software

variability is identified as opposed to all alternate optima and can be used

to study the entire range of achievable cellular phenotypes [72].

The metabolic capabilities of several organism including Saccharomyces cere-

visiae [73] and H. influenzae [74] have been studied using FBA. For example,

network robustness can be explored by varying the maximum flux through a par-

ticular reaction and observing the resultant growth rate [69]. Edwards and Palsson

[75] used this approach to conclude that E. coli is robust to changes in individ-

ual enzyme or pathway activities. Gene knockout (i.e. knockout reaction flux

is constrained to zero) and addition studies can be used to study the resultant

phenotypic consequences by reducing and expanding the wild-type solution space,

respectively [69]. Gene knockouts have been evaluated extensively in E. coli [20, 68]

and Staphylococcus aureus [76].

1.7 Structural modelling: software

The use of programming resources in stoichiometric analysis is an absolute neces-

sity. It is simply not possible, except in the most trivial cases, to carry out the

computations by hand. Moreover, with the use of the large datasets that have

been made available through bioinformatics techniques, a genome-scale metabolic

model may typically contain in excess of 250 reactions. When developing a bioin-

formatics analysis pipeline, it is more important to have a good understanding of

both the biology involved and the analytical techniques rather than having the

right software.

Various software packages have been developed for the purposes of kinetic mod-

elling including Copasi† [77] (formerly Gepasi† [78]) and Jarnac† [79] (upgraded

version of SCAMP† [80]). The Python Simulator for Cellular Systems (PySCeS†)

[81] is similar to our in-house software, ScrumPy, in that it is written in the Python

programming language† [82]. The way in which PySCes has been developed allows

the user to dictate the flexibility and extendibility of his/her own research, another

feature which is common to ScrumPy. PySCes is an open source console-based ap-

plication that can be installed on both Windows and Linux operating systems.

The majority of modelling functionality implemented in PySCes makes use of ex-

isting SciPy† libraries, which are a large collection of mathematical algorithms

for science and engineering applications. Extensive functionality for kinetic mod-

elling is provided by PySCes with some additional but little support for structural

modelling (uses Metatool for EMA).

Dynamic simulation packages have very few options for structural analytical

techniques and, therefore, several packages can be consulted for these purposes.
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Metatool† [39] was one of the first programs developed for sole dedication to the

stoichiometric analysis of metabolic networks. It is a command-line driven pro-

gram written in the C† programming language and until the development of its

successor YANA† [83] the results were outputted as a text file containing informa-

tion for elementary modes, enzyme subsets and conserved moieties. YANA is a

platform-independent graphical user interface (GUI) written in Java† for metabolic

network analysis, to calculate (integrating Metatool), edit (SBML† support pro-

vided), visualise, and compare EMs.

CellNetAnalyzer† [84] is a GUI that integrates the mathematical functionality

of the commercially available package MATLAB† by providing an extensive tool-

box for the structural and functional analysis of cellular networks. In contrast

to its predecessor, FluxAnalyzer [85], CellNetAnalyzer can be used to analyse sig-

nalling and regulatory networks as well as metabolic networks. Most stoichiometric

analyses can be carried out including EMA (calculated using Metatool) and FBA.

1.7.1 Metabolic modelling with Python: ScrumPy

ScrumPy† [86] is an open source, metabolic modelling software package that has

been implemented in our lab using the Python programming language. ScrumPy

supports both kinetic and structural modelling and is currently available for Linux

and other Unix-like systems.

1.7.1.1 The Python programming language

The Python [82] programming language has been developed recently when com-

pared to other languages such as C or Java. It is an open source, object-orientated

and platform independent language that is easy to learn, due to its simple syn-

tax and console-based interactive development environment. Python has simple

but efficient tools for handling its powerful built-in type ‘objects’ (Table 1.7.1.1).

Programmers can define their own objects in the form of ‘classes’, which are

typical for object-orientated programming. Object functionality is created by

defining ‘methods’ within the class structure and once the class has been in-

stantiated (e.g. instance()) methods can be called using ‘dot’ notation (e.g.

instance.method(argument); where argument is a variable or value passed into

method).

When using other programming languages such as Java, a programmer would

have to explicitly specify memory-recycling events for objects. In contrast, Python

automatically allocates and reclaims objects in memory when they are no longer

in use. Furthermore, designing and writing the same program took half as much

time as writing it in C, C++ or Java, and the resulting program was half as long
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Type Description Syntax Example

str An immutablea sequence of characters ‘This is a string’

int Integer 42

float Floating point 3.141592

bool Boolean True or False (1 or 0)
tuple Immutable, can contain mixed types (‘string’, 7.7, True)

list Mutable, can contain mixed types [‘string’, 7.7, True]

dict Group of key and value pairs {‘key1’:5, ‘key2’:[‘no’, 7.7]}
a an object whose state cannot be modified after it is created.

Table 1.1 – Important Python built-in types and examples.

[87]. Although, languages such as C and C++ offer a more efficient platform for

tasks that need to handle large amounts of computation and data, Python offers

significant advantages with respect to programmer productivity. However, it is

possible to integrate C and C++ code with Python using software development

tools such as SWIG†.

Other than those in the standard Python distribution, a diverse library of

supplementary packages are also available for mathematical and scientific pro-

gramming (e.g. NumPy and SciPy). Additionally, a Python-based package called

BioPython† has been developed which can be used to automate tasks such as

sequence analysis and biological database parsing.

1.7.1.2 Why ScrumPy?

ScrumPy has been developed to provide a high-level metabolic modelling interface

that exploits and extends the low-level capabilities provided by Python. As with

PySCes, the functionality provided by ScrumPy can easily be extended by writing

Python programs for custom application to the modelling process. In contrast,

stand-alone GUI-based packages such as Gepasi limit the user to the functionality

provided by the creators of the software.

Along with a GUI component for kinetic modelling, ScrumPy also enables the

user to benefit from the interactive command-line component provided by Python

for all modelling and development purposes. Once ScrumPy has been started a

window such as the one in Figure 1.7 is opened. This represents the front-end to

ScrumPy and is actually an adapted version of the Python Integrated Development

Environment interface† (IDLE). Thus, customisation of the IDLE interface has

permitted the simultaneous use of an existing Python development GUI with the

functionality add-ons of ScrumPy’s metabolic modelling package. The reader is

directed to Appendix A for a basic guide to the structural modelling capabilities

of ScrumPy.
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Figure 1.7 – An IDLE shell representing the ScrumPy development environ-
ment. The blue text represents ScrumPy version information, the black text is
a Python welcome message and the red ‘>>>’ is a prompt awaiting a Python
command from the user.

The ability to use high-level modelling modules as well as low-level Python-

based functionality is a great advantage to any modeller, and requires minimal

learning effort. The flexible nature of ScrumPy will facilitate the development

of novel ways of metabolic modelling and, ultimately, in understanding complex

cellular behaviour albeit structural or kinetic.

1.8 Overall aims and objectives

The core of this project involved the use of metabolic modelling techniques to in-

vestigate the network properties for models of varying size. Chapter 2 introduces

hierarchical clustering techniques for application to the interpretation of the large

datasets that may arise from structural analytical procedures, more specifically,

elementary modes analysis (Section 1.6.3.1). From the clustering output, alter-

native visualisation methods will be investigated alongside the more traditional

dendrograms, and will initially be validated on a small model of yeast metabolism.

Thereafter, in Chapter 3 these techniques will be applied to a more extensive

model encompassing the flow of carbon through the central metabolism of S. ery-

thraea. The primary objective of these studies will be to assess the application of

hierarchical clustering for the grouping and, subsequent biological interpretation

of elementary modes.

As highlighted in Section 1.3, the increased availability of both conventional

biochemical and genome annotation data has been exploited as a platform for the

reconstruction of genome-scale models of metabolism. Consequently, the acquisi-
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tion of reaction data from pathway databases, and its subsequent translation into

a format suitable for modelling has become technically trivial. However, the ma-

jor difficulty lies in the quality of the resulting metabolic network and its limited

ability to reflect the properties of the real organism at the systems-level. Chapter

4 will report a group effort to address the problems encountered therein, and to

identify potential steps that can be taken to improve the quality of the model in

order to generate more reliable phenotypic predictions.

In addition to traditional 16S ribosomal RNA-based phylogenies, a number

of techniques have been developed to exploit data on a genome-scale to build

evolutionary relationships amongst organisms. In Chapter 5, phylogenetic trees

will be generated from species-specific enzyme complement using the customised

programming tools already developed for hierarchical clustering and automated

genome-scale model reconstruction. A comparison of the resulting phylogenetic

trees with 16S rRNA-based trees will be carried out to highlight interesting phe-

notypic and taxonomic discrepancies. More notably, this study will be carried

out on the largest prokaryotic dataset used thus far and may, therefore, help to

clarify the results from other studies, and the opportunity to determine the degree

of metabolic similarity between various fully sequenced prokaryotic species. As

might be expected, the enzyme complement trees are limited in their ability to

generate phylogenetic predictions by the amount and quality of the data included

for individual species. In summary, the investigations reported herein will be used

to highlight how co-ordinated research efforts at the systems-level may need to be

reevaluated in order to increase the potential knowledge that can be gained from

building and interpreting genome-scale models of metabolism.
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CHAPTER 2

Interpreting Elementary Modes

Using Cluster Analysis

2.1 Introduction

Elementary modes analysis (EMA) is a very useful technique to assess the struc-

tural and functional capabilities of metabolic networks (Section 1.6.3.1). The po-

tential for a large elementary modes (EMs) dataset even for small models (20–30

reactions) somewhat undermines the usefulness of EMA. Once generated, there

are currently no well known methods in place to aid in the understanding and

grouping of EMs to determine their biological significance. Of particular interest

for this project is the use and validation of hierarchical clustering for the visualisa-

tion and interpretation of EMs. Hierarchical clustering techniques have been used

extensively for the visualisation and analysis of gene expression data by identify-

ing genes with similar expression patterns that are assumed to have a functional

relationship [88]. Similarly, clustering techniques may be useful to uncover groups

of EMs that are functionally related (i.e. in terms of their reaction profiles or net

stoichiometry) at the metabolic-level. Additionally, as opposed to looking at an

unordered or ungrouped set of EMs, the interpretation of larger EM datasets may

be improved by investigating smaller subsets of related EMs that form part of the

whole set.

2.2 Data mining

The process of extraction of previously unknown, meaningful information from

large datasets is known as data mining [89]. Machine learning provides the techni-

cal basis of data mining and deals with the design and development of automated

computational and statistical methods for data interrogation [90]. Machine learn-

ing can be further divided into two primary sub-fields:

• Supervised

Algorithms of this type are exposed to a functionally related training set of

data points (i.e. known inputs and outputs) and their respective classification
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categories (i.e. labels). The goal is then to predict the label of any new

valid input object. Supervised learning techniques cannot be applied to this

study, primarily because the classification information required for the data

is unknown. Techniques include neural networks and, more recently, support

vector machines [91].

• Unsupervised

As suggested by its name, and in contrast to supervised learning, the dataset

in question is not provided with any supplementary class information. In-

stead the main aim of this family of algorithms is to uncover the inherent

structure of classes within the dataset. The most commonly employed un-

supervised classification methods are the clustering techniques, which is the

focus of this chapter.

2.3 Cluster analysis

The term cluster analysis, also called taxonomy analysis, encompasses the clas-

sification of a dataset into groups (clusters) based on some measure of similarity

between individual items. A cluster is therefore, a collection of data items which

are more alike when compared to those in other clusters. The extent of applicabil-

ity of a given clustering method requires the ability to define meaningful difference

values between items in the dataset, and to deal with large datasets, different

types of attributes, outliers and high data dimensionality. Additionally, it should

be easy to implement, use and interpret.

2.3.1 Clustering algorithms

The plethora of methods for the representation, distance measurement and group-

ing of individual dataset items has led to a vast collection of clustering algorithms

in the literature [92]. As a consequence, a user attempting to find an algorithm

suitable within a given domain of expertise is often overwhelmed. Domain infor-

mation regarding the data at hand, knowledge of the broad categories of clustering

techniques, as well as the required clustering outcomes are very important for as-

sessing the true class structure of the dataset [93].

The most popular clustering algorithms fall into two classes, namely hierar-

chical and partitional. The results from hierarchical clustering algorithms can be

visually interpreted in the form of a dendrogram, which significantly contributes

to their popularity of use (Figure 2.1). A dendrogram is a simple and compact

representation of the dataset, formed by a series of nested partitions, with indi-

vidual elements at one end and a single cluster containing every element at the
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Figure 2.1 – Diagrammatic representation of a generalised hierarchical clus-
tering algorithm for six points (A–E) in two dimensions. Clusters are shown
to be formed in the space occupied by the points (above) and in parallel as a
dendrogram (below). Adapted from [94].

other (i.e root of the tree). The closer a pair of attributes are within the tree the

more similar they are and vice versa. Figure 2.1 can be used to demonstrate a

generalised hierarchical clustering algorithm on 6 points in two dimensional space:

1. All points begin in a cluster of their own. Merge the closest pairs of data

points successively (A–B and D–E) which is also reflected in the dendrogram

as a link with height reflecting the similarity between data points (Figure

2.1(a)).

2. The next closest clusters (A–B and C) are merged to form a new cluster

(Figure 2.1(b)).

3. The former step is repeated until only one cluster remains (Figure 2.1(c)-

(d)).

Breaking the hierarchy at desired levels can be used to obtain different clusterings

of the data, where each connected component forms a cluster. This type of dif-

ferentiated output is typical of the most popular partitional algorithm, k -means

analysis [95] whereby the algorithm partitions all the data items into a user de-

fined number of clusters with each data item belonging only to one cluster. Using

Figure 2.2 as an example to demonstrate the k -means algorithm on 6 points in

two dimensional space:

1. Define the number of required clusters, k (i.e. in this case, k=2) and ran-

domly place k points into the space represented by the data points being

clustered, which represents the initial group centres (crosses) (Figure 2.2(a)).
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Figure 2.2 – Diagrammatic representation of a generalised k -means algorithms
as demonstrated on 6 points (circles) in two dimensions. Adapted from [94].

2. Assign each data point to the closest centre (red lines) (Figure 2.2(b)).

3. Centres are moved to the average position of all the points in its cluster and

repeat the former step for any change in assignment (Figure 2.2(c)).

4. The termination condition is reached since the centres do not move (Figure

2.2(d)).

Therefore, as opposed to a dendrographic visualisation obtained from hierarchi-

cal clustering, the final output from k -means analysis is a list of k clusters and

their corresponding data points without any indication as to the distance between

individual clusters or the data points within them.

2.3.2 Hierarchical vs. k-means clustering

The main advantage of the partitional k -means algorithm is its speed, realised by

assigning data points to a predefined number of clusters (Figure 2.2), whereas hier-

archical methods find successive clusters using previously established ones (Figure

2.1). The k -means algorithm is also very easy to implement, however, it has a

number of drawbacks:
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• The number of output clusters (k) have to be defined before running the

algorithm. This poses problems since it is difficult to predict the optimal

value of k in advance for any given dataset. Possible solutions to this prob-

lem include running the algorithm multiple times with varying values of k.

The best value of k will provide the largest inter- and smallest intra-cluster

distances, respectively. However, the converse of this argument suggests that

a defined number of clusters may provide optimal separation of the dataset

for further interrogation.

• It is very sensitive to the positions that each of the random k initial partitions

are placed [96] (Figure 2.2(a)). Ideally, the initial centres should be placed

close to the centre of the natural clusters. However, this is very difficult

without prior knowledge about the clusters, which means that the algorithm

often converges to a local minimum. In contrast, hierarchical clustering

always returns the same unique result.

• Multiple iterations with different initialisations are usually carried out to

overcome the former problem. The most frequent result is usually chosen

and is likely to indicate that a global minimum has been reached. Depending

on the number of iterations chosen and possibly the size of the dataset, the

speed advantage obtained by the k -means algorithm may be nullified by a

single run of the hierarchical algorithm.

Limitations of the hierarchical approach are usually manifested when dealing

with larger datasets (i.e. increased computation times), even so, when compared to

k -means [97] they produce a much better quality of clustering by always returning

a unique dendrogram. In the context of this dissertation, considering the size of the

datasets to be used, the critique above shows that there is no distinct advantage

for employing k -means, and where necessary all clustering investigations carried

out herein will use hierarchical algorithms.

2.4 Hierarchical clustering

There are two types of hierarchical clustering techniques depending on whether

the clustering process is initiated at the root or the tips of the tree. Agglomerative

algorithms start at the top of the tree with each data point in a cluster of its own

and iteratively merge them to obtain a hierarchy (Figure 2.1). Divisive algorithms

do the opposite by beginning with all data points in one cluster and then breaking

it down into smaller subsets until each subset consists of a single data point.

Divisive methods are rarely used since they are more computationally expensive

and will not be considered further.
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A
B

(

0 3 4 5
7 6 3 −1

)

Figure 2.3 – An example dataset to illustrate the calculation of distance mea-
sures. Each row represents the data point to be clustered and each column
represents their individual features. Each element can be represented as a point
in 4 dimensions where A and B have coordinates (0, 3, 4, 5) and (7, 6, 3, -1),
respectively.

2.4.1 Distance measures

The definition of a cluster is based on the similarity between data points, therefore,

clustering algorithms require the selection of a suitable distance measure, which

will determine the pairwise similarity for all the chosen data points. A separate

distance matrix (i.e. n×n) can be calculated from the original data matrix con-

taining the raw data values to be clustered (e.g. 2×2 matrix for data in Figure

2.3). Depending on the distance measure employed, the entries in the matrix are

a measure of similarity for any pair of data points, with all zero values on the

leading diagonal indicating that the distance between the same data point is zero.

Different distance measures will produce different clustering results, therefore,

finding a good distance measure depends on the dataset in question. Euclidean dis-

tance is the most commonly used distance measure, although as highlighted in the

next section, several other methods have found application in various communities

[97].

2.4.1.1 Absolute distance measures

Measures of this type are involved in the calculation of the actual projected dis-

tance between any two data points in n-dimensional space. The Minkowski dis-

tance is a generalised distance function used to derive other more common mea-

sures. It defines the distance between any two points as:

dij =

(

n
∑

k=1

|xik − xjk|p
)1/p

(2.1)

where n is the number of dimensions and the value of p indicates the type of dis-

tance in the formula. Differing values of p give different variations of the Minkowski

distance:

• Manhattan or City-block distance (p = 1)

Measures the absolute difference between coordinates of a pair of objects

(Figure 2.4). Equation 2.1 becomes:
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dij =

n
∑

k=1

|xik − xjk| (2.2)

Using the example dataset in Figure 2.3:

dBA = |0− 7|+ |3− 6|+ |4− 3|+ |5 + 1|
= 7 + 3 + 1 + 6

= 17

• Euclidean distance (p = 2)

The most commonly used distance measure, calculates the root of square

differences between coordinates of a pair of objects (Figure 2.4). Equation

2.1 becomes:

dij =

(

n
∑

k=1

|xik − xjk|2
)1/2

(2.3)

Using the example dataset in Figure 2.3:

dBA =
√

(0− 7)2 + (3− 6)2 + (4− 3)2 + (5 + 1)2

=
√

49 + 9 + 1 + 36

= 9.747

• Chebyshev distance (p =∞)

Also called maximum value distance, determines the absolute magnitude

of the differences between coordinates of pairs of objects and returns the

maximum value (Figure 2.4). Equation 2.1 becomes:

dij = max
k
|xik − xjk| (2.4)

Using the example dataset in Figure 2.3:

dBA = max {|0− 7|, |3− 6|, |4− 3|, |5 + 1|}
= max {7, 3, 1, 6}
= 7

Minkowski-derived metrics tend to work well with datasets that have compact

or isolated clusters, however, they tend to give excessive weight to objects further

34



Chapter 2 2.4. Hierarchical clustering

apart (i.e. outliers) [98]. The selection of a suitable measure for a given application

is by no means standardised and depends on the discretion of the user or its

availability in an analysis software of choice. As indicated later, ScrumPy provides

an option to generate a distance matrix using arbitrary Python functions that

represent distance measures of choice.

2.4.1.2 Correlational measures

Correlational measures are used to calculate the similarity as opposed to the ab-

solute distance or dissimilarity between any two data vectors. Furthermore, cor-

relational measures do not place any emphasis on the size of the vectors being

compared, instead, they capture the similarity in shape of their overall profiles

(Figure 2.5). The most frequently used measure in this category is the Pearson’s

correlation coefficient. When comparing normalised vectors the uncentred Pear-

son’s correlation coefficient is identical to the cosine of the angle (cos θ) between

two vectors and lies within the range 1 to -1. Furthermore, the angle (θ) between

the vectors (Figure 2.4) can be determined from cos θ to indicate the similarity

between the vectors in n-dimensions. θ can be calculated from the cos inverse of

the dot product of the two vectors divided by the product of the length of each

vector:

θ = cos−1(
a · b
‖a‖‖b‖ ) (2.5)

Using the example dataset in Figure 2.3:

cos(A, B) =
0 · 7 + 3 · 6 + 4 · 3 + 5 · (−1)√

02 + 32 + 42 + 52
√

72 + 62 + 32 + (−1)2

=
0 + 18 + 12− 5√

0 + 9 + 16 + 25
√

49 + 36 + 9 + 1

=
25√

50
√

95

= 0.363

θ = cos−1(0.363)

= 1.2 radians

The relationship between θ and cos θ can be interpreted from the graph of the

cosine function whereby identical vectors have θ = 0 and cos θ = 1, orthogonal

vectors (i.e. θ = π
2
) have cos θ = 0, and vectors in the opposite directions will have

θ = π and cos θ = -1.

35



Chapter 2 2.4. Hierarchical clustering

Figure 2.4 – Illustration to show how various distance measures can be repre-
sented diagrammatically for two points in two dimensions. Adapted from [94].

Figure 2.5 – Illustration to show the difference between absolute and correla-
tional distance measures. As reflected in the dendrogram (right) the three data
vectors (A–C) will be clustered in different ways. The euclidean distance will
group B and C together based on their lower absolute difference, whereas clus-
tering by angle will group A and B due to the similarity in their overall profiles
[99].

2.4.2 Agglomerative algorithms

Using a measure of choice, once a distance matrix has been generated for individual

data points there are several variants of agglomerative algorithms depending on

the way in which the distance between individual clusters is defined. Three of the

most popular methods include [97]:

• Single-linkage

Defines the difference between two clusters as the minimum distance be-

tween any member of one cluster to any member of the other cluster (Figure

2.6(a)). This method suffers from producing large, elongated clusters (i.e.

the chaining effect), since it forces data points to be close to each other

without considering all the other points in the cluster. However, the same
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Chapter 2 2.4. Hierarchical clustering

behaviour is useful for detecting outliers in the dataset.

• Complete-linkage

The opposite of single-linkage, this algorithm defines the difference between

two clusters as the maximum distance between all pairs of data points

drawn from them (Figure 2.6(b)). As expected, the clusters obtained us-

ing this method have the opposite characteristics when compared to the

single-linkage technique (i.e. smaller and more compact). Complete-linkage

algorithms should not be applied to noisy datasets since they are more sen-

sitive to outliers.

• Average-linkage

Also called unweighted pair group method using arithmetic averages (UP-

GMA) [100], variants of this method tend to be a compromise between the

single- and complete-linkage methods. Similarity is determined by finding

the average value of all the data points in each cluster, and grouping those

that have the smallest average distance between them (Figure 2.6(c)). It

is more computationally expensive, however, it is the most popular link-

age method, since it provides a trade-off in terms of the symptoms that are

characteristic of single- and complete- linkage.

When compared on the same dataset, side-by-side, each of the methods de-

scribed above are very likely to produce different results. Therefore, an individual

method cannot be declared to be superior or universally applicable. A study car-

ried out by Milligan [101], indicated that single-linkage methods produce better

results when outliers are present in the dataset, whereas average-linkage methods

are better to assess the true cluster structure in the presence of noisy data points.

Along with the algorithm of choice, a decision also has to be made regarding the

metric to be used to measure the similarity or distance between clusters.

2.4.3 Hierarchical clustering using ScrumPy

The versatility of ScrumPy permits the implementation of any clustering algorithm

or distance measure that may be of interest to the user. ScrumPy can be used to

carry out hierarchical clustering in conjunction with a choice of popular distance

measures such as the euclidean distance between vectors. All dynamic matrices

such as an EMs stoichiometry or reaction matrix (Appendix A) generated using

ScrumPy provide a method to calculate a distance matrix based on row attributes:

>>> DistFunc = ScrumPy.Util.Seq.EucDist

>>> rdiff = mtx.RowDiffMtx(fun=DistFunc,Conv=float)
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Chapter 2 2.4. Hierarchical clustering

Figure 2.6 – Illustration to show how the distance (or similarity) between clus-
ters is defined. (a) Single linkage measures the shortest distance between objects
in different clusters, (b) complete linkage measures the largest distance between
objects in different clusters and, (c) average linkage measures the mean of all the
objects in each cluster for comparison.

where RowDiffMtx is a method that compares pairs of rows from mtx and returns

a distance matrix (rdiff) with elements (ArbRat by default; see Appendix A)

that indicate how similar one row is to another, using a measure of choice (i.e in

this case DistFunc represents the euclidean distance). Other distance measures

or element types may be employed by simply changing the arguments passed to

RowDiffMtx. Subsequently, a Python string representation of the hierarchical tree

can be calculated from rdiff and returned in Newick format1:

>>> newick = rdiff.ToNJTree()

>>> print newick

‘(B:5,(A:1,C:1):3,(D,E:0):3);’

1 standard representation of a graph theoretical tree in text format using parentheses and com-
mas.
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Chapter 2 2.5. Clustering elementary modes using a test yeast model

Figure 2.7 – A test dendrogram generated in the Newick format. The scale
below represents a measure of distance per unit branch length.

As shown in Figure 2.7, saving the Newick tree from the ScrumPy output in a

file will enable the user to subsequently view, manipulate and label the tree using

external phylogenetic tree viewing programs that have been implemented for this

purpose, including NJPlot† and MEGA† (software of choice). Other popular multi-

purpose phylogenetic software packages include the freely-available PHYLIP† and

SplitsTree† and commercial PAUP†. As introduced in the next section, validation

of hierarchical clustering methods with application to EMA will be carried out on

a small model of yeast anaerobic central metabolism. Subsequently, the results

obtained will be presented through various visualisation methods for use in the

final discussion.

2.5 Clustering elementary modes using a test

yeast model

To illustrate the usefulness of hierarchical clustering methods for application to

EMs datasets a small model of yeast anaerobic central metabolism was recon-

structed for the production of ethanol and/or glycerol via glycolytic and pentose

phosphate pathway reactions. The model was built using yeast specific metabolic

pathway maps† accessed from the BioCyc family of databases. Since there is no

new biochemical knowledge to be gained for this relatively small and well doc-

umented metabolic model, carbon entities were denoted by abstract metabolite

identifiers to focus on the clustering results (Figure 2.8 and related ‘.spy ’ model

in Appendix B). Before the EMs calculation the initial reactions in the model

were replaced by the overall stoichiometry of the enzyme subset in which they

participate. This has no effect on the resulting EMs dataset, however, at the same

time reducing the complexity and increasing the interpretability of the model (Sec-

tion 1.6.3.1). The final model contained a total of 7 reactions involving 4 internal

metabolites and 4 external metabolites. As shown in Figure 2.8, aside from carbon

dioxide (X2) exchange, 3 transport reactions were defined to highlight the input

of glucose (X1) and output of glycerol (X3) and ethanol (X4).
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Chapter 2 2.5. Clustering elementary modes using a test yeast model

The stoichiometric coefficients have not been shown on the graphical represen-

tation for the model (Figure 2.8). Even for simple models the graphical layout

of the network relies on a compromise that aims to reduce the overlap in spatial

placement to increase visual interpretation. Furthermore, the interconnectivity

between nodes makes it very difficult to include additional information such as

stoichiometric coefficients. Owing to this, on inspection of Figure 2.8 it seems that

there is a stoichiometric inconsistency between R2 and R5, since S1 −→ S2 and S1

−→ S2 + S4 + X2, respectively, are not valid together. The actual reaction equa-

tion for R5 is 3 S1 −→ 2 S2 + S4 + 3 X2, and all metabolites in the remainder of the

reactions have a stoichiometric coefficient of 1. Knowledge of this stoichiometric

information will help in the interpretation of the 9 modes yielded from the EMA

(Figure 2.9) since it indicates to which proportion different reactions must be used

together to balance internal metabolites, and thereafter, for the determination of

the net production or consumption of external metabolites.

Figure 2.8 – Reaction schematic of the test yeast model. Reaction reversibility
is as indicated in the diagram and internal and external metabolites have been
highlighted in green and red, respectively.
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Chapter 2 2.5. Clustering elementary modes using a test yeast model

Figure 2.9 – Illustration to show the 9 EMs generated from the test yeast
model in Figure 2.8. All modes are irreversible and reaction directionality has
been indicated on the graphical representation for individual modes. Modes have
been ordered according to similarities in pathway usage.

2.5.1 Visualisation of clustering results

All hierarchical trees were generated using an agglomerative algorithm imple-

mented in ScrumPy using angle as a distance measure to make use of its ability to

cluster modes with similar overall profiles. Subsequently, two methods for labelling

the branch information on the generated dendrograms will be compared. Initially,

the conventional dendrographic visualisation with textual branch descriptions re-

lating to the clustered data will be presented followed by a coloured visualisation

method representing the original data matrix as a substitute for the textual infor-

mation.
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Chapter 2 2.5. Clustering elementary modes using a test yeast model

Figure 2.10 – Dendrogram to show the EMs from the test yeast model whereby
modes were clustered by angle according to their (a) reaction usage and, (b) net
external metabolite usage. Coloured branches highlight clusters containing the
same modes in both (a) and (b).

2.5.1.1 Dendrograms

An EM can be best described in terms of its reaction profile and/or its net sto-

ichiometry. Therefore, two dendrograms were obtained by clustering the entire

EMs reaction (Figure 2.10(a)) and stoichiometry matrices (Figure 2.10(b)). The

ScrumPy Newick format output representing each dendrogram was written to file

and then imported into MEGA for subsequent visualisation and modification.

2.5.1.2 Matrix visualisation

Eisen et al. [88] introduced a visualisation method whereby a dendrographic rep-

resentation of their gene expression data is appended to a colour coded matrix2 to

indicate the clustered relationships among genes. Unchanged genes were coloured

black (=0) and increasing intensities of red and green were used to indicate in-

creasing ratios of overexpressed (>0) and underexpressed genes (<0), respectively.

An efficient dimension reduction was achieved using this method to identify pat-

terns of interest amongst their high dimensional data. Similarly, it was of interest

2 a reordered copy of the primary data table used to generate the clustering output.
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Chapter 2 2.6. Discussion

Figure 2.11 – Dendrogram and matrix visualisation for the EMs from the test
yeast model, as generated in Figure 2.10, however, branch information in (a) and
(b) has been replaced with the corresponding EM reaction and stoichiometry
matrix, respectively. Matrices have been coloured according to coefficient value
i.e. =0 (black), <0 (green) and >0 (red).

to determine whether a dendrogram-coloured matrix graphic would be useful to

interpret clustered EMs datasets. The original EMs matrix used to generate the

clustering output can be reordered to reflect the structure in the dendrogram and

coloured according to the coefficients in the matrix i.e. =0 (black), <0 (green)

and >0 (red).

2.6 Discussion

The large number of modes yielded from an EMA are manually interpreted in

an individual fashion and are usually chosen based on their participation in the

objective process that was defined when building the model (e.g. production of

ethanol from glucose). Therefore, of particular interest to this project was the

development of more globally applied and informative post-analytical methods
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that can be used to interpret EMs datasets. Hierarchical clustering techniques

were chosen for their ability to group and, subsequently, investigate both the large-

and small-scale features of the dataset.

As highlighted in Figure 2.9, 9 modes were found for the test yeast anaerobic

model described in Section 2.5. Such a side-by-side graphical display is possible

for the entire EM dataset only because the number of generated modes is small.

However, for larger EMs datasets it simply not possible to graphically display and

visually inspect all the pathway variations that may arise, although, this may be

possible for a handful of modes of interest. Nevertheless, in the first instance,

it is worthwhile clustering the output from the EMA to reveal groups of modes

that are using reactions in a similar fashion. Thereafter it is possible to select

and visualise pathway representatives of individual clusters. As shown in Figure

2.10(a), clustering by reaction profile produces three distinct clusters:

• Cluster 1

Contains two pathway variations for the production of external metabolite

X3 from X1 or from X1 and X2. The former and latter stoichiometries arise

due to the lack of usage and usage of reaction R5, respectively.

• Cluster 2

Similar to cluster 1 the modes in this cluster are paired into two groups

according to their usage of R5. The first group (Modes 6 and 7) indicate

routes for the production of X2, X3 and X4 from X1 whereas the second

group (Modes 4 and 5) highlights the production of X2 and X4 from X1.

• Cluster 3

All the modes in this cluster utilise R2 in the backwards direction to recycle

internal metabolite S1 whilst using R5 in conjunction with the absence or

backwards usage of R3. Three separate routes exist for the production of X1

and X2, X3 and X2 or just X2.

With the exception of futile cycles3 (Section 1.6.3.1), both the stoichiometric

and reaction information are relative for different modes since the net usage of

metabolites is determined by the reactions which are used to consume and pro-

duce them. This cannot be demonstrated better than by comparing the clusters

obtained from the dendrograms generated by clustering in terms of reaction profile

(Figure 2.10(a)) and net stoichiometry (Figure 2.10(b)). However, for larger mod-

els the vast number of reaction or stoichiometric combinations that may occur

implies that the pair of dendrograms obtained by clustering according to reac-

tion profile and net stoichiometry may not be comparable. This simply indicates

3 modes that balance internal metabolites without a net external metabolite usage.
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that neither clustering method is superior and are most informative when used

alongside each other.

The coloured matrix representations of Figure 2.10, as shown in Figure 2.11

can be used to highlight the importance of replacing purely textual descriptions

of EMs on the branches of the dendrogram with a visualisation that indicates

their overall usage of reactions or external metabolites, respectively. Using Figure

2.11(a) as an example, at first sight, it becomes immediately apparent that:

• all modes use R1 in a positive direction.

• the modes in the first two clusters differ in the alternating and opposite use

and disuse of R2 and R5.

• all the modes in the final cluster use R2 in a negative direction and R5 in a

positive direction.

Although the observations listed above were also made whilst discussing the den-

drogram in Figure 2.10(a) earlier in the section, even for a model of this size, it

is much easier to come to these conclusions whilst looking at a visualisation as

opposed to comparing textual descriptions. Additionally, global variations for the

usage of reactions between clusters of modes becomes more apparent (e.g. re-

action(s) used in a positive direction in one cluster of modes and in a negative

direction in all other clusters). Following on from this, local variations in individ-

ual clusters of interest can be focused upon and may be used to further interpret

and characterise the modes. Therefore, in summary, the clustering and subsequent

visualisation methods as applied to the EMs dataset from the test yeast anaerobic

model have a number of potential benefits for:

• grouping EMs according to their similarities in reaction or stoichiometric

profiles.

• enabling the researcher to acquire a global view of the functioning of the

modes. This is advantageous for obtaining an unbiased representation of all

the modes generated. Groups of EMs with similar net metabolic conversions

can be investigated together to reduce the time needed for post-analytical

investigations.

• interpreting the way in which different reactions are being utilised by groups

of modes.

• an effective dimension reduction by using a matrix visualisation and dendro-

gram combination to aid in both the global and local interpretation of the

modes in the tree.
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Chapter 2 2.6. Discussion

Taking these advantages into account, hierarchical clustering techniques with ap-

plication to EMA will also be carried out in the next chapter on a more extensive

model of central metabolic pathways. Consequently, this will be used as a sec-

ondary validation as to their usefulness for the interpretation of EM datasets and,

ultimately, to a gain in biochemical knowledge for the model in question.
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CHAPTER 3

S. erythraea Model of Central

Metabolism

3.1 Introduction

Saccharopolyspora erythraea [102] is a gram-positive, soil-dwelling bacterium that

is used industrially to produce the clinically important polyketide antibiotic ery-

thromycin. Erythromycin is a potent inhibitor of ribosomal protein synthesis in

bacteria and has been the basis of much interest in the drug industry [103]. In mi-

crobial metabolism, the flux through pathways involving secondary metabolites is

insignificant when compared to total carbon metabolism. To date, through fermen-

tation experiments with S. erythraea it has been reported that during the growth

phase 2-oxoglutarate is exported into the extracellular environment whereas dur-

ing the stationary phase this process is reversed whilst producing erythromycin

(University College London, personal communication). The exact reason for this

behaviour is not yet known. However, analogous to the behaviour of lactic acid

producing Lactobacilli, the acidic media conditions created by transporting 2-

oxoglutarate out of the cell may reduce competitive growth from other bacteria.

Due to glucose exhaustion upon entering the stationary phase, the 2-oxoglutarate

may then be taken back into the cell as a replacement carbon source. Therefore, it

would be of interest to investigate the flow of carbon through primary metabolites

such as 2-oxoglutarate.

3.2 Model reconstruction

A structural model was reconstructed manually using MetaCyc pathway map visu-

alisations as a reference for central metabolic pathways (‘.spy ’ model in Appendix

C). It was built to investigate the production of 2-oxoglutarate from glucose, ex-

clusively via central metabolism. At this point it is worth noting that the model

definition was not extrapolated from the genome sequence of S. erythraea but from

its predicted biochemical capabilities. The final version of the model contained 34

reactions and 45 metabolites. The pathways included in the model are illustrated
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in Figure 3.1, and their corresponding reaction sets are listed below:

• Glycolysis

Responsible for the net conversion of glucose into pyruvate (R1–R11). Pyru-

vate is subsequently fed into the pyruvate dehydrogenase complex (R22)

which makes acetyl-CoA available to the TCA cycle.

• Pentose phosphate pathway

An alternative pathway to glycolysis for oxidising glucose, in this case cou-

pled with NADPH synthesis. Consists of oxidative (R12 and R13) and non-

oxidative branches (R14–R19).

• Entner-Doudoroff pathway

Uses the oxidative pentose phosphate pathway along with two reactions of

its own (R20 and R21) for the phosphorylation and subsequent cleavage by

an aldolase of 6-carbon sugars into two 3-carbon intermediates (i.e. pyruvate

and glyceraldehyde-3-phosphate).

• TCA cycle

A component of central metabolism that operates under various conditions,

the reactions of the TCA cycle yield three important precursor metabolites,

2-oxoglutarate, succinyl-CoA, and oxaloacetate along with energy and re-

ducing equivalents (R23–R32).

• Glyoxylate cycle

Bypasses reactions of the TCA cycle which evolve CO2 and conserves 4-

carbon compounds for biosynthesis (R33 and R34).

Metabolites were declared external (Section 1.2.1) based on the following cri-

teria. Firstly, two transport reactions (R1 and R27) were included in the model for

the metabolites involved in the objective process that was defined when building

the model (i.e. exchange of glucose and 2-oxoglutarate). Other carbon exchange

metabolites including CO2 and HCO−
3 were also made external. Secondly, those

metabolites that are likely to be in constant exchange with the extracellular en-

vironment in living cells (e.g. water and protons). Thirdly, cofactor metabolites

such as ADP/ATP and NADP+/NADPH responsible for energy and reducing

power, respectively. With the use of the relevant interconverting reactions, cofac-

tor metabolites would usually be conserved at steady state if kept internal. As

model size increases, cofactor metabolites can be made external to decrease the

connectivity within the model to aid analytical procedures such as EMA (Sec-

tion 1.6.3.1). However, for the purpose of this investigation they were defined as

external in order to directly derive net energy and reducing yields from the net

stoichiometry of the EMs to be generated later.
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Figure 3.1 – Reaction schematic of the minimal 2-oxoglutarate model. All
external metabolites except for water and proton have been included in the di-
agram. Carbon exchange metabolites and energy and reducing equivalents have
been highlighted in green and red, respectively. For purposes of clarity, coen-
zyme A is the only internal metabolite that has been excluded and is consumed
in reactions 22 and 28, and produced in reactions 24, 29 and 34. As indicated in
the figure, the metabolites in all the reactions in the model have a stoichiomet-
ric coefficient of 1. See List of Abbreviations for metabolite abbreviations and
Appendix D for a list of enzymes as correlated to the reactions in the figure.
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3.3 General model analysis

As would be expected from a hand-built model of this size there are no orphan

metabolites or dead reactions, and all reactions were atomically balanced. En-

zyme subsets analysis revealed 10 subsets containing more than one reaction and

6 involving single reactions (Figure 3.2). Table 3.1 shows the obtained list of en-

zyme subsets along with their relationship to the individual reactions in the model

(Figure 3.1) and, furthermore, the pathways they are involved in. The largest

subset was found to comprise six reactions forming the non-oxidative component

of the pentose phosphate pathway. The reactions that form the oxidative pentose

phosphate pathway, Entner-Doudoroff pathway and glyoxylate bypass were also

separated into subsets of their own. The lower linear part of glycolysis formed

a single subset, however, the upper glycolytic reactions were found to consist of

one single and two multiple reaction subsets due to the pathway branching that

occurs for the entry of glucose-6-phosphate into the pentose phosphate pathway.

The TCA cycle was found to have 7 subsets due to the branching that occurs from

the entry and exit of metabolites involved in the glyoxylate cycle. The biological

significance of these results will be discussed later.

A total of 55 EMs were found using the EMs algorithm. The visualisation

techniques in the next section will be used to further interrogate and classify the

EMs dataset.

3.4 Visualisation of clustering results

A logical way of viewing complex datasets is first to scan and survey the large-

scale features and then to converge on the interesting details. Initially, a series of

dendrograms will be generated according to differing criteria of interest within the

entire EMs dataset. Thereafter, the matrix visualisation method introduced in Sec-

tion 2.5.1.2 will be used for further interrogation of the smaller scale features. All

hierarchical trees were generated using an agglomerative algorithm implemented

in ScrumPy using angle as the distance measure (Section 2.4.3). The MEGA clus-

tering software was subsequently used for visualisation and modification of the

dendrograms which were exported from ScrumPy in Newick format.

3.4.1 Dendrograms

A pair of dendrograms were obtained by clustering the entire EMs reaction (Figure

3.3) and stoichiometry matrices (Figure 3.4). Two additional dendrograms were

generated by clustering a condensed EMs stoichiometry matrix according to carbon
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Chapter 3 3.4. Visualisation of clustering results

Figure 3.2 – Reaction schematic of the minimal 2-oxoglutarate model with
enzyme subsets highlighted. Reactions with black reversibility arrows indicate
reactions that are in a subset of their own. See Table 3.1 for the list of pathways
as correlated to the subset abbreviations used in the illustration and Figure 3.1
to derive the net external metabolite usage for each subset.
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Pathway Reaction Pathway Subset

Subscript Abbreviation

Upper glycolysis

1
UG1

2
3 UG2
4

UG35
6

Lower glycolysis

7

LG
8
9
10
11

Oxidative pentose phosphate
12

OPP
13

Non-oxidative pentose phosphate

14

NPP

15
16
17
18
19

Entner-Doudoroff
20

ED
21

Pyruvate dehydrogenase 22 PD

Citric acid cycle

23 TCA1
24

TCA2
25
26 TCA3
27 TCA4
28

TCA5
29
30

TCA6
31
32 TCA7

Glyoxylate cycle
33

GLX
34

Table 3.1 – Table to show the enzyme subsets for the minimal 2-oxoglutarate
model as related to individual pathways. See Figure 3.1 for reaction subscripts
and Figure 3.2 for a graphical representation of the subsets. The pathway subset
abbreviations will be used in the clustering results presented in the next section.
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entities (Figure 3.5) and energy and reducing equivalents (Figure 3.6), respectively.

On further inspection of Figure 3.5, the modes were classified into five distinct

groups according to their net carbon stoichiometry, and as indicated in the list

below each group was given a different branch colouration for ease of identification

in all the generated dendrograms, those that:

1. produce 2-oxoglutarate from glucose (24).

2. consume 2-oxoglutarate to produce carbon dioxide and/or bicarbonate (13).

3. consume glucose to produce carbon dioxide and/or bicarbonate (11).

4. others that do not involve glucose or 2-oxoglutarate (5).

5. produce 2-oxoglutarate from carbon dioxide and/or bicarbonate (2).

3.4.2 Matrix visualisation

As introduced in the previous chapter (Section 2.5.1.2), a dendrogram-matrix vi-

sualisation method will be employed to further investigate the clustering results.

It was applied firstly, to all the EMs from the minimal model according to their net

external metabolite usage of carbon entities (Figure 3.7); secondly, to the modes

that produce 2-oxoglutarate from glucose according to their reaction usage (Figure

3.8), and thirdly, to the 8 modes that produce 2-oxoglutarate from glucose without

carbon dioxide fixation according to their reaction usage (Figure 3.9).

3.5 Discussion

The results from the enzyme subsets analysis were very informative. Since an

enzyme subset is a group of reactions operating at steady state, therefore, an EM

also calculated at steady state is simply a combination of enzyme subsets with a

net balance of internal metabolites. As shown in Figure 3.2, the classical pathways

included in the model were found to form distinct subsets which were useful for

further analysis of the EMs dataset. It is much easier to decipher the biological

meaning of an EM if its component reactions are converted into their corresponding

enzyme subsets, and described in terms of the pathways they operate in.

In vivo it would be expected that all the reactions within the pathways men-

tioned (i.e as separated into enzyme subsets) would be expected to be active at

the same time. A study was recently carried out within our group to reinforce

the link between the co-regulated gene expression of groups of enzymes according

to the metabolic requirements in E. coli [43]. An important outcome from the
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Figure 3.3 – Dendrogram to show all the EMs from the minimal 2-oxoglutarate
model clustered by angle according to their reaction usage, and collapsed into
their subsets. See Table 3.1 for pathway subset abbreviations. Branch colouration
indicates differing net carbon stoichiometries as explained in Section 3.4.1. Flux
values have not been included for purposes of clarity. Individual clusters have
been numbered for interpretative purposes and will be referred to in the discussion
section.
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Figure 3.4 – Dendrogram to show all the EMs from the minimal 2-oxoglutarate
model clustered by angle according to their net external metabolite usage. Branch
colouration indicates differing net carbon stoichiometries as explained in Section
3.4.1. Individual clusters have been numbered for interpretative purposes and
will be referred to in the discussion section.
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Figure 3.5 – Dendrogram to show all the EMs from the minimal 2-oxoglutarate
model clustered by angle according to their net external metabolite usage of
carbon entities. Branch colouration indicates differing net carbon stoichiome-
tries as explained in Section 3.4.1. Individual clusters have been numbered for
interpretative purposes and will be referred to in the discussion section.
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Figure 3.6 – Dendrogram to show all the EMs from the minimal 2-oxoglutarate
model clustered by angle according to their net external metabolite usage of
energy and reducing equivalents. Branch colouration indicates differing net car-
bon stoichiometries as explained in Section 3.4.1. Individual clusters have been
numbered for interpretative purposes and will be referred to in the discussion
section.
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Figure 3.7 – Dendrogram and matrix visualisation for the EMs from the mini-
mal 2-oxoglutarate model as generated in Figure 3.5, however, branch information
has been replaced with the corresponding EM stoichiometry matrix. Matrix has
been coloured according to coefficient value i.e. =0 (black), <0 (green) and >0
(red).
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Figure 3.8 – Dendrogram and matrix visualisation to show the reaction usage
of the 24 modes that produce 2-oxoglutarate from glucose. Modes were clustered
by angle according to their reaction usage. Reactions have been boxed to indicate
enzyme subsets (Table 3.1). Matrix coefficients have been coloured according to
value i.e. =0 (black), <0 (green) and >0 (red).

Figure 3.9 – Matrix visualisation to show the reaction usage of the 8 modes that
produce 2-oxoglutarate from glucose without carbon dioxide fixation. Reactions
have been boxed to indicate enzyme subsets (Table 3.1). Matrix coefficients have
been coloured according to value i.e. =0 (black), <0 (green) and >0 (red).
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analysis was that enzyme subsets may be functional units for performing coordi-

nated metabolic regulation by sharing some common regulation at the level of the

genome. Therefore, the results from the enzyme subsets analysis were encourag-

ing not only for the study in question but also as an indicator of their potential

association with gene expression studies.

The remainder of this section will focus on the application of the described

clustering techniques for the biological interpretation of the EMs dataset from

the minimal model. For the dendrogram clustered according to reaction usage in

Figure 3.3, a number of cluster-specific inferences can be made:

• Cluster 1

The shortest mode (Mode 44) was found in this cluster and it was found to

use pyruvate dehydrogenase (R22), reverse TCA and glyoxylate cycle reac-

tions to produce bicarbonate using carbon dioxide with no net production of

energy or reducing equivalents. The remainder of modes in this cluster all

utilised glucose-6-phosphate isomerase (R3) in a negative direction and the

entire pentose phosphate pathway. Those that included glucose consump-

tion also included lower glycolytic reactions to convert the glyceraldehyde-3

phosphate generated from the pentose phosphate pathway into pyruvate.

• Cluster 2

All the modes in this cluster use TCA cycle reactions in the backward di-

rection to produce 2-oxoglutarate. The shortest mode identifies a route

that completes a reverse turn of the TCA cycle for the production of 2-

oxoglutarate from carbon dioxide and a net consumption of ATP, NADH

and FADH2.

• Cluster 3

All of the modes in this cluster use pyruvate dehydrogenase (R22), citrate syn-

thase (R24) and aconitase (R25) with the majority producing 2-oxoglutarate

from glucose. The differing net stoichiometries can be attributed to the

pathway variations used to generate pyruvate for the pyruvate dehydroge-

nase reaction. As elaborated later in this section, this cluster consists of the

majority of modes that produce 2-oxoglutarate from glucose without carbon

dioxide fixation (Figure 3.9).

• Cluster 4

All of the modes in this cluster use 3 upper glycolytic reactions (R3–R5), lower

glycolysis, and the non-oxidative pentose phosphate pathway in conjunction

with the reverse Entner-Doudoroff pathway. Reverse usage of TCA cycle
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reactions is also noted for most modes in order to completely oxidise 2-

oxoglutarate to carbon dioxide and bicarbonate.

From the list above it has been demonstrated that clustering by reaction pro-

file identifies patterns of similar pathway usage that reflect the stoichiometric con-

straints imposed at steady state. Furthermore, clustering by net stoichiometry is

another means with which to group modes to investigate metabolic aspects such

as metabolite yield. Figure 3.4 shows the EMs dataset from the minimal model

clustered according to net carbon, energy and reducing equivalents. Most of the

modes in the first cluster produce 2-oxoglutarate from carbon derived from ei-

ther glucose, carbon dioxide and/or bicarbonate and consume ATP, NADH and

FADH2 in the process. Although the energy and reducing value of these modes

may not be of interest, the fact that they form a distinct cluster is encouraging

whereby user discretion decides whether they are investigated further or not. On

the other hand, modes with the highest yield of 2-oxoglutarate, and energy and

reducing equivalents were found in the fifth cluster. Further refinement of the cri-

teria used to generate the dendrogram in Figure 3.4 can be used to cluster modes

according to specific moieties of interest. Consequently, a clustering was carried

out without the energy and reducing equivalents in the original EMs stoichiometry

matrix. From the colouration in the resulting dendrogram (Figure 3.5) it follows

that restricting the clustering criteria based on the metabolic properties of interest

provides an improved classification according to the yield of just carbon entities.

Additionally, the coloured matrix counterpart of Figure 3.5 (Figure 3.7) can be

used to highlight the usefulness of a descriptive visualisation as opposed to textual

information being conveyed on the branches of the dendrogram. The patterns in

the visualisation immediately indicate which category of modes are present in a

cluster, and which modes are using which metabolites.

Excluding the glucose transport reaction (R1) there were four other reactions

that were found to be common to all those modes utilising glucose to produce

2-oxoglutarate (Figure 3.8). These four glycolysis reactions were found in the

same enzyme subset catalysing the net conversion of glyceraldehyde-3-phosphate

to pyruvate (R6–R10). In Figure 3.8, a block type colouration is immediately visible

for modes in different clusters. With the use of this representation it is much easier

to understand not only how the modes have been clustered but also to visualise

the potential pathway variations that can occur within each cluster. On the right

hand side of the matrix a recurring ladder-like pattern is immediately noticeable

for a group of 16 modes. Regardless of the pathway used to obtain pyruvate,

there can be four possible variations in terms of the TCA and glyoxylate cycles to

produce 2-oxoglutarate from glucose, including:
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1. directly from the first few reactions in the TCA cycle (R23–R27).

2. without pyruvate carboxylase (R23) but forward usage of most TCA cycle

(R24–R27 and R30–R32) and glyoxylate cycle reactions to recycle oxaloacetate.

3. without pyruvate carboxylase (R23) but usage of TCA cycle reactions in the

forward (R24, R25, R27 and R32) and backward (R28 and R29) directions, and

the glyoxylate cycle to recycle oxaloacetate.

4. with the usage of TCA cycle reactions in the forward (R23–R25 and R27)

and backward (R28 and R31) directions, and the glyoxylate cycle to recycle

oxaloacetate.

Most of the modes that produce 2-oxoglutarate from glucose involved the fixa-

tion of external carbon dioxide. Interestingly, only 8 modes were found to produce

2-oxoglutarate by utilising carbon derived exclusively from glucose. Using the

coloured matrix representation of these modes in Figure 3.9, a number of infer-

ences can be made. Firstly, there are 10 reactions common to all the modes. They

include the glucose import (R1) and 2-oxoglutarate export (R27) reactions along

with lower glycolysis (R7–R11), pyruvate dehydrogenase (R22) and the top half

of the TCA cycle (R24 and R25). Secondly, there are two modes which use the

phosphoglucose isomerase catalysed reaction (R3) in a backwards direction. These

two modes identify the complete oxidation of glucose to 2-oxoglutarate using the

typical pentose phosphate and glycolytic pathway reactions, with or without the

glyoxylate cycle. The mode involving the glyoxylate cycle (Mode 6) was found to

have the highest yield within the entire EM dataset for the production of energy

(3 ATP) and reducing equivalents (9 NADH, 18 NADPH and FADH2). How-

ever, the carbon utilisation indicated that 3 molecules of glucose were required

per 2-oxoglutarate formed with the remaining carbon given off as carbon dioxide.

Thirdly, on further inspection, all the typical routes from glucose consumption

to 2-oxoglutarate production via central metabolism can be identified (i.e. odd

numbered rows) and include:

• pentose phosphate pathway, lower glycolysis, pyruvate dehydrogenase and

the first few reactions of the TCA cycle.

• upper and lower glycolysis, pyruvate dehydrogenase and the first few reac-

tions of the TCA cycle.

• upper and lower glycolysis, pentose phosphate pathway, pyruvate dehydro-

genase and the first few reactions of the TCA cycle.
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• oxidative pentose phosphate pathway, Entner-Duordoff pathway, lower gly-

colysis, pyruvate dehydrogenase and the first few reactions of the TCA cycle.

Fourthly, there is a notable repeat in the colouring of Figure 3.9 which can be

attributed to the pathways listed above, in alternation with their glyoxylate cy-

cle counterparts. To generate oxaloacetate, steady state constraints restrict the

glyoxylate cycle modes to bypass pyruvate carboxylase (R22) and instead use the

glyoxylate cycle in conjunction with TCA cycle reactions (R28–R30). Overall the

modes for the production of 2-oxoglutarate from glucose seem to reflect those that

would be viable in S. erythraea. The combination of pathways that are active

within a mode at any one time highlight expected biochemical possibilities. To

keep with the objectives of building the minimal model the next step will be to

confirm all of the reported findings with the genome-scale model of S. erythraea.
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CHAPTER 4

Reconstruction of Genome-Scale

Metabolic Networks

4.1 Introduction

In recent years there has been a shift in biology from a component-based perspec-

tive to a systems view of the cell [104]. Consequently, the amount of information

available on metabolic pathways for different organisms is increasing very rapidly

due to the unprecedented increase in the number of sequenced genomes - many of

which are microbial. However, it has become increasingly clear that knowing the

complete set of genes that code for an organism is not sufficient for understanding

how it is biochemically organised. One approach to understanding the molecu-

lar physiology of an organism is to reconstruct genome-scale in silico models of

metabolism based on its available genome annotation and biochemical literature

[18]. The initial reconstruction is obtained through sequence similarity searching

for all the genes that code for metabolic enzymes and, subsequently identifying the

reactions that all of these enzymes catalyse [105] (Section 4.2). To this end, the

low data requirements for structural modelling techniques and the relative spar-

sity of kinetic information makes them especially attractive for the investigation

of genome-scale models.

Constraint-based metabolic models have been reconstructed for several well-

studied organisms (reviewed in [19]) including E. coli [20], H. influenzae [74], H.

pylori [106], and S. cerevisiae [73]. Automated methods for the genome-scale re-

construction of metabolic models (Section 4.3) are only sufficient for generating

draft-quality networks with some missing functionality due to gaps in the genome

annotation (Section 4.4.2). Moreover, the primary extraction of biochemical infor-

mation from online repositories (Section 4.2) is by no means standardised or bio-

chemically consistent, ultimately, leading to further complications and the need for

extensive manual intervention (Section 4.5.2). On the whole, in terms of accuracy,

analyses carried out on rough models can only produce rough predictions. This

chapter aims to address the process of building genome-scale structural models,

the problems encountered therein and potential steps that can be taken to improve

64
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Figure 4.1 – Diagram to show the linkage of information between different types
of biological databases. Databases that contain data about specific biochemical
entities have been highlighted in yellow, and arrows indicate the primary flow of
information between databases.

the quality of the model in order to generate more reliable phenotypic predictions.

4.2 Online databases

The combination of reductionist as well as holistic experimentation has fuelled

the development of biological databases for the storage, curation and retrieval

of biochemical information. Furthermore, the revolution in computer technology

and memory storage capability along with the paralleled development of various

high-throughput data collection technologies has allowed for the simultaneous in-

vestigation of individual compounds, enzymes, reactions and their collective rep-

resentation in the form of pathways. The classification of biological databases

is often based on their biochemical content, however, extensive links are usually

provided to other databases for alternative or supplementary information.

Whereas enzyme databases archive information about enzymes and their prop-

erties, pathway databases contain a substantial amount of reaction data that is

tightly integrated with organism-specific genomic and proteomic information (Fig-

ure 4.1) (see Pathway Resource List†). Several excellent pathway databases are

available for the reconstruction of metabolic networks, whether small hand-made

models or genome-scale. There are two fundamental types of metabolic database:

general-purpose (e.g. KEGG† [107] and MetaCyc† [9]) and organism-specific (e.g.

EcoCyc† [11] and Saccharomyces Genome Database† [12]). Wittig and De Beucke-

laer proposed an analysis and comparison of existing metabolic pathway databases

[108].
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4.2.1 The KEGG database

KEGG represents the most comprehensive publicly-available bioinformatics re-

source of combined information on genes, proteins, metabolites, reactions and

pathways [8]. This information is divided into three main databases:

1. GENES

Primarily derived from publicly available resources (i.e. mostly NCBI RefSeq

[109]) and contains organism-related gene information and their functional

assignment for all complete genomes and some partial genomes.

2. LIGAND

Contains information about compounds, reactions and enzymes [110]. It is

composed of 6 other databases depending on the type of biochemical en-

tity. These are the COMPOUND, DRUG, GLYCAN, REACTION, RPAIR,

and ENZYME databases. Naming conventions and chemical structure stor-

age are based on standard formats and, as with any other entry in KEGG,

individual entries have their own unique identifier.

3. PATHWAY

A collection of manually drawn pathway maps to aid in the visualisation of

the enzymes and reactions participating in particular sections of metabolism

(e.g. glycolysis) [107]. Enzymes or reactions of interest can be superimposed

on the reference pathways already provided, which is particularly useful for

viewing organism-specific pathways of interest.

Where possible all entries in KEGG are interconnected to its other internal

databases. For example, the entry for water (KEGG identifier: C00001) also

has links to the ENZYME, REACTION and PATHWAY databases. Further-

more, links to external databases are integrated within the DBGET [111] inte-

grated database retrieval system available on the KEGG website. With regard to

organism-specific data there is a KEGG ORGANISMS section, which is further

divided into eukaryotic and prokaryotic subsections. The entire dataset stored in

the KEGG database or information regarding individual organisms can be down-

loaded in flat file format from the KEGG GENES ftp site†. As highlighted in

the next section, this makes it easier for the initial reconstruction of genome-scale

metabolic models since the association between genes, enzymes and reactions for

a particular organism are already defined.
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4.2.2 The BioCyc family of databases

BioCyc contains a collection of organism-specific databases and a general purpose

database called MetaCyc which forms a reference of enzyme, reaction and path-

way descriptions for over 1500 different organisms [9]. The databases are divided

into three tiers based on the quality of their annotation and ongoing curation ef-

forts. For example, tier 1 contains the EcoCyc database which is a highly detailed

metabolic pathway database that describes the genome and biochemistry of E.

coli. EcoCyc is the most advanced publicly available organism-specific database

and is the result of more than 20 person-years of effort to archive information re-

garding various aspects of its biochemistry [11]. The organism-specific databases

in tiers 2 and 3 were generated automatically by the Pathologic program [112],

with and without subsequent manual review and literature curation, respectively.

Complete organism-specific metabolic maps can be visualised separately with the

ability to select and view particular pathways of interest or to obtain a metabolic

overview. Extensive links are provided between internal database entries and to

external databases for additional literature and biochemical information.

The KEGG database is considered to be more popular with regard to its user-

friendly access and the quantity of data incorporated. However, the BioCyc suite

of databases, especially within the first two tiers, have a stringent curation pol-

icy with direct links to experimental evidence in the literature. BioCyc pathway

visualisations are arguably more interpretable since unique graphics are provided

for each possible pathway. On the other hand, KEGG only allows subsections of

pathways to be highlighted on reference visualisations which are already highly

intricate and lack an interpretable structure. On the whole, there are always prob-

lems, errors and inconsistencies within one single database and between different

databases. A more detailed analysis of the differences between KEGG and BioCyc

will be reported in Section 4.5 with relevance to building genome-scale metabolic

models.

4.3 Model reconstruction and tools

The reconstruction of genome-scale metabolic models can take advantage of well-

populated biochemical databases; they can be queried for information retrieval

and analysed with the use of computer programming languages. The initial steps

entail the identification of a procedure with which to reconstruct the model of

interest. Traditional model reconstruction techniques focus on a ‘bottom-up’ con-

cept whereby literature-derived biochemical knowledge is individually combined to

establish larger systems-level models [104]. With the availability of genome-scale
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data, modern methods permit ‘top-down’ approaches that begin with observations

at the network-level with the ability to subsequently refine and correct the initial

rough representations.

4.3.1 Reconstruction process

Given the genome sequence for an organism of interest and access to the necessary

databases and analytical tools, the general procedure for obtaining a list of all

enzyme catalysed reactions is as follows [113] (Figure 4.2):

1. Identification of the open reading frames (ORFs) or coding regions on a

genome sequence is carried out by sequence similarity alignments. In theory,

each ORF is aligned and compared with other sequences in the database

to identify genes in related species of known function. Popular algorithms

such as BLAST† [114] and FASTA† [115] can be used for these purposes and

provide a list of ‘best hits’ according to the level of similarity between the

aligned sequences.

2. Assigning EC numbers to the genes encoding enzymes that are likely to be

expressed in the organism by querying databases such as ExPASy† [116].

3. Correlating the list of EC numbers obtained in the previous step with their

associated reactions. General purpose pathway databases can be consulted

for these purposes since they encode the relationships between EC numbers

and their corresponding reactions.

The KEGG database directly provides information at all levels within this hier-

archy. For example, the ftp download site for the KEGG GENES section archives

organism-specific folders with flat files containing various levels of biochemical data

such as a list of EC numbers. Alternatively, there are a variety of software pro-

grams and analytical tools that have been developed to improve the quality of the

data yielded at individual steps or for the entire process described above (Section

4.4.2).

4.3.2 Enzyme profile databases

The most popular method for the functional annotation of genomes is based on the

homology assessment with data in primary sequence databases. However, there

are a number of issues with these approaches since it is difficult to determine the

ancestry (i.e. may have arisen due to gene duplication events as opposed to spe-

ciation) and substrate specificity of individual enzymes between species [117]. A

number of databases and associated methodologies have been developed to include
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Figure 4.2 – Diagram to show how the genomic sequence information from a
given organism can be used to reconstruct its corresponding metabolic network.

enzyme-specific profiles which contain additional discriminatory information such

as lists of polypeptides involved in certain enzyme activities e.g. PRIAM† [117],

metaSHARK† [118], PROSITE† database [119, 120] and InterPro† [121]. In par-

ticular, PRIAM is a method for automated enzyme detection in fully sequenced

genomes, based on the classification of enzymes in the ENZYME† database [122].

To summarise, the PRIAM methodology can be broken down into five primary

stages [117]. Firstly, the ENZYME databases is used to extract enzyme-specific

sequence collections that are all protein sequences which share the same catalytic

activity and thus, EC number. Secondly, the MKDOM program† [123] is used to

identify the longest homologous segments shared within each enzyme collection.

Thirdly, enzyme-specific rules are defined that determine which module(s) are re-

quired in order to infer the presence of a given enzyme. Fourthly, each of these

modules is represented using a position-specific scoring matrix or ‘profile’ gener-

ated using PSI-BLAST† [124]. Finally, all the enzyme-specific profiles generated

can then be used to search for the presence of enzymes in a genome. This step

involves a homology search between each protein and the PRIAM profiles using

RPS-BLAST [125], and further processing stages are carried out to generate a list

of predicted enzymes.

The PRIAM methodology was compared to manual curation efforts for the

functional annotation of the Sinorhizobium meliloti genome [117]. Out of 6204

proteins, 1460 were predicted enzyme activity, and 13 of those were found to be

bifunctional multienzymes. These 1460 predicted proteins corresponded to 660
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Figure 4.3 – Illustration to show the iterative process from the generation of a
hypothesis for a model, its in silico translation, and the refinements required to
improve its analytical usefulness. Adapted from [47].

different enzyme activities, emphasising the paralogy in the S. meliloti genome.

PRIAM only missed 39 enzyme activities out of the 532 identified by manual an-

notation and it predicted an additional 167 most of which were precise represen-

tations of incomplete EC numbers (e.g. 1.1.-.-). Therefore, the use of profile-based

methods such as PRIAM is advantageous to automatically recover a more precise

and abundant set of enzyme activities from complete genomes. The availabil-

ity of increased number of sequenced genomes will not only help to increase the

specificity of the existing dataset of profiles but also to help identify new enzyme

activities that were previously unrecoverable.

4.4 Modelling strategies

Once the aims for building a model have been defined, the next step is to decide

on the process with which it is going to be reconstructed. To reflect the properties

of the system as accurately as possible a combination of automatic and manual

procedures have to be used to produce genome-scale reconstructions. Initial au-

tomated reconstructions are susceptible to the quality of the annotation, many of

which are incomplete or based on other highly curated organisms. As described

in the following sections, an iterative refinement [18] of the model must be carried

out through a series of steps to improve the quality of the model (Figure 4.3).
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4.4.1 Model definition

As mentioned earlier, a preliminary list of metabolic reactions for a given organism

can be obtained from the annotated genome sequence and available biochemical

information. For mathematical modelling purposes, the reaction information has

to be translated into a format that is suitable for its storage, querying and anal-

ysis (e.g. ‘.spy ’ format) (Section 1.7.1). The necessary transport reactions have

to be defined for the exchange of internal and external metabolites between intra-

or intercellular compartments, respectively, and are usually defined based on the

physiological properties of the organism in question. The list of transporters ob-

tained at this stage is by no means complete and depends on the model verification

procedure introduced in the next section. Incorrect or incomplete assignment of

transport reactions can lead to gaps in the network which propagate into the an-

alytical process. The presence of a small number of cellular compartments makes

this task significantly easier for prokaryotes than eukaryotes.

4.4.2 Model interrogation

It is now a common notion that high-throughput methods sacrifice specificity for

scale. Although initial metabolic models will have some predictive capabilities, a

systematic verification has to be carried out in order to identify errors or incon-

sistencies within the annotation and/or individual database entries [105]. With

the aim of reconstructing a model that can accurately represent in vivo character-

istics, the validation procedure is possibly the most difficult and time-consuming

task [105, 126]. To a certain extent the amount of manual effort required depends

on the integrity of the initial network, which in turn depends upon the quality of

the annotation. Even so, all automatically created metabolic networks are inher-

ently incomplete and reactions are included based on three primary criteria:

1. The majority are derived from annotated genomic evidence available in path-

way databases and are usually included in traditional well-characterised bio-

chemical pathways. Although, it would be expected that reactions included

from these sources are satisfactory for modelling purposes, this is not the

case. As explained in Section 4.5.2.1, problems may arise through simple

database errors such as unbalanced reactions which once combined to form

a model can have the potential to give false confidence in the subsequent

structural analyses. Other potential database inconsistencies include reac-

tion reversibility and substrate specificity.

2. Those obtained from observations found in the literature, with the aim of

filling in those metabolic properties not obtained via the previous step [105].
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For example, if tyrosine is a non-essential amino acid for an organism then

any missing reactions (sometimes referred to as ‘gaps’) in the initial network

should be included to obtain a complete tyrosine-synthesis pathway. At this

stage, the biochemical capabilities of the organism are also assessed with a

view to defining all the transport mechanisms (i.e. for membrane diffusion,

pore diffusion or active transport of metabolites across the membrane or

between intracellular compartments); most of which do not have an EC

number and have to be defined manually.

3. Those supported by the metabolic demands of the reconstructed network and

that will require further experimental and/or genomic evidence. Reactions

of this type may not be participants in traditional biochemical pathways but

may be used to connect different pathways and for the use of different carbon

sources.

For less-studied organisms the genome plays a more significant role in network

reconstruction, and many of the enzymes are assigned based on sequence homology

and await biochemical characterisation. With the added complication of roughly

a quarter of all genes being species-specific, with, as yet, no known homologs,

it is inevitable that a substantial fraction of genes present in the genotype have

unknown function [127]. The identification of network gaps can be carried out by

assessing the coupling between experimental observations and the model’s ability

to simulate growth on specific biomass components (tyrosine example given in step

2, above) whilst other methods exploit the availability of highly curated metabolic

reconstructions to infer gene-reaction relationships in less characterised organisms

[128]. A number of computational tools are now available which use a variety

of techniques to help identify and fill the gaps created in automatically created

metabolic networks including metaShark† [118], AUTOGRAPH [128], SEED† [129]

and Pathway Tools [112] (reviewed in [130]).

One of the simplest methods for gap identification involves loading the ini-

tial model into a stoichiometry matrix and examining the connectivity within the

model. Identification of network anomalies such as orphan or dead-end metabolites

(Section 1.6.1.2) can be used to bridge the connectivity within the model by amend-

ing reversibility criteria (i.e. for reactions associated with dead-end metabolites) or

by including additional reactions (Section 4.5.2.2). For structural analytical pur-

poses (Section 4.4.3), the reactions within a genome-scale reconstruction should

be stoichiometrically correct and essential pathways should be as complete as pos-

sible [19]. Therefore, verification of the initial metabolic reconstruction is a very

important process that involves manual curation, literature and/or experimental

confirmation and analytical feedback in an iterative manner.
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4.4.3 Model analysis

After the development and evaluation of a validated metabolic model in the con-

text of the available literature and biochemical information [105], it needs to be

described mathematically. A model in this form can then benefit from computa-

tional tools for the analysis and integration of the data at the systems-level. The

analytical phase of the modelling process is very important for updating the initial

versions of the model. Refinement of the stoichiometric model in this manner can

then help to formulate alternate hypotheses in the next iterative cycle - at each

turn increasing its accuracy and reliability. Once in an acceptable form, various

structural analytical procedures (reviewed in [19]) may be used to explore the

properties of the network and its ability to reproduce and predict physiological

behaviour derived from in vivo experimental data [131].

Structural analytical procedures on genome-scale models may be carried out

from a graph-theoretical point of view to study the connectivity and global charac-

teristics of the metabolic network [5, 31, 58] (Section 1.6.1.1). Alternatively, path-

way analysis methods such as enzyme subsets analysis (Section 1.6.2.2) have been

applied to the entire E. coli metabolic network [43]. In contrast, other pathway-

based techniques including elementary modes analysis [58, 60, 61] and extreme

pathways analysis [64, 132] can only be applied to organism-specific sub-networks

(e.g. sugar metabolism) due to the combinatorial complexity of larger genome-scale

models [40] (Section 1.6.3). Pathway analysis techniques permit the measurement

of the inherent redundancy within metabolic networks which in turn is important

for defining the degree of network robustness; with an end to improving metabolite

yields, drug targeting or to investigate the effect of gene knockouts.

Specification of additional optimisation criteria for the genome-scale model has

enabled flux balance studies (Section 1.6.3.4) to quantitatively simulate metabolic

capabilities such as maximum growth rate [69, 73, 74] and the effect of genetic

manipulations [20, 68, 69, 76] for various organisms. Any discrepancies between

predicted genotypes and experimental phenotypes for genetic perturbations can

be used to evaluate and improve the gene annotation [126]. For example, false

negatives or scenarios where there is experimental growth which is not the case

in silico may suggest missing reactions possibly catalysed by additional isozymes

[133]. On the contrary, false positives can be used to implicate reactions that have

been incorrectly included in the metabolic model [133].

Without the need for kinetic measurements both pathway- and optimisation-

based analyses coupled with experimental confirmation can yield important in-

sights into the completeness of the metabolic model and, ultimately, to guide

metabolic engineering studies. Once again, it is necessary to emphasise the need for
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an extensive validation process before the outcomes of the former statement may

be accomplished, especially for automatically generated organism-specific models.

The following sections will highlight a recent group effort to address those issues

that pose significant problems whilst generating genome-scale metabolic models

from well known databases, their potential solutions and future incentives to au-

tomate the model reconstruction process.

4.5 Automated reconstruction of metabolic net-

works: problems

In the course of this project a publication [134] (paper included in Appendix F)

was written detailing the characterisation and documentation of those types of

error and inconsistencies that pose problems when building structural models from

the two most popular pathway databases, KEGG and BioCyc. It was authored

by M.G. Poolman, and the database analyses were collectively carried out by

B.K. Bonde and A. Gevorgyan and myself, under the guidance of M.G. Poolman

and D.A. Fell. With the personal insights having been gained by performing

the BioCyc analyses, the results obtained in the publication will be categorised

and, subsequently, discussed further. For this purpose, the following sections will

highlight a number of challenges faced when carrying out genome-scale structural

modelling with particular reference to the database problems/errors that have to

be initially overcome.

4.5.1 Introduction and methods

Using pathway databases, the complement of enzymes present in a given organism

can be accessed for building genome-scale metabolic models. While such databases

serve as a primary resource for building metabolic models, the errors within them

pose a new challenge. Firstly, the quality of this data is relatively poor since the

pace at which genomes are being sequenced is a lot faster than the studies un-

derway to annotate them. Secondly, each database often contains heterogeneous,

incomplete, or inconsistent data that differ widely in form and content. Thirdly,

the multiplicity of information sources can be overwhelming for researchers who

simply wish to find information about genes or pathways of interest in a standard-

ised fashion.

The reaction lists for five well annotated prokaryotes were derived from each

database (i.e. KEGG and BioCyc) to build whole organism structural models: E.

coli K-12 (eco), Mycobacterium tuberculosis H37Rv (mtu), Vibrio cholerae N16961

(vch), H. pylori 26695 (hpy) and Bacillus anthracis Ames (ban). The correspond-
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ing data files were acquired for each organism via the file download interface pro-

vided by the relevant database. Additionally, ‘whole database’ structural mod-

els containing all the reactions in KEGG and MetaCyc were also generated for

a side-by-side comparison of the reaction set within each database. No exter-

nal metabolites were defined and all reactions were regarded as irreversible. The

Python programming language was used for direct database querying, automatic

model generation, and graph analysis. The metabolic modelling package ScrumPy

(Section 1.7.1) was used for data parsing and model interrogation. The graph

connectivity analysis was based on the representation of the model’s stoichiometry

matrix as a bipartite graph (Section 1.6.1.1).

For the purposes of the study, the errors propagated from pathway databases

to the model building process can be categorised as database-level or systems-level.

The former errors are due to poor data quality (e.g. wrong reaction stoichiometry)

while the latter arise while studying large metabolic systems (e.g. orphan metabo-

lites). Based on these criteria, a classification of the specific problems reported in

Table 4.1 will be provided in the next section.

4.5.2 Results and discussion

Apart from those errors that are explicitly reported in the text, all results are

presented in Table 4.1. Note that all the results in the table are expressed as

percentages of totals, except the entries for ‘sub-graphs’ which refer to the num-

ber of sub-graphs in the model. In terms of the total number of reactions and

metabolites, all the models reconstructed from BioCyc were found to be consider-

ably smaller than those generated from KEGG. For organism-specific models, the

largest overall difference in content was observed for M. tuberculosis, whereby the

BioCyc model had 494 and 747 fewer reactions and metabolites, respectively, than

its KEGG counterpart. In contrast, the frequency of errors reported from Bio-

Cyc derived databases were remarkably lower when compared to those built from

KEGG. However, the E. coli model generated from BioCyc was found to be an

exception. In comparison with other organism-specific models built from BioCyc

it had approximately 10 times more reactions with the same metabolite acting as

a substrate and a product. Additionally, it contained 3.6 (vch) to 7.2 (mtu and

hpy) times more connected components than the other BioCyc models. When

compared to the organism-specific KEGG models the number of reactions with

the same metabolite acting as a substrate and a product, and the number of con-

nected components were still higher in the BioCyc E. coli model, but not as high

in proportion to the other models reconstructed using BioCyc. The significance of

these results will be discussed over the following sections.
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Model All eco mtu ban vch hpy

KEGG

Total reactions 6576 1532 1271 1249 1228 589
Total metabolites 5538 1691 1530 1480 1410 819
Unbalanced reactions 6.9 4.6 5.7 5.4 4.8 6.5
Same metabolite 1.5 2.3 2.6 2.7 2.6 4.1
Orphan metabolites 41.2 50.1 51.3 53.7 50.8 57.3
Dead-end metabolites 11.6 18.5 22.4 21.6 20.4 24.4
Sub-graphs 28 19 19 17 22 15
Largest sub-graph 99 98 98 98 98 96

BioCyc

Total reactions 5071 1394 777 1007 826 536
Total metabolites 4846 1394 783 951 813 565
Unbalanced reactions 1.3 0.6 1.4 1.3 0.7 1.5
Same metabolite 2.1 16.1 1.7 1.5 1.8 1.9
Orphan metabolites 51.9 42.9 30.7 31.0 34.7 32.4
Dead-end metabolites 7.6 11.5 13.6 11.6 11.0 14.4
Sub-graphs 67 36 5 8 10 5
Largest sub-graph 98 86 99 99 99 99

Table 4.1 – Results table from [134] to show the relative amount of prob-
lems/errors encountered whilst building whole database (‘All’) and organism-
specific models from the KEGG and BioCyc databases. The whole database
analyses for BioCyc was carried out using MetaCyc. Results are expressed as
percentages of totals, except ‘sub-graphs’ referring to the number of sub-graphs
in the model. ‘Same metabolite’ refers to reactions involving the same metabolite
as both a substrate and a product. See Section 4.5.1 for organism abbreviations.

4.5.2.1 Database-specific problems

Problems found due to either incorrect curation or annotation efforts at the level

of the database can be called ‘database-level’ problems. Database-level problems

include reactions which have an overall imbalance for atoms such as carbon, oxygen

and nitrogen. For metabolic modelling purposes, these fall into two categories,

those resulting from:

• Database errors

Where present, the empirical formulae for all the species participating in a

reaction may be used to identify the overall atomic balance. The organism-

specific and whole databases for KEGG had 4–5.6% more unbalanced re-

actions (i.e. in proportion to the total number of reaction in each model)

resulting from database errors when compared to their BioCyc counterparts.

For example, KEGG reaction R05524 (EryCI) has an ammonia molecule

missing in the reactants and the reaction for biotin synthase (EC:2.8.1.6) in
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MetaCyc has sulphur missing from the reactants. Errors of this sort can have

a direct impact on structural analysis techniques such as elementary modes.

Depending on external metabolite definitions, all the resulting modes involv-

ing an unbalanced reaction may turn out to be stoichiometrically incorrect

(i.e. will not obey the laws of mass conservation) and, consequently, will not

reflect the true properties of the network in question.

• Ambiguous interpretation

For the purposes of metabolic modelling a reaction must be defined as a bio-

chemical conversion. Reactions that are found to have the same metabolite

on both sides are incorrect at this level since a biochemical transformation

has not been defined (e.g. Starch + H2O −→ α-D-Glucose + Starch). In

the above example, starch can be seen to act as a catalyst as opposed to a

participant of the reaction. Furthermore, the representation for this reaction

in a stoichiometry matrix can be:

H2O −→ α-D-Glucose

H2O −→ α-D-Glucose + Starch

Starch + H2O −→ α-D-Glucose

all of which imply a net imbalance in atomic composition. Despite instances

of this type being justified as a database entry, they have an ambiguous

interpretation in the metabolic modelling context. The EcoCyc database

was found to have 12–14.6% more reactions with the same metabolite on

both sides when compared to all the other models built in the study. The

majority of these reactions had been explicitly defined as transport reactions

between various cellular compartments. It is not an error to treat the same

metabolite as different species in different compartments. Due to the intense

curation efforts that are being undertaken with this database it is, therefore,

not surprising that an extensive reaction set that encompasses the organisms

ability to metabolise as well as exchange nutrients has been included.

With regard to the whole database models, the results shown in Table 4.1 in-

dicate that the frequency of database-level errors in the MetaCyc model are lower

than in the KEGG model. This may be explainable by the extensive curation ef-

forts undertaken by the BioCyc family of databases. Database-level inconsistencies

appear to be the result of a number of different classes of problem arising from the

original database. The possibility exists for multiple problems originating in the

database to interact with each other in the model, so that a particular problem in

the model (e.g. absence of steady state flux in a given reaction) cannot be resolved

until all the problems from the issuing database have been corrected.
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4.5.2.2 Systems-specific problems

Even where individual reactions appear to be specified correctly, taken in isolation,

problems can become magnified once the metabolic model is built. These can be

classified as ‘systems-level’ problems. Systems-level problems reduce the maximal

connectivity within the generated model and, therefore, almost certainly require

extra effort from the user to improve the quality of the model.

For all the models built in this study, the percentage of orphan and dead-

end metabolites were surprisingly high, peaking at 57.3% and 24.4% for the hpy

KEGG model, respectively. The frequency of orphan metabolites for the whole

database models reconstructed from MetaCyc was 51.9% and 41.2% for KEGG,

highlighting that approximately half of the metabolites in each database are only

associated with one reaction. This may have come about for a number of reasons.

The primary factor is the lack of annotated reaction data that is required to link

these metabolites with other metabolites in the corresponding metabolic network.

It is an undisputed fact that the annotation for all genomes is incomplete, and it is

likely that there are additional metabolic enzymes amongst the ORFs of unknown

function. Once found, inclusion of these enzymes may help to reduce the num-

ber of orphan and dead-end metabolites. Secondly, database-level errors such as

spelling mistakes make a normally connected metabolite an isolated entity within

the network. For example, in KEGG, EC:2.4.1.36 (α,α-trehalose-phosphate syn-

thase) was found to be associated with these reactions:

R02168

GDPglucose + D-Glucose 6-phosphate ←→ GDP + α,α'-Trehalose 6-phosphate

R06125

GDP-glucose + D-Glucose 6-phosphate ←→ Trehalose 6-phosphate + GDP

The entries for GDPglucose and GDP-glucose, and Trehalose 6-phosphate and

α,α'-Trehalose 6-phosphate were indicated as being distinct, when this clearly

cannot be the case. Thirdly, multiple reactions with generic and specific reactants

can also have the same effect, for example (EC:1.1.1.1; alcohol dehydrogenase):

R00754

Ethanol + NAD+ ←→ Acetaldehyde + NADH + H+

R00623

Primary alcohol + NAD+ ←→ Aldehyde + NADH + H+
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If the ‘Primary alcohol’ metabolite is only present once in the model then it be-

comes an orphan metabolite. Otherwise, its association with other reactions in-

volving generic reactants will lead to the formation of a distinct connected com-

ponent in the network. Errors of this type may be easy to detect if all the re-

actions involving a particular generic metabolite are noted, with future models

being filtered for their presence. However, this process would have to be main-

tained between database releases (i.e. for the detection of new generic metabolites

and identification of additional reactions involving those that have already been

found). In analogy with those reactions that involve the same metabolite both

as a product and reactant, the above example illustrates that a purely legitimate

reaction at the database-level can cause problems at the systems-level.

Connected components analysis indicates the existence of more than one sub-

network within a model. While it is not absolutely certain that all metabolic net-

works consist of one intricately connected component, owing to their heterotrophic

nutrient requirements, one would expect that the in vivo metabolism of the or-

ganisms examined in the study are fully connected. This simply implies that the

metabolites required to sustain life can all be derived from a single carbon source.

The genome-scale model reconstructed using the EcoCyc database showed the

worst connectivity results across both databases. This may have been due to the

fact that the completeness in recording the EcoCyc enzyme complement is not al-

ways compatible with ensuring connectivity. At the systems-level this ultimately

leads to a fragmented metabolism which is unlikely to represent the metabolism

of a real organism. Except for the E. coli models, the largest sub-graph in all the

other models reconstructed from either database were found to contain 96–99%

of the reactions in the model. As described above, problems such as metabolites

with both generic and specific names, and simple errors at the database-level have

the potential to affect network connectivity whereby the inclusion of a reaction

involving them may be the difference between a fully- and partially-connected sys-

tem. The inclusion of metabolites with isomeric forms within structural models is

also an important issue. A given compound may map to more than one KEGG

compound ID, for example, glucose can be mapped to C00293 (glucose), C00031

(D-glucose), as well as C00221 (β-D-Glucose) and C00267 (α-D-Glucose). α- and

β-D-glucose are different entities that are spontaneously interconvertible and are

both, nonetheless, instances of D-glucose. As indicated in the publication (Ap-

pendix F), the anomeric sensitivity of enzymes towards glucose and its isomers is

a quantitative rather than a qualitative effect, and, therefore, in terms of struc-

tural modelling it should be considered as the same substance. A similar example

highlights the inclusion of the amino acid serine and its isomeric L- and D- forms.

Additionally, errors at the level of the database could render the same metabo-
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lite with different unique identifiers (see GDP-glucose example in this section).

Ultimately, without human inspection, errors of this type may lead to a reduced

connectivity within the model since the reactions associated with a particular vari-

ant may be rendered redundant from the remainder of the metabolism.

4.5.3 Overall Summary

There are a number of ways with which to improve the quality of genome-scale

models built from databases:

1. The most obvious solution for database-level errors is the provision of a web-

based data updating service, which at present is more efficiently appointed

by BioCyc than KEGG.

2. Automated local data processing is currently the method of choice for orphan

and dead-end metabolite detection and removal (i.e. by defining them as ex-

ternal or source/sink metabolites). Other error instances (e.g. synonyms and

corrected reactions) can be archived by the creation of in-house dictionaries

which can subsequently be used to filter the input from database-derived

models. With each database release it would be expected that the quan-

tity of data will increase along with improvements in quality. Therefore,

the filtering approach would require a periodic reviewing, for the detection

of errors in the additional data, and management of those that have been

corrected in the database.

3. Manual intervention is almost always required for those problems that cannot

be wholly discovered and/or solved by automated means. For example, those

reactions that have been automatically found to be chemically unbalanced

cannot be solved in the same fashion. Unless these reactions have been

tagged as unbalanced in the database or are to be excluded from the model

they must be dealt with on a case-by-case basis. Orphan metabolites and

dead reactions may also be reduced via manual gap filling in order to increase

network connectivity.

From the results, it was found that the BioCyc group of databases exhibited

fewer database-level errors. This may be attributed to the intense curation efforts

that are undertaken within the BioCyc family of databases. Isolated errors which

are most likely to occur at the database-level do not necessarily invalidate genome-

scale models. The models built from databases such as KEGG and BioCyc are

never going to be perfect but it is worth carrying out some preliminary analysis

to identify those problems that may be propagated into the modelling process.
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More importantly, the purpose for building these models is to investigate the

properties of the system as a whole. Obvious systems-level errors such as orphan

metabolites must be dealt with due to their high occurrences. At present, there are

no standard methods in place to account for noisy data which, if ignored, almost

certainly becomes incorporated into the ensuing structural analysis. The purpose

of the study in question was not to compare the databases of choice but to provide

an outline of how the data within each database affects the reconstruction of

large automatically created metabolic models. As a consequence of the reported

problems it has become evident that the data contained within such databases

requires a considerable amount of development and modification before they can

be successfully used at the systems-level.
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CHAPTER 5

Phylogenetic Comparisons Based

on Enzyme Complement

5.1 Introduction

Prokaryotes1 have long been used as model organisms to understand the basic

principles of life. They have also been exploited as important targets in disease

treatment, biotechnology and ecology. It has been estimated that there are be-

tween 105–107 prokaryotic species on Earth [135]. Although, plant and animal

species can be differentiated according to their embryological and morphological

appearance, this is clearly not the case for prokaryotes - due to the relative lack

of discernible morphological characters [136]. Phylogenetic analysis2 of universally

conserved DNA or protein sequences has become a powerful tool for microbial tax-

onomy3. The most popular classification method for phylogenetic reconstruction

from sequence data exploits the similarity measurement of aligned homologous

genes based on polymorphism information (techniques reviewed in [137]). Orig-

inating from work carried out in the late 1970’s by Carl Woese and colleagues

[138, 139], our current understanding of prokaryote taxonomy has stemmed pri-

marily from the comparison of the highly conserved small subunit ribosomal RNA

(rRNA) [140]. By the late 1980’s, supplementary research carried out by the

same group established the status of the rRNA gene as the ‘ultimate molecular

chronometer’ [140]. Using this marker, the tripartite ‘universal tree of life’ was

reconstructed, and was used to recognise what we now know as the three domains

of life, namely Eukaryota, Eubacteria, and Archaea [141, 142]. The previous no-

tion that prokaryotes were part of a monophyletic group was reassessed due to the

split between the Archaea and Eubacteria.

1 unicellular organisms without a membrane-bound nucleus; they include eubacterial and ar-
chaeal species.

2 the study of evolutionary relatedness among various groups of organisms.
3 the practice and science of classification; in the context of this study directed at prokaryotes.
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5.1.1 Ribosomal RNA derived phylogenies: pros and cons

Ribosomal RNA has several properties which make it uniquely suited as a phy-

logenetic marker including its universal distribution, low substitution rates and

ease of sequencing [140]. However, a number of problems with the use of rRNA

have recently come to light. Firstly, horizontal gene transfers4 (HGT) have been

shown to be possible for this molecule [143]. Secondly, its restricted length permits

mutational saturation5. Thirdly, rRNA phylogenies, in most cases are incapable of

resolving deeper evolutionary branches [144]. In other words, the specific phylum

to which an organism belongs can be readily identified which may not apply when

trying to determine how different phyla are related to each other. Fourthly, the

evolutionary distances rendered by comparison of a single gene are likely to differ

from the phylogenetic history of the organism from which it was isolated [145].

Finally, phylogenetic trees derived from other protein-coding genes or proteins

such as DNA polymerase and, transcription and translation factors (e.g. GT-

Pases) [142, 146] have different topologies when compared with the corresponding

‘universal’ rRNA-based trees [147].

Prior to the post-genomic era, despite the recognition that comparison of dif-

ferent biological entities leads to different tree topologies, the validity of phyloge-

nies based on rRNA remained undisputed. This notion was reassessed once the

availability of complete genomes provided researchers with the opportunity to im-

plement novel approaches to reconstruct phylogenetic relationships, ideally from

the entire complement of genomic information.

5.1.2 Whole genome-based phylogenies

As a direct consequence of the growing number of complete genomes within all

the domains of life, numerous techniques have been introduced to reconstruct

whole genome-based phylogenies at the sequence-level [148]. Examples of whole

genome studies involving sequence comparisons include the determination of the

average similarity between orthologous6 genes [148, 149, 150] and reconstruction

of ‘supertrees’ based on the combination of trees derived from multiple conserved

single genes [148, 151]. Rivera et al. [152] compared the complete set of orthologous

genes between two bacteria (E. coli and Synechocystis PCC6803 ), a eukaryote (S.

cerevisiae), and an archaeal species (Methanococcus jannaschii). They found that

the S. cerevisiae protein synthesis genes (e.g. those responsible for translation and

4 any process in which an organism incorporates genetic material from another organism without
being the offspring of that organism.

5 the observed number of mutations relative to the maximum amount possible.
6 genes in different species that derive from a common ancestor whereas paralogy describes the

relationship between two genes related through gene duplication.
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transcription) were primarily derived from M. jannaschii, whereas the metabolic

genes of the eukaryote (e.g. amino acid synthesis and energy metabolism) were

more closely related to the two bacteria. It was becoming clearer that eukaryotes

arose as a result of a chimera of ancestral eubacterial and archaeal genes [152, 153].

Studies such as this highlight that the role of vertical gene transfer7 (VGT) may

have previously been overestimated. Instead, there has been more emphasis on the

importance of evolutionary processes such as HGT and lineage-specific gene loss,

which at least in prokaryotes, involve most genes [147, 153, 154]. The intensive

gene transfer between organisms as exemplified by HGT has led to the idea that

the evolutionary history of life may actually be better represented as a network

than a tree [147, 155].

Studies not directly related to sequence comparisons include the reconstruction

of phylogenetic trees based on the presence or absence of orthologous genes (i.e.

overall gene content) [156, 157, 158] and conservation of gene order [148, 158]. Trees

based on the former approach creates a distance-based phylogeny by comparing

the number of genes a pair of species have in common divided by their total number

of genes [157]. More recently, Kunin et al. introduced a method called genome

conservation which combines sequence similarity and gene content information

[159]. In spite of extensive HGT, all these methods still produce phylogenetic trees

that are remarkably similar to 16S rRNA trees [156, 157, 158]. This indicates that

the systems-level organisation of genes can also be successfully exploited to derive

the evolutionary history of organisms. Furthermore, depending on the method

employed, the gain in information regarding phylogenetic relationships may be

used to enhance the phylogenetic signal from single gene phylogenies [160].

5.1.3 Metabolism-based phylogenies

As discussed in Chapter 4, the availability of complete genomes for hundreds of

species has, in turn, allowed the development of online databases which archive

organism-specific metabolic repertoires [8, 9]. The metabolome8 of each organ-

ism varies due to the different complement of enzymes encoded in the genome.

Phylogenetic trees reconstructed from metabolic data have been referred to as

“phylophenetic” since they represent phenotypic features derived from heritable

characters [161, 162]. Therefore, comparison of the metabolism between species

may be used as a complementary approach to gene-based phylogenies for under-

standing evolutionary relationships, environmental pressures (e.g. pathogenicity)

and to guide metabolic engineering studies. Several groups have applied phyloge-

7 occurs when an organism receives genetic material from its ancestor.
8 represents the collection of all metabolites in a biological organism, which are the end products

of its gene expression.
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netic analyses to metabolic pathways, based on information from:

• Individual pathways

Forst and Schulten [163, 164], were one of the first groups to use metabolic

pathway information as a basis for the reconstruction of phylogenetic trees.

They introduced a new method with which to calculate the distance be-

tween organisms based on a combination of enzyme sequence information

and pathway topology. Comparison of network topologies was carried out

by Heymans and Singh [165] using an exclusive graph theoretical approach

(Section 1.6.1.1). An initial set of 80 organisms was divided according to

different criteria and, the distance between organisms was calculated from

the network topology of individual and multiple pathways involved in gly-

colysis, the citric acid cycle, and, carbohydrate and lipid metabolism. The

resulting phylogenetic trees were found to be similar to the conventional 16S

rRNA-based phylogeny and organisms from the three domains of life were

found in separate clusters.

• Presence or absence of entire pathways

Liao et al. [166] compared the entire metabolic repertoire of organisms by

representing the presence or absence of individual pathways as a binary vec-

tor (i.e. a string of zeros and ones). Organisms were then hierarchically clus-

tered according to their metabolic profiles and their relative placement was

examined in the corresponding 16S rRNA-based tree. Amongst their findings

was the separation of organisms belonging to the archaeal domain according

to their kingdom lineage, namely Euryarchaeota and Crenarchaeota.

• Enzyme content

Ma and Zeng [167] reconstructed phylogenetic trees from the enzyme, re-

action and gene contents of the entire metabolic networks of 82 organisms.

As Liao and colleagues [166] had done with pathways, they represented the

enzyme content (i.e. obtained from the KEGG LIGAND database) as a

binary string. The distance between pairs of organisms was subsequently

calculated using the Jaccard index [168] as a measure of similarity to render

phylogenetic trees. As with most other studies introduced thus far, the over-

all similarity between the obtained phylogenies and 16S rRNA-based trees

was remarkably high. A similar study compared the enzyme content from

69 metabolic pathways for 27 organisms representing the three domains of

life [162]. Using obligate pathogens as an example, the authors concluded

that organisms that were found to be closely related from conventional 16S

rRNA-based phylogenies could be distantly related metabolically and vice

versa.
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• Reaction content

A recent publication by Hong et al. [169] reconstructed the metabolic path-

way reaction content for 42 microorganisms using databases such as KEGG

[8] and MetaCyc [9]. The overall metabolic pathways were divided into 64

subpathways based on the clusters of orthologous groups database9 (COG†)

division [170] of the National Center for Biotechnology Information. Phylo-

genetic trees were reconstructed by comparing organism-specific profiles of

subpathway contents. When compared to 16S rRNA-based trees, the results

from the study indicated a good separation of organisms between the three

domains of life and the close relationship between eukaryotes and archaea at

the level of metabolic networks.

• Purely graph theoretical

Some of the most recent studies that aim to derive phylogenetic trees from

metabolic information employ graph theory [171, 172, 173] (Section 1.6.1.1).

Liu et al. [172] reconstructed enzyme-specific profiles for different organisms

and determined their topological importance using three network indices.

They concluded that phylogenetic profile is not independent of enzyme net-

work importance and that it correlates better with degree10 and betweenness

centrality11, but less so with closeness centrality12. A similar study employed

a strict graph-theoretical approach and applied it to 11 single celled organ-

isms [171]. They used a more extensive set of network measures than the

previous study to test whether the intrinsic network design principles are

the same amongst the three domains of life. Forst et al. [173] represented

prokaryotic metabolic networks as directed hypergraphs and used set alge-

braic measures (i.e. union, intersect and difference) for both the pairwise

comparison of networks and identification of distinct metabolic features.

Most of the comprehensive studies highlighted above were carried out with

the aim of reconstructing the tree of life from a metabolic perspective and, sub-

sequently, comparing it with the corresponding 16S rRNA-based trees [162, 166,

167, 169]. A downside of this approach is that relatively few species were selected

as a representative subset for the different domains within the tree of life. To over-

come these limitations, the scope of the work reported here encompasses not only

the largest dataset of organisms13 employed thus far, but also separate classifica-

tions for several large taxonomic groups based on enzyme complement (see next

9 provides phylogenetic classification of proteins encoded in complete genomes.
10 the number of connections of a network node.
11 measures how frequently a node appears on all shortest paths between two other nodes.
12 measures how close a node is to others.
13 all of which are prokaryotes.
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section). A comparison of the resulting phylogenetic trees with 16S rRNA-based

trees is then made to determine interesting phenotypic and taxonomic discrep-

ancies. Whatever the data source, the phylogenetic tree reconstruction process

involved three primary steps (Section 2.4):

1. Data acquisition via biological databases.

2. Pairwise comparisons between organisms and distance matrix calculation.

3. Data clustering.

The following sections will elaborate on the differing resources and methods

employed at each step of the above process whether for enzyme complement or

16S rRNA phylogenies.

5.2 Clustering by enzyme complement

At the time of writing, the KEGG database contained by far the most compre-

hensively available organism dataset, with metabolic pathway information for 876

organisms (148 Eukaryotes, 676 Bacteria, 52 Archaea) [8] - partially or fully se-

quenced. Organism-specific files containing gene-EC relationships (files of type

‘org enzyme.list’14) were downloaded and archived locally from the KEGG GENES

database (Release 42.0, 1st April 2007). Additional files with extension ‘.nuc’

containing the available complement of ORFs for individual organisms were also

downloaded. The initial organism set included 462 prokaryotes with more than

100 fully qualified EC numbers and an available ‘.nuc’ file. An independent list

of EC numbers from that of the KEGG annotation was predicted by applying the

PRIAM methodology [117] on the ORFs contained in the organism-specific ‘.nuc’

files (Section 4.3.2). Gene-EC data for the organism set was also downloaded

at a later date from a more recent version of KEGG GENES (Release 47.0, 1st

July 2008). The 462 prokaryotes were then divided into groups according to their

taxonomic group, the largest 6 of which were selected for further study:

1. Archaea (34)

2. α-proteobacteria (57)

3. β-proteobacteria (42)

4. γ-proteobacteria (106)

5. Firmicutes (93)

14 where org is a three letter KEGG organism abbreviation (Appendix E).
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6. Actinobacteria (37)

Prokaryotes were chosen for three reasons. Firstly, due to a reasonably well-

understood metabolism, enzyme functions in individual species can be more reli-

ably identified. Secondly, prokaryotes comprise of two of the three domains of life

with the largest number of species that have completed genome sequences, thereby

making cross-comparison at the metabolic-level more informative. Finally, limit-

ing the study to particular groups of prokaryotes, as listed above, may be exploited

by focusing on metabolic peculiarities within closely related sets of organisms, as

opposed to distantly related ones that are likely to be metabolically disparate

anyway.

Although, general pathway databases such as KEGG archive organism-specific

sequence and metabolic information, the completeness and reliability of this data

has been questioned (see Chapter 4 and Appendix F for [134]). One of the lim-

itations of this study is that a relatively small number of prokaryotic species in

the KEGG database have fully annotated genomes. Therefore, the enzyme com-

plement of some organisms may not be complete, ultimately, leading to biased

comparisons between species. To reduce this bias, instead of comparing the data

between different databases and choosing the most comprehensive resource, the

EC data obtained from the more recent KEGG GENE release was pooled with the

PRIAM output for each organism. However, it is worth noting that even in the

combined dataset, there will still be some, or even many, undefined enzymatic ac-

tivities. The advantage gained by pooling EC data for improving the comparative

accuracy between organisms will be discussed in Section 5.5.

By consulting databases that encode the relationships between different bio-

logical entities (e.g. KEGG LIGAND), the reaction complement of an organism

can be deciphered from its EC complement (Section 4.3). Thereafter, metabolic

trees could have also been reconstructed from organism-specific reaction profiles

[169] instead of, or complementary to EC-level phylogenies. The downside of this

method is that a number of reactions may be associated with a given EC number,

not all of which are necessarily catalysed by every organism’s gene product [129].

Without further species-specific information regarding enzyme-reaction relation-

ships it would be expected that little advantage would be gained by comparison of

the EC or reaction sets between organisms. In accordance with similar work carried

out by Ma and Zeng [167], the comparison of EC- and reaction-based metabolic

trees for all the prokaryotic groupings revealed very few, if any, differences (results

not included). To reduce the level of uncertainty associated with enzyme-reaction

relationships for different organisms, all metabolic trees were reconstructed using

EC complement information.
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5.2.1 Data clustering

The primary aim of this study is to hierarchically cluster (Chapter 2) organisms at

the metabolic-level by comparing their complement of enzymes. The underlying

assumption is that different species have different degrees of metabolic common-

ality between them. For a given organism, the EC complement was obtained from

the union of EC numbers obtained from the PRIAM output and the more recent

version of KEGG15. The next step was to calculate a symmetric distance matrix

(Dii) using the RowDiffMtx function (Section 2.4.3). Before Dii can be calcu-

lated, an appropriate measure must be selected to calculate the pairwise distance

between the enzyme profiles for pairs of organisms. By analogy to the definition

reported by Korbel et al. [158] for comparison of gene content between species, a

weighted distance measure will be applied to compare EC complement. Ma and

Zeng [167], referred to this distance measure as the ‘Korbel’ distance and compared

it to standard measures such as the Jaccard index16 which is more susceptible to

larger differences in EC complement between organisms. The Korbel distance be-

tween a pair of organisms is defined as the number of ECs in common divided by

the weighted average union of their EC complement:

dij = 1− nij
√

2ninj/
√

n2
i + n2

j

where ni and nj are the number of ECs in each of the organisms to be compared

and nij is the size of their intersect. Therefore, two organisms with identical EC

datasets will have a Korbel similarity measure of 0 and those with nothing in com-

mon will have a value of 1. From the computed distance matrix, all phylogenetic

trees were generated in Newick format using an hierarchical agglomerative cluster-

ing algorithm implemented in ScrumPy. The MEGA software package was used

to visualise and edit all the phylogenetic trees.

5.3 Obtaining 16S rRNA phylogenies

16S rRNA sequences for all organisms in the set were also obtained in order to com-

pare the topology of the metabolic trees with those of the accepted standard. 16S

rRNA sequence information for each of the 462 organisms was automatically down-

loaded from the ‘Integrated Microbial Genomics’ section of the DOE Joint Genome

Institute†, along with supplementary taxonomic and phenotypic data. Taxonomic

15 unless stated otherwise all EC complement trees will refer to those that used the latter KEGG
release as opposed to the older one.

16 the size of the intersection divided by the size of the union of the sample sets.
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information for individual species included the following ranks (from highest to

lowest): domain, phylum, class, order, family, genus, and species. Organism-

specific phenotypic descriptions such as ecotype, oxygen requirements, gram stain

and disease were also obtained from the NCBI Taxonomy website†.

The presence of multiple, heterogenous rRNA operons, especially in bacterial

species, complicated the sequence selection procedure for the reconstruction of 16S

rRNA-based trees [174]. For example, 30 16S rRNA sequences were available for

Clostridium perfringens SM101, 20 with a length of 1616bp, 9 with a length of

1522bp and 1 with a length of 1517bp. To overcome this shortcoming, if an organ-

ism had more than one 16S rRNA sequence, then the most frequently occurring

one was chosen, otherwise the most frequent and/or shortest one was selected.

Therefore, from this criteria a sequence is more likely to be representative of a

species based on its frequency of occurrence, otherwise the shortest sequence(s)

must, in theory, carry the same amount of information as longer sequences. Using

customised tools written in Python, a single 16S rRNA sequence was automati-

cally selected for all the prokaryotes within a taxonomic group and written to file

in FASTA format† [175].

5.3.1 Data clustering

There are a number of programs available for rendering phylogenetic trees from

the multiple sequence alignment of molecular data [137]. The most popular of

these are CLUSTALW† [176], T-COFFEE† [177] and, the more recent MUSCLE†

[178] programs. Although, T-COFFEE is amongst the most accurate multiple

sequence alignment methods, at any one time its web server can only process 50

sequences with a maximum length of 2000bp. The γ-proteobacteria group con-

tained 106 species, therefore, the use of T-COFFEE was not a practical option.

The MUSCLE tool was chosen for the purposes of this study since it has been

reported to be faster and more accurate than CLUSTALW when compared to ref-

erence alignments [178]. The files in FASTA format for each taxonomic group were

pasted into the MUSCLE web server interface on the EBI website†, and executed

with default settings. MUSCLE uses a progressive alignment technique which ini-

tially aligns the most similar sequences first and then progressively adds the more

dissimilar sequences to build the alignment. A distance matrix is subsequently

rendered whereby distance can be roughly defined as the percent sequence differ-

ence between all the possible pairs of sequences. The distance matrix is used to

reconstruct the phylogenetic tree using the UPGMA method (Section 2.4.2) and

outputted from MUSCLE in Newick format.
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Taxonomic group
Similarity Measure

KEGG Release 42.0 KEGG Release 47.0

α-proteobacteria 0.261 0.216
β-proteobacteria 0.309 0.222
Archaea 0.262 0.246
Actinobacteria 0.282 0.268
γ-proteobacteria 0.297 0.273
Firmicutes 0.339 0.311

Table 5.1 – TREEDIST-derived symmetric differences between the phyloge-
netic trees reconstructed from EC complement and 16S rRNA sequences, for the
six taxonomic groups used in the study. EC complement was calculated using
two releases of KEGG and integrated with the same PRIAM output. Identical
topology and maximum possible difference between trees would be indicated by
values of 0 and 1, respectively.

5.4 Comparison of EC complement and rRNA

phylogenies

For each of the six taxonomic groups, the phylogenetic trees derived from EC

complement and 16S rRNA will be presented alongside each other. Unique KEGG

organism abbreviations (Appendix E) were used on the leaves of the trees for ease

of comparison, and to avoid the confusion associated with the same species being

sequenced by different groups. Only the overall tree topology will be considered

since the distance scales between the two types of trees (i.e. based on comparison

between gene sequences and overall EC complement) are not directly comparable.

The TREEDIST† program of the PHYLIP package (version 3.66), which uses the

Symmetric Distance algorithm described by Robinson and Foulds [179] was used

to derive quantitative measurements for the topological similarity between each

pair of trees. If a partition in the tree is a branch dividing the set of organisms

in two sets into two groups (those connected to one end of the branch and those

connected to the other), the Symmetric Distance is the number of partitions that

are present in one tree but not the other. Using the method described by Aguilar et

al. [162], the Symmetric Distance was divided by the maximum possible number

of internal branches (4n-6 for n species). This allowed the results to be scaled

between 0 (identical topology) and 1 (maximum topological difference).

5.5 Results and discussion

From the results in Table 5.1, it is evident that the α-proteobacteria group was

found to be topologically closest to its corresponding 16S rRNA-based tree; sym-

metric difference of 0.216. On the other hand, the largest symmetric difference
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Figure 5.1 – Side-by-side cladogram illustration generated according to the EC
complement (left) and 16S rRNA sequence information (right) for 34 organisms in
the archaeal set. Amongst the Euryarchaeota phylum, methanogens are shown in
red, halophiles in blue and thermophiles in green. The Crenarchaeotan phylum,
all of which are thermophilic species are highlighted in purple. Note that the
Euryarchaeotan species, afu is the only species from the Archaeoglobaceae family
included in this study, and, although it has thermophilic properties it has not been
highlighted in any of the groups described above. Numbered brackets indicate
clusters that contain the same species in both trees. See Appendix E for full
names of organisms.
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Figure 5.2 – Side-by-side cladogram illustration generated according to the EC
complement (left) and 16S rRNA sequence information (right) for 93 organisms
in the firmicutes set. For ease of interpretation the families containing three
or more species have been coloured; Peptococcaceae in red, Clostridiaceae in
blue, Bacillaceae in green, Listeriaceae in purple, Staphylococcaceae in maroon,
Lactobacillaceae in olive, Streptococcaceae in teal and Mycoplasmataceae in lime.
Numbered brackets indicate clusters that contain the same species in both trees.
See Appendix E for full names of organisms.
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Figure 5.3 – Side-by-side cladogram illustration generated according to the EC
complement (left) and 16S rRNA sequence information (right) for 57 organisms
in the α-proteobacteria set. For ease of interpretation the families containing
three or more species have been coloured; Rickettsiaceae in red, Anaplasmataceae

in blue, Bartonellaceae in green, Bradyrhizobiaceae in purple, Rhizobiaceae in
maroon, Brucellaceae in olive, Rhodobacteraceae in teal and Sphingomonadaceae

in lime. Numbered brackets indicate clusters that contain the same species in
both trees. See Appendix E for full names of organisms.
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Figure 5.4 – Side-by-side cladogram illustration generated according to the
EC complement (left) and 16S rRNA sequence information (right) for 106 or-
ganisms in the γ-proteobacteria set. For ease of interpretation the families con-
taining three or more species have been coloured; Enterobacteriaceae in red,
Vibrionaceae in blue, Shewanellaceae in green, Pseudomonadaceae in purple,
Xanthomonadaceae in maroon, Pasteurellaceae in olive, Legionellaceae in teal
and Francisellaceae in lime. Numbered brackets indicate clusters that contain
the same species in both trees. See Appendix E for full names of organisms.
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Figure 5.5 – Side-by-side cladogram illustration generated according to the EC
complement (left) and 16S rRNA sequence information (right) for 42 organisms
in the β-proteobacteria set. For ease of interpretation the families containing
three or more species have been coloured; Alcaligenaceae in red, Burkholderiaceae

in blue, Comamonadaceae in green, Rhodocyclaceae in purple, Neisseriaceae in
maroon and Nitrosomonadaceae in olive. Numbered brackets indicate clusters
that contain the same species in both trees. See Appendix E for full names of
organisms.
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Figure 5.6 – Side-by-side cladogram illustration generated according to the EC
complement (left) and 16S rRNA sequence information (right) for 37 organisms
in the actinomycete set. For ease of interpretation the families containing three
or more species have been coloured; Corynebacteriaceae in red, Mycobacteriaceae

in blue and Nocardioidaceae in green. Numbered brackets indicate clusters that
contain the same species in both trees. See Appendix E for full names of organ-
isms.
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(0.311) was observed for the firmicutes which had the second largest organism

dataset (93). As discussed in the next section, all the EC complement trees were

found to be less similar to their 16S rRNA counterparts when reconstructed from

the older version of the KEGG database. Alternatively, the similarity between

trees can be visualised by the relative proximity of clusters containing the same

organisms, with further emphasis on those organisms with branching discrepan-

cies (Figures 5.1–5.6). It is worth noting here that, although, clusters containing

the same organisms have been highlighted between the corresponding trees in the

results, additional organisms may have been included in some groups based on the

proximity of their branching patterns. The distribution of the organisms between

pairs of trees was analysed with regard to additional species-specific criteria such

as phylogenetic proximity, ecotype, oxygen requirements and pathogenicity.

Figure 5.1 depicts the pair of phylogenetic trees computed for 34 organisms in

the archaeal domain. The organisms in this taxa are obligate or facultative anaer-

obes that grow in unusual surroundings such as hydrothermal vents and highly

saline environment (e.g. Dead sea). Despite their different habitats, the metabolic

tree indicates that archaeal strains have a significant overlap in their enzyme com-

plement, and the degree of this overlap provides a taxonomic classification which

is very similar to the 16S-rRNA tree. A good separation between euryarchaeota

and crenarchaeotan species was obtained. However, rather than being clustered

together in Figure 5.1, one class of thermophilic euryarchaeotan species (Ther-

mococci; Cluster 7) was found to be topologically closer to the crenarchaeotan

(Clusters 8 and 9) and the other (Thermoplasmata; Cluster 6) to the Halobacteria

(Cluster 5). In contrast to the findings by Ma and Zeng [167], these observations

are also visible in the 16S rRNA-based tree whereby Clusters 5 and 6 are found

together and Cluster 8 is closest to another group containing Cluster 7. A phylo-

genetic analysis derived from gene content indicated that the crenarchaeota should

instead be clustered with species from Thermoplasmata as opposed to Thermo-

cocci, which were preferentially grouped with the methanogens [180] (Figure 5.1;

red). The archaeal organism set in this study was roughly twice as large as that

used by Ma and Zeng [167], and, therefore permits a more concrete validation since

more organisms are shown to follow the same pattern. On further inspection of

phenotypic information, the Thermococci in Cluster 7 are able to carry out sulphur

respiration in extremely thermophilic environments which is also characteristic of

crenarchaeotan organisms. Furthermore, the specialised metabolism exhibited by

the halophiles (blue) may be used to account for their proximity to the acidophilic

Thermoplasmata. Archaeoglobus fulgidus DSM 4304 (afu) was an anomaly as it

is a potential pathogen (i.e. harms host by production of hydrogen sulphide gas)
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with thermophilic, piezophilic17 and sulphur reducing properties. In the metabolic

tree it was clustered as a potential outgroup of the methanogens whereas in the

rRNA tree it was found closer to the Methanococci (including thermophilic mja;

Cluster 4) and the thermophilic, sulphur respiring Thermococci. Inclusion of fur-

ther Archaeoglobi may help resolve the position of afu in both trees, and any

subsequent phenotypic interpretations.

Prokaryotes with reduced EC complement (ranging from 133–311) were found

amongst the firmicutes (Mycoplasmatales ; Clusters 8, 9 and 10 in Figure 5.2), α-

proteobacteria (Rickettsiales ; Clusters 1 and 2 in Figure 5.3) and γ-proteobacteria

(Enterobacteriales; Clusters 1 and 2 in Figure 5.4). All of the species within this

category were found to be either endosymbionts or obligate parasitic organisms.

Their minimal metabolic repertoires can be explained by the loss of genes that be-

come unnecessary for survival in a nutrient-rich environment provided by the host

organism [169]. The placement of the parasites within the Mycoplasmatales fam-

ily were in almost perfect agreement with the 16S rRNA-based tree reconstructed

as part of this study (Figure 5.2) and those created independently [181]. Similar

results were also obtained for the Rickettsiales, whereby two distinct but closely

associated clusters were found for the Rickettsiaceae and Anaplasmataceae families

(Figure 5.3). In both the metabolic and rRNA-based trees, the γ−proteobacteria

in the Buchnera genus were found in topologically identical clusters of their own

(Cluster 1; Figure 5.4). However, this was not the case for the remainder of the en-

dosymbionts within this taxonomic group. The EC complement phylogeny showed

a consistent grouping of the two organisms within the Candidatus blochmannia

genus (Cluster 2; Figure 5.4) and two other endosymbionts (wbr and bci). Within

the corresponding 16S rRNA-based tree, the latter two organisms were found in

clusters of their own albeit topologically adjacent to each other. The NCBI Taxon-

omy page for Baumannia cicadellinicola Hc (bci ; Taxonomy ID: 374463) indicates

that the lineage of the organism is unclassified beyond the class-level. Although

further evolutionary-based research may be required to determine its full lineage,

the results from the metabolic tree may be used to suggest that it is either part

of, or closely related to the Enterobacteriales order and Enterobacteriaceae family.

Furthermore, once fully resolved the phylogenetic position of bci may be found to

be in the immediate proximity of the organisms indicated by the EC complement

tree.

Other metabolism-based phylogenies have reported the grouping of parasites

and symbionts from various taxa within the three domains of life [162, 167, 169].

For example, Aguilar et al. found that obligate parasites are clustered together de-

17 also called a barophile, is an organism which thrives at high pressures, such as deep sea bacteria
or archaea.
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spite their differing placements in the universal tree of life, possibly as a result of a

convergence of their metabolism due to a shared lifestyle. In conjunction with the

results from this study, Ma and Zeng [167] found that a pair of γ-proteobacteria,

Buchnera aphidicola Sg (bas) and Buchnera aphidicola APS (buc) were preferen-

tially clustered according to their genetic relatedness as opposed to with other

symbionts within the three domains of life. The larger organism set used in this

study and the investigation of individual taxa permits a stronger assessment of this

claim. Within taxonomic groups, parasites and endosymbionts show a remarkably

similar clustering profile when comparing phylogenies reconstructed from indepen-

dent sources of biological information. This outcome provides a direct validation

for the use of the Korbel distance measure by proving its effectiveness for separating

organisms with smaller EC complement. In summary, the metabolic specialisa-

tion observed for parasitic and endosymbiont species becomes more evident whilst

surveying organisms from different eubacterial taxa, but, at the class-level this

specialisation is more reflective of their phylogenetic origins.

With the exception of the archaea (potential pathogen afu; Archaeoglobus

fulgidus DSM 4304), pathogenic organisms were scattered throughout the cho-

sen taxonomic groups. Including parasites and selected endosymbionts, the down-

loaded organism-specific phenotypic information indicated that 65.5% of the firmi-

cutes, 53.8% of the γ-proteobacteria, 45.2% of the β-proteobacteria, 43.2% of the

actinomycetes and 38.6% of the α-proteobacteria were pathogenic species. Overall

the clustering results indicated that the pathogenic phenotype had little or no influ-

ence on the grouping of eubacterial species. For example, the β-proteobacteria in

the Burkholderia genus (Cluster 2 in Figure 5.5) has 14 pathogenic and 2 non-

pathogenic species. The topological distributions of these bacteria were iden-

tical in both the metabolic and rRNA based trees. Moreover, the two non-

pathogens Burkholderia pseudomallei 1710b (bpm) and Burkholderia thailanden-

sis E264 (bte) were found in separate clusters amongst the pathogenic organ-

isms. Other examples of the non-uniform distribution of pathogens was observed

amongst the Bacilli (Clusters 2 and 3) and Streptococci (Cluster 7) for the fir-

micutes (Figure 5.2). Based on these findings, a possible explanation is that any

metabolic specialisation in pathogenic species has minimal influence on their in-

herited complement of metabolic enzymes.

In general, species belonging to the same taxonomic family are, in most cases

clustered together in the EC complement phylogenies. However, a few exceptions

were found which have similar ecotypic and metabolic activities to species from

other families. Zymomonas mobilis mobilis ZM4 (zmo) clustered correctly with

the remainder of the Sphingomonadales within the α-proteobacterium rRNA tree

(Cluster 10 in Figure 5.3). On the other hand, based on EC complement it was
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found to be closer to a pair of species from the Rhodospirillales order, namely, Glu-

conobacter oxydans 621H (gox ) and Granulobacter bethesdensis CGDNIH1 (gbe).

On further inspection of the ecotypic properties of the organisms in this cluster,

zmo and gox are both industrially important fermentative prokaryotes found in

plants, whereas gbe is a novel pathogen associated with human chronic granulo-

matous disease. In the β-proteobacteria rRNA tree, Verminephrobacter eiseniae

EF01-2 (vei) was also found amongst members of its own family (Comamon-

adaceae; Cluster 4 in Figure 5.5) which was not the case in the EC complement

tree. It was in an single organism cluster in between its own family members and

three clusters that contained mostly pathogenic species (Clusters 1–3). In contrast

to the other endosymbionts discussed so far, vei had a particularly large repertoire

of enzymes (830 ECs), possibly stemming from its colonisation of juvenile earth-

worms (Eisenia foetida) during embryonic development. The other members of the

Comamonadaceae are metabolically specialised organisms with potential bioreme-

diation applications for the degradation of various pollutants such as naphthalene

(Polaromonas naphthalenivorans CJ2; pna), cis-dichloroethane (Polaromonas sp.

JS666; pol) and 2-nitrotolulene (Acidovorax sp. JS42; ajs). Interestingly, Methyli-

bium petroleiphilum PM1 (mpt) has an unclassified lineage at the family-level, and

its close association to the Comamonadaceae in both EC complement and rRNA

trees may be a potential indicator as to its full taxonomic identity.

Outlier organisms can be thought of as those that are in a cluster of their

own and behave as a closely-related version for the root of a tree. The two acti-

nomycetes (Figure 5.6), Bifidobacterium longum NCC2705 (blo) and Rubrobacter

xylanophilus DSM 9941 (rxy), as well as the firmicute Aster yellows witches-broom

phytoplasma AYWB (ayw) were noted as outlier species in both rRNA and EC

complement trees. Although the latter organism was found to have the small-

est number of ECs (133) in the entire dataset, a possible explanation for these

observations is that all of these species were the only representatives from their

order-level lineage. The NCBI Genome Project description for rxy states that it

represents the oldest lineage of the Actinobacteria and that it is distantly related

to the Mycobacteria and Streptomyces, which is also in accordance with the re-

sults in this study (Clusters 3 and 5 in Figure 5.6, respectively). The fact that rxy

is an outlier in the EC complement tree demonstrates that deeper phylogenetic

branches can also be obtained by metabolic comparisons. Alternatively, the inclu-

sion of additional species may be used to further resolve the positions of outlier

species in relation to the remainder of organisms in the tree.

As discussed in Chapter 4, owing to a select few organisms which have been

extensively annotated (e.g. E. coli), most organisms are automatically assigned

enzymatic activities based on functional homology. In some cases, sequence sim-
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ilarity may not imply the same function and certain enzymatic activities may go

unnoticed due to the evolutionary divergence between sequence information. For

the purpose of this study, the justification for the use of EC complement stems

from the fact that the comparison of other metabolic entities such as biochemical

reactions will introduce further uncertainty, primarily from the differing enzyme

specificity between species. From Table 5.1, it is evident that the EC comple-

ment trees reconstructed using the newer release of KEGG is topologically closer

to the 16S rRNA-based phylogeny. Furthermore, a larger symmetric difference

would have been obtained if the data from either KEGG or PRIAM was used.

Despite a significant advantage being gained by pooling the EC information using

KEGG and PRIAM, it may be assumed that there are still a number of enzymatic

activities that remain undiscovered, more so for some organisms than others. Con-

sequently, a level of uncertainty is introduced within the results which is, so far,

unavoidable and will only improve with increased curation and annotation efforts.

Regardless of the quality of data used, it is evident that the phylogenetic trees

reconstructed from EC complement still reflect the accepted standard phylogeny,

with additional metabolic discrepancies.
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General Discussion and Future

Directions

The relatively simple data requirements for structural modelling techniques may

account for their widespread use. Using this approach the structure of the system

is considered, which is the most basic feature of any network. As discussed later,

another contributing factor is the ability to build structural models to investigate

the properties within organism-specific metabolic networks on a genome-scale. To

obtain an insight into the functioning of such networks a number of structural ana-

lytical techniques are available. Unfortunately, elementary modes analysis (EMA)

cannot be applied to genome-scale models due to problems with computational

complexity. Nevertheless, the potential applications of EMA demonstrate that

it is still worth using this method to investigate smaller models or sub-networks

where feasible. However, the subsequent interpretation of the datasets obtained

from EMA poses many challenges. As part of this project, hierarchical clustering

techniques were used to indicate the usefulness of further analytical procedures

for the interpretation and illustration of the datasets obtained from EMA. The

purpose of Chapters 2 and 3 was not to survey the multitude of techniques that

could potentially be used to cluster EMs datasets, but rather to highlight how such

methods may be useful for their analysis, especially for much larger datasets in

comparison to those employed in this study. The results indicated that there are

no strong reasons to prefer clustering of EMs by reaction profile over clustering by

net stoichiometry, and a better outcome is obtained using the two approaches in

combination. Within the general cluster patterns lie potentially important charac-

teristics regarding similarities in profiles for modes in a single cluster. Furthermore,

the parallel use of coloured matrix visualisation methods can be used to provide

a quantitative and qualitative reflection of the original theoretical observations.

This sort of exploratory analysis may be able to provide a simple and intuitive

description of clusters which is easy for human comprehension, ultimately, leading

to an insight into modes with common metabolic functions.

It has taken less than 12 years, from the publication of the 1st bacterial genome

in 1995 (H. influenzae Rd [182]) to the predicted completion of the 1000th microbial

genome by 2008 [183]. In accordance with this surge in biochemical information,
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the stoichiometric data required for the reconstruction of genome scale, organism-

specific structural models is becoming more readily available. Databases such as

KEGG and BioCyc provide a comprehensive catalogue for biochemical data, and

also offer the possibility of automatically reconstructing whole metabolic models

of specific organisms directly. Consequently, the acquisition of reaction data from

pathway databases, and its subsequent translation into a format suitable for mod-

elling has become technically trivial. The major difficulty herein lies in the quality

of the resulting metabolic network and its compromised ability to reflect the real

organism properties at the systems-level. As indicated in Chapter 4, for small

hand-built models, errors of the type reported would rarely be present. In con-

trast, for large automatically generated models the treatment of these problems

becomes more challenging and requires extensive manual curation. Metabolic net-

works created in such a manner are far from being complete and require verification

and refinement before they are suitable for modelling purposes. Once satisfied with

the model, the modeller can only assume that the most relevant properties have

been accurately captured. To deal with uncertainty, from the perspective of the

modeller there are ‘identifiable’ and ‘unidentifiable’ components to reconstructing

large automated networks. At any given time, the former includes all that is possi-

ble to know about the metabolism of an organism of interest, the entirety of which

is very unlikely to be included in an initial database-derived model, and the latter,

as indicated by the name, is a consequence of insufficient or undiscovered knowl-

edge. For example, our study indicated that approximately half of the reactions

in all genome-scale models are associated with orphan metabolites. For the most

part, the affect that orphan metabolites have on this type of analysis is a symptom

of, as yet, unknown reactions and their contribution to the network properties can

only be ignored or made peripheral. Other than the organism-specific enzyme and

reaction complements that can be readily obtained from databases, the major-

ity of automated reconstructions contain little information regarding transporters

(since they are not associated with an EC number) and their associated compart-

ment information, reversibility criteria and enzyme specificity. At present, there

is no standard database available that links all of this biochemical information in

a standardised and curated manner, and in most cases these issues can only be

addressed by parsing a variety of databases and/or manual literature searching.

With reference to the latter solution, an interdisciplinary field called text mining

is being used to obtain specific information directly from the literature. However,

this is limited by the availability of electronic journals, the possibility of obtaining

data in numerous different formats and the vast number of publications that po-

tentially have to be searched [184]. To detect and deal with model reconstruction

problems, a combination of local data processing, and the implementation of more
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robust analysis algorithms and web-based error reporting interfaces seem to be the

most promising solutions. In the long-term, it may be necessary to implement an

efficient synchronisation between genome annotation and in silico modelling efforts

with high-throughput experimental research, and the resources that archive them.

Due to network size and complexity, one of the problems is to distinguish between

genuine differences in a metabolic network, and apparent differences because of

incomplete or incorrect annotations of the genome sequence. Taken together, the

methods introduced in this study, will be applied to assist the genome annotation

process and to investigate the metabolic network variations that biochemically de-

fine a given organism. At present, it seems that the effort required to ‘clean-up’

large metabolic models far outweighs the potential gain in biological knowledge.

The previously proposed level of integration between experimental, theoretical and

computational techniques can only be of use if they are all designed with these

applications in mind.

In Chapter 5, the phylogenetic studies carried out based on enzyme comple-

ment also suffer from some of the automated reconstruction issues discussed above.

Organism-specific data was derived directly from enzyme information without the

need for the reconstruction of structural models. Therefore, the main source of

error would have propagated into the study from the database-level since those

at the systems-level were not considered. Amongst all the possible metabolic en-

zymes that could exist in vivo a considerable amount still remain to be discovered

or are associated with a high degree of uncertainty (e.g. incomplete EC numbers

such as 1.1.-.-). With regard to the latter point the PRIAM methodology may

be suitable for finding fully qualified versions of the incomplete ECs reported by

KEGG. This demonstrates the usefulness of using more specific enzyme profiles

for the functional annotation of genes. The EC complement trees were limited

in their ability to generate phylogenetic predictions by the amount and quality of

data included for individual species. The availability of more reliable information

will help elucidate the positions of both the anomalous and well-defined organisms

in the enzyme-based trees. Nevertheless, the agreement of the enzyme complement

trees with their rRNA-based counterparts implies that rough representations can

still produce informative results, with some interpretive and predictive potential.

Further research can be carried out by building phylogenetic trees using reaction

or pathway information but with the prospect of introducing further problems.

For example, not all the reactions attributed to a particular EC number may be

catalysed by every organism’s corresponding gene product. It follows that the to-

tal number of reactions per organism will in fact be an overestimate of its actual

metabolic capabilities.

Irrespective of the data source (i.e. genomic or metabolic data) the deeper
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branching patterns within phylogenetic trees still remain mostly unresolved. More

specifically, using EC and rRNA information there was a remarkable similarity

in the clustering patterns between organisms at the tips of the trees. In most

cases, the same cannot be said about the branching patterns that unite the var-

ious taxonomic families and, the preceding higher-order ranks. This may imply

that the phylogenetic signal within even closely related organisms has faded over

the course of evolution. Some researchers (more notably Doolittle and colleagues

[147]) have proposed that extensive horizontal gene transfer may be responsible,

with additional arguments stating that the tree of life may be better represented

as a network, at least for prokaryotic species. To increase the phylogenetic signal

for deeper evolutionary relationships it will be necessary to integrate the biochem-

ical data from ‘omic’ studies, or on a rationally selected, substantial part of this

information. The future potential of phylogenetic studies will be realised by the

progression from a single-gene based to a species-specific cellular perspective.

A rather optimistic future for metabolic modelling lies in the ability to create

so-called ‘virtual’ or ‘digital’ cells. The time taken for this state of knowledge to

be realised depends on numerous factors, the most important of which are the size

and complexity of the system under investigation. For example, the small human

red blood cell (RBC) network is already well established [14, 15, 16], and has been

used to simulate common RBC pathologies [17]. Owing to the complexity of other

eukaryotic cells, it seems likely that most of the succeeding whole cell metabolic

studies will be of prokaryotic origin. The growth in computer technology will help

to resolve the analytical issues with modelling techniques. Unfortunately, let alone

the bleak prospect of kinetic modelling, even structural metabolic reconstructions

for prokaryotic species are far from being complete. Structural modelling on a

genome-scale offers the prospect to investigate the metabolic properties for a given

organism, but its scope of discovery is limited by the amount and quality of data

that is incorporated. Although, there are a number of methods with which to

improve the data included in metabolic reconstructions, nothing can be done to

reduce the uncertainty caused by the biological information that is yet to be dis-

covered. To this end, an iterative approach to structural modelling can be applied

to help find gaps in the metabolic network, and subsequently, to carry out experi-

mental validation and model updating. Despite this potential, approximately half

of the metabolites in genome-scale metabolic networks are only present once, even

for well-curated prokaryote databases [134]. The post-genomic era has become

renowned for the accumulation of biological data, but ultimately, in the years to

come, the significance of this information has to be realised at the systems-level.
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APPENDIX A

Using ScrumPy: a Basic Guide
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A.1 ScrumPy packages

Although ScrumPy can be used for kinetic modelling, this guide will focus pri-

marily on the structural modelling aspects of the software that have been used

throughout the course of this project. The primary packages in ScrumPy are

shown in Figure A.1, or alternatively the package structure can be browsed from

the ScrumPy menu (i.e. File/PathBrowser/ScrumPy/).

Figure A.1 – Important ScrumPy packages, with particular emphasis on the
Structural package, along with brief descriptions. See [185] for background and
application of contents in Decompose.py module.

A.2 Model definition

The model file must be converted into ScrumPy’s native ‘.spy ’ format (Figure A.2)

before it can be loaded. The minimal information required to reconstruct a struc-

tural model is a list of reaction names along with their associated stoichiometric
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equations. To avoid errors when parsing the model file certain rules apply when

defining these items:

• Reaction names must begin with an upper or lower case letter, followed by

any sequence of letters, digits or “ ” (underscore). Other characters such

as white space are not allowed (see point 5). Additionally, a “:” (colon)

delimiter must be placed after all reaction names.

• Metabolite names are defined in the same way as reaction names, except

that they cannot contain a colon anywhere. Metabolites prefixed by “x ” or

“X ” are defined as external and the remainder are considered to be internal

(free or floating).

• The reaction symbol for a reversible reaction is “<>” and “->” for an irre-

versible reaction.

• A stoichiometric equation must consist of substrate names, a reaction symbol

and product names. More than one substrate or product is separated by a

“+” symbol and any metabolite with a stoichiometric coefficient greater than

one is indicated with a positive integer followed by whitespace (e.g. PPi ->

2 Pi).

• Using the “ (i.e. double quote) character on either side of a reaction or

metabolite name allows the modeller to use customised names with charac-

ters that would not usually be permitted in the ScrumPy model definition

(e.g. white spaces and dashes).

• When carrying out kinetic modelling, the kinetic functions for each reaction

also have to be specified. Default rate equations are assigned to the reactions

in a structural model by the ˜ suffix after the stoichiometric equation for each

reaction.

Furthermore, text proceeding “#” is ignored by ScrumPy’s model parser and

serves to provide supplementary model information or notes. ScrumPy directives1

are optional but useful syntax declarations that exist to treat the model description

in a particular manner. They can be defined at the top of the model file and

include:

• Structural()

is very useful to ignore the model definition for kinetic information and,

consequently, ScrumPy treats the model as purely structural.

1 can be likened to Python methods (i.e. method name, followed by a possible empty parenthe-
sised parameter list) but have no return value.
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• External(mets)

where mets is a comma delimited list of metabolites that are to be defined as

external to the system (e.g. External(Water,Oxygen)). All the metabolites

in this list are added to those that have already been prefixed with “x ” or

“X ” to generate the final list of external metabolites.

• AutoExtern()

along with all metabolites prefixed with “x ” or “X ” and those defined us-

ing the External() directive, all orphan metabolites (Section 1.6.1.2) are

automatically made external.

• ElType(type)

specifies the data type to be used for the elements in the stoichiometry ma-

trices for the model, once it is loaded. type can be int, float or ArbRat (de-

fault). ArbRat or arbitrary-precision rational numbers are used in ScrumPy

for exact rational arithmetic and are unsusceptible to round-off or overflow

errors. For larger models, ArbRat can be replaced with int and float to

increase performance but at the expense of other functionality.

• Include(models)

can be used to collate a number of independent models into a single one.

models may be a single model filename path or a comma delimited list.

Alternatively, more than one Include() may be utilised. Extra precaution

must be taken to make sure that all reaction names are unique and a global

External() directive is used between models.

A.3 Loading a model

Once the user is content with the ‘.spy ’ model file it can be loaded into ScrumPy

by typing:

>>> model = ScrumPy.Model()

at the interactive prompt, where model is an instance of a ScrumPy.Model object

that will be created by parsing the model file. Subsequent model interrogation

can be performed by querying and manipulation of such objects. An “Open File”

dialogue will appear asking for the destination path of a ScrumPy model file.

Once selected an editor window will automatically open up to view the model

description. Alternatively, a new model can be loaded by passing in a filename

argument:
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############################################################

## Test structural model for the upper half of glycolysis #

## 18/10/07 #

############################################################

Structural()

R1:

X_GLC <> GLC ~

R2:

X_ATP + GLC -> G6P + X_ADP ~

R3:

G6P <> F6P ~

R4:

F6P + X_ATP <> FBP + X_ADP ~

R5:

FBP <> DHAP + GAP ~

R6:

GAP <> DHAP ~

R7:

DHAP <> X_DHAP ~

R8:

GAP <> X_GAP ~

R9:

G6P <> G1P ~

############################################################

Figure A.2 – Format of a ScrumPy (‘.spy’) plain ASCII file for the simple
metabolic network in Figure 1.4.

>>> model = ScrumPy.Model(‘testmodel.spy’)

with the ‘.spy ’ extension. Errors in the input file are displayed in an error message

window and highlighted in the model editor window. These errors can also be

viewed in the ScrumPy-IDLE interface. If the model description is changed, it

may be recompiled by:

>>> model.Reload()

or via the model editor window by clicking on ScrumPy/Compile. Multiple models

may be loaded simultaneously but it would not be recommended to load the same

model twice.

A.4 Model interrogation and analyses

It is worth reemphasising here that the primary advantage of ScrumPy is the

Python programming component which can be exploited to make model interro-
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gation and analyses more flexible. The bulk of modelling functionality in ScrumPy

is already provided by using Python method attributes:

>>> model.Method()

where dot notation is used to access the attributes for a Python object, Method

identifies the attribute and the parentheses indicate that the method is to be in-

voked. After loading a model into ScrumPy, there are numerous existing analytical

methods that are already attached to the model object. As with any other Python

object, typing dir(model) at the prompt returns a list of attributes now comprised

within the new ScrumPy.Model instance.

A.4.1 Dynamic matrix

The results from most structural analyses carried out using ScrumPy are returned

in the form of dynamic matrices (ScrumPy/Utils/DynMatrix). A dynamic matrix

object is a Python representation of a mathematical matrix and can be used inde-

pendently from ScrumPy, although it does depend on some of the other modules

in the ScrumPy/Utils directory. The first step in the creation of a dynamic matrix

object is to import the DynMatrix module:

>>> from ScrumPy.Utils import DynMatrix

An instance of a dynamic matrix can be created by using the matrix class in

DynMatrix:

>>> mtx = DynMatrix.matrix(nrows, ncols, Conv)

where the arguments nrows and ncols are the numbers of rows and columns

respectively, and Conv is the required data type for the elements in the matrix

(e.g. int, float and the default ArbRat). An empty matrix without any rows

and columns, and with arbitrary rational element types will be created if none

of these arguments are specified. New instances of a dynamic matrix can also be

created from existing matrices:

>>> newmtx = mtx.Copy(float)

where the optional data type conversion argument has been set to float. De-

pending on the analysis in question there are a variety of interrogation methods

attached to these matrices (Figure A.3).
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Figure A.3 – Code to illustrate how ScrumPy can be used in conjuction with
Python to create and access entries in a dynamic matrix.

>>>

>>> mtx = DynMatrix.matrix(Conv=int) ##create empty matrix object

>>>

>>> rownames = [‘met1’,‘met2’,‘met3’] ##list of row names

>>> colnames = [‘rxn1’,‘rxn2’,‘rxn3’] ##list of column names

>>>

>>> for rn in rownames: ##for all rownames

mtx.NewRow(name=rn) ##create a new row and

>>> ##assign it rn

>>> for cn in colnames: ##repeat for columns

mtx.NewCol(name=cn)

>>>

>>> mtx ##prints mtx to screen

‘rxn1’, ‘rxn2’, ‘rxn3’

‘met1’ [ 0, 0, 0 ]

‘met2’ [ 0, 0, 0 ]

‘met3’ [ 0, 0, 0 ]

>>>

>>> mtx.rnames ##list of row names

[‘met1’,‘met2’,‘met3’]

>>> mtx.cnames ##repeat for columns

[‘rxn1’,‘rxn2’,‘rxn3’]

>>>

>>> mtx[‘met1’,‘rxn2’] = 5 ##assign a value of 5 to element

>>> mtx[1,2] = 7 ##alternative to mtx[rowname,colname]

>>> ##but by index

>>>

>>> mtx ##print contents of mtx

‘rxn1’, ‘rxn2’, ‘rxn3’

‘met1’ [ 0, 5, 0 ]

‘met2’ [ 0, 0, 7 ]

‘met3’ [ 0, 0, 0 ]

>>>

>>> mtx[1] ##a single index returns a row

[0, 0, 7]

>>> mtx[‘met2’] ##or use name to returns a row

[0, 0, 7]

>>>

>>> mtx.GetCol(2) ##gets column with index 2

[5, 0, 0] ##as a list of numbers

>>> mtx.GetRow(‘met2’) ##gets row with name ‘met2’

[0, 0, 7]

>>>
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A.4.2 Stoichiometry matrix

A stoichiometry matrix is automatically calculated for model once it is loaded into

ScrumPy. It can be safely accessed by making a copy:

>>> stomat = model.sm.Copy()

where the stomat instance is as defined in the ScrumPy.Structural.StoMat mod-

ule and contains all the attributes of a dynamic matrix (i.e. subclass). There are

a wide-range of ScrumPy methods by which the stoichiometry matrix can be ma-

nipulated to fit the needs of the modeller. Herein, we will assume that a model

object has been loaded from the specification in Figure A.2 and will be used to

illustrate the results for the remainder of structural analyses. For example, finding

the connectivity of FBP in model is as simple as typing:

>>> stomat.Connectedness(‘FBP’)

2

where Connectedness is a method of the model.sm class that is used to retrieve

the stoichiometric data for FBP from stomat. Using this method it is then possible

to find all metabolites in Figure A.2 above a connectivity of two with four lines of

Python code:

>>> for met in stomat.rnames:

connectivity = stomat.Connectedness(met)

if connectivity > 2:

print connectivity,

print met

3 G6P

3 DHAP

3 GAP

where rnames is a dynamic matrix attribute which returns a list of all the metabo-

lite names in the stoichiometry matrix. Orphan metabolites can be obtained from

the stomat object by:

>>> orp = stomat.OrphanMets()

>>> orp

[‘G1P’]

where orp is a Python list of orphan metabolite names.

A.4.3 Conserved moieties

Conservation relationships within the model definition can be determined by:

>>> conmo = model.ConsMoieties()

where conmo is a ScrumPy dynamic matrix with the metabolites involved with

conserved moieties in rows, the reactions they are involved with in columns and

elements indicate the level of conservation in each reaction.

131



A.4.4 Dead reactions

A list of all the reactions that cannot carry flux at steady state (i.e. dead reactions)

can be identified from the null space of the stoichiometry matrix or obtained

directly from the model object:

>>> nullspace = stomat.NullSpace()

R1 [1,0]

R2 [1,0]

R3 [1,0]

R4 [1,0]

R5 [1,0]

R6 [1,1]

R7 [2,1]

R8 [0,1]

R9 [0,0]

>>>

>>> dead = model.DeadReactions()

>>> dead

[‘R9’]

A.4.5 Enzyme subsets

Enzyme subsets can be obtained by typing:

>>> ess = model.EnzSubsets()

where ess is an instance from the EnzSubsets2 class and can be found in the

ScrumPy/Structural/EnzSubsets module. A subset can have one of four states

assigned to it, they are:

• Dead - reactions in this subset do not carry flux at steady state.

• Irreversible - subset can only carry flux in one direction.

• Reversible - subset can carry flux in either direction.

• Empty - only used during subset calculation and should not appear in final

output.

The obtained subsets can be interrogated using Python in-built functions:

>>> len(ess) ##returns total number of subsets

5

>>> str(ess) ##prints subsets dictionary

"{‘R8’:{‘R8’: 1},‘Ess_1’:{‘R4’: 1, ‘R5’: 1,

‘R1’: 1,‘R2’: 1,‘R3’: 1}, ‘R7’: {‘R7’: 1},

‘R6’: {‘R6’: 1}, ‘DeadReacs’: {‘R9’: 1}}"

2 subclass of a Python dictionary.
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or by attributes attached to the EnzSubsets class:

>>> ess.ToList() ##returns a list of lists

>>> ##of reactions in each subset

[[‘R1’, ‘R2’, ‘R3’, ‘R4’, ‘R5’], [‘R6’],

[‘R7’], [‘R8’], [(‘R9’, 1)]]

A.4.6 Elementary modes

EMs are obtained as an instance of the ModesDB class in the ScrumPy/Structural/

ElModes module. The ModesDB class implements simple database functionality for

the subsequent interrogation of the set of EMs:

>>> elmo = model.ElModes()

>>> len(elmo) ##number of modes

4

>>> print mo.Modes()

1/2 R4 1/2 R5 1/2 R6 1 R7 1/2 R1 1/2 R2 1/2 R3

1 R4 1 R5 1 R7 1 R1 1 R2 1 R3 1 R

-1 R6 1 R4 1 R5 1 R1 1 R2 1 R3 2 R8

-1 R8 1 R6 1 R7

>>> print mo.Stos()

-1 X_ATP -1/2 X_GLC 1 X_ADP 1 X_DHAP

-2 X_ATP -1 X_GLC 2 X_ADP 1 X_DHAP 1 X_GAP

-2 X_ATP -1 X_GLC 2 X_ADP 2 X_GAP

-1 X_GAP 1 X_DHAP

where Modes is a ModesDB method that returns a Python string representation of

the modes based on reaction names and their respective coefficients. Similarly,

Stos prints the EMs in terms of their net external metabolite consumption (neg-

ative coefficients) and production (positive coefficients). EMs that do not use any

external metabolites (i.e. futile cycles) manifest themselves as empty lines in the

Stos output. A separate ModesDB instance of all the futile cycles can be obtained

from the original elmo instance:

>>> fut = elmo.Futile()

For larger models the sheer number of generated modes requires filtering meth-

ods to classify modes according to user-defined criteria such as:

>>> glu = elmo.Consumes(‘X_GLC’) ##consume glucose

>>> dha = elmo.Produces(‘X_DHAP’) ##produce dhap

both of which return a ModesDB instance that can be interrogated further. Al-

ternatively, the output from an EMA can also be obtained as an EMs reaction

dynamic matrix (EM) and an EMs stoichiometry dynamic matrix (ES):
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>>> em = elmo.mo.Copy()

>>> es = elmo.sto.Copy()

em indicates which reactions form a particular EM and their associated fluxes and

es shows the net usage of external metabolites.
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APPENDIX B

Test Yeast Model in .spy Format
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Figure B.1 – Anaerobic yeast model in .spy format, as described in Section 2.5
and illustrated in Figure 2.8.

############################################################

## TEST YEAST ANAEROBIC METABOLISM MODEL ##

############################################################

Structural()

External(X1, X2, X3, X4)

############################################################

############################################################

R1:

X1 -> S1 ~

R2:

S1 <> S2 ~

R3:

S2 <> S3 + S4 ~

R4:

S3 <> S4 ~

R5:

3 S1 -> 2 S2 + S4 + 3 X2 ~

R6:

S3 -> X3 ~

R7:

S4 -> X4 + X2 ~

############################################################

############################################################
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APPENDIX C

Minimal S. erythraea Model in

.spy Format
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Figure C.1 – Minimal S. erythraea model in .spy format, as described in Section
3.2 and illustrated in Figure 3.1. See List of Abbreviations section for metabolite
abbreviations and Appendix D for a list of enzymes as correlated to the reactions
in the description.

#############################################################

Structural()

External(GLCx, OXOGx, HCO3, CO2) ##Objective metabolites

External(H, H2O, Pi) ##Exchange metabolites

External(ATP, ADP) ##Currency metabolites

External(NADP, NADPH, NAD, NADH, FAD, FADH2)

#############################################################

## GLYCOLYSIS ###############################################

#############################################################

R1:

GLCx -> GLC ~

R2:

ATP + GLC -> ADP + G6P ~

R3:

G6P <> F6P ~

R4:

F6P + ATP -> FBP + ADP ~

R5:

FBP <> GAP + DHAP ~

R6:

DHAP <> GAP ~

R7:

GAP + NAD + Pi <> BPG + NADH + H ~

R8:

BPG + ADP <> P3G + ATP ~

R9:

P3G <> P2G ~

R10:

P2G <> PEP + H2O ~

R11:

PEP + ADP -> PYR + ATP ~

#############################################################
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#############################################################

## PENTOSE PHOSPHATE PATHWAY ################################

#############################################################

R12:

G6P + NADP -> PGL + NADPH + H ~

R13:

PGL + H2O <> PGC ~

R14:

PGC + NADP -> RU5P + CO2 + NADPH + H ~

R15:

RU5P <> R5P ~

R16:

RU5P <> X5P ~

R17:

X5P + R5P <> GAP + S7P ~

R18:

S7P + GAP <> F6P + E4P ~

R19:

X5P + E4P <> GAP + F6P ~

#############################################################

## ENTNER-DUORDOFF PATHWAY ##################################

#############################################################

R20:

PGC <> KDPG + H2O ~

R21:

KDPG <> GAP + PYR ~

#############################################################

## PYRUVATE DEHYDROGENASE COMPLEX ###########################

#############################################################

R22:

PYR + NAD + COA <> ACCOA + CO2 + NADH ~

#############################################################
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#############################################################

## TCA CYCLE ################################################

#############################################################

R23:

ATP + PYR + HCO3 <> ADP + Pi + OXOA ~

R24:

ACCOA + OXOA + H2O <> CIT + COA ~

R25:

CIT <> ICIT ~

R26:

ICIT + NAD <> OXOG + CO2 + NADH + H ~

R27:

OXOG <> OXOGx ~

R28:

OXOG + NAD + COA <> SUCCOA + CO2 + NADH + H ~

R29:

SUCCOA + Pi + ADP <> SUCC + COA + ATP ~

R30:

SUCC + FAD <> FUM + FADH2 ~

R31:

FUM + H2O <> MAL ~

R32:

MAL + NAD <> OXOA + NADH + H ~

#############################################################

## GLYOXYLATE CYCLE #########################################

#############################################################

R33:

ICIT -> SUCC + GLX ~

R34:

GLX + ACCOA + H2O -> MAL + COA ~

#############################################################

#############################################################
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APPENDIX D

Reaction Information for Minimal

S. erythraea Model
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Table D.1 – Reaction subscripts, abbreviations, enzyme names and EC numbers
used to reconstruct the minimal S. erythraea model, as illustrated in Figure 3.1.

Subscript Abbreviation Enzyme Name EC Number

1 - glucose transporter -
2 GK glucokinase 2.7.1.2
3 GPI glucose-6-phosphate isomerase 5.3.1.9
4 PFK 6-phosphofructokinase 2.7.1.11
5 FBA fructose-bisphosphate aldolase 4.1.2.13
6 TPI triose phospoisomerase 5.3.1.1
7 GAPD glyceraldehyde 3-phosphate dehydrogenase 1.2.1.12
8 PGK phosphoglycerate kinase 2.7.2.3
9 PGM phosphoglycerate mutase 5.4.2.1
10 ENO enolase 4.2.1.11
11 PYK pyruvate kinase 2.7.1.40
12 GPDH glucose-6-phosphate 1-dehydrogenase 1.1.1.49
13 PGLASE 6-phosphogluconolactonase 3.1.1.31
14 PGCDH 6-phosphogluconate dehydrogenase 1.1.1.44
15 R5PISO ribose 5-phosphate isomerase 5.3.1.6
16 X5PEPI ribulose-phosphate 3-epimerase 5.1.3.1
17 FTKL transketolase (S7P reaction) 2.2.1.1
18 TAL transaldolase 2.2.1.2
19 STKL transketolase (F6P reaction) 2.2.1.1
20 PGCDT phosphogluconate dehydratase 4.2.1.12
21 KPGCALD 2-keto-3-deoxy-6-phosphogluconate aldolase 4.1.2.14
22 PDH pyruvate dehydrogenase complex 1.2.4.1

2.3.1.12
23 PYCAR pyruvate carboxylase 6.4.1.1
24 CITSYN citrate synthase 2.3.3.1
25 ACN aconitase 4.2.1.3
26 ICDH isocitrate dehydrogenase 1.1.1.42
27 - 2-oxoglutarate transporter -
28 KDH 2-oxoglutarate dehydrogenase complex 1.2.4.2

2.3.1.61
29 SCOASYN succinyl-CoA synthetase 6.2.1.5
30 SUCDH succinate dehydrogenase 1.3.99.1
31 FUMASE fumarase 4.2.1.2
32 MDH malate dehydrogenase 1.1.1.37
33 ICLY isocitrate lyase 4.1.3.1
34 MSYN malate synthase 2.3.3.9
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KEGG Organism Abbreviations

and Taxonomy Information

143



Table E.1 – Species names for the KEGG prokaryote abbreviations used in the
disseration.

Archaea

mtp Methanosaeta thermophila PT
mbu Methanococcoides burtonii DSM 6242
mba Methanosarcina barkeri fusaro

mac Methanosarcina acetivorans C2A
mma Methanosarcina mazei Go1
mem Methanoculleus marisnigri JR1
mhu Methanospirillum hungatei JF-1
mst Methanosphaera stadtmanae DSM 3091
mth Methanothermobacter thermautotrophicus Delta H
mka Methanopyrus kandleri AV19
mmp Methanococcus maripaludis S2
mmq Methanococcus maripaludis C5
mja Methanocaldococcus jannaschii DSM 2661
afu Archaeoglobus fulgidus DSM 4304
hal Halobacterium sp. NRC-1
hma Haloarcula marismortui ATCC 43049
nph Natronomonas pharaonis DSM 2160
hwa Haloquadratum walsbyi DSM 16790
pto Picrophilus torridus DSM 9790
tac Thermoplasma acidophilum DSM 1728
tvo Thermoplasma volcanium GSS1
tko Thermococcus kodakaraensis KOD1
pfu Pyrococcus furiosus DSM 3638
pho Pyrococcus horikoshii OT3
pab Pyrococcus abyssi GE5
mse Metallosphaera sedula DSM 5348
sso Sulfolobus solfataricus P2
sto Sulfolobus tokodaii 7
sai Sulfolobus acidocaldarius DSM 639
pis Pyrobaculum islandicum DSM 4184
pcl Pyrobaculum calidifontis JCM 11548
pai Pyrobaculum aerophilum IM2
ape Aeropyrum pernix K1
hbu Hyperthermus butylicus DSM 5456

Actinobacteria

cgb Corynebacterium glutamicum ATCC 13032 (Kitasato)
cgl Corynebacterium glutamicum ATCC 13032 (Kitasato)
cef Corynebacterium efficiens YS-314
cdi Corynebacterium diphtheriae NCTC 13129
cjk Corynebacterium jeikeium K411
aau Arthrobacter aurescens TC1
art Arthrobacter sp. FB24
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lxx Leifsonia xyli xyli CTCB07
mle Mycobacterium leprae TN
mbb Mycobacterium bovis BCG Pasteur 1173P2
mbo Mycobacterium bovis AF2122/97
mtu Mycobacterium tuberculosis H37Rv
mtc Mycobacterium tuberculosis CDC1551
mav Mycobacterium avium 104
mpa Mycobacterium avium paratuberculosis K-10
mjl Mycobacterium sp. JLS
mkm Mycobacterium sp. KMS
mmc Mycobacterium sp. MCS
mgi Mycobacterium gilvum PYR-GCK
mva Mycobacterium vanbaalenii PYR-1
msm Mycobacterium smegmatis MC2 155
rha Rhodococcus sp. RHA1
nfa Nocardia farcinica IFM 10152
nca Nocardioides sp. JS614
fal Frankia alni ACN14a
fra Frankia sp. CcI3
stp Salinispora tropica CNB-440
sen Saccharopolyspora erythraea NRRL 2338
sco Streptomyces coelicolor A3(2)
sma Streptomyces avermitilis MA-4680
tfu Thermobifida fusca YX
ace Acidothermus cellulolyticus 11B
pac Propionibacterium acnes KPA171202
twh Tropheryma whipplei Twist
tws Tropheryma whipplei TW08/27
blo Bifidobacterium longum NCC2705
rxy Rubrobacter xylanophilus DSM 9941

Firmicutes

tte Thermoanaerobacter tengcongensis MB4
mta Moorella thermoacetica ATCC 39073
csc Caldicellulosiruptor saccharolyticus DSM 8903
swo Syntrophomonas wolfei wolfei Goettingen
chy Carboxydothermus hydrogenoformans Z-2901
drm Desulfotomaculum reducens MI-1
dsy Desulfitobacterium hafniense Y51
cth Clostridium thermocellum ATCC 27405
cpr Clostridium perfringens SM101
cpf Clostridium perfringens ATCC 13124
cpe Clostridium perfringens 13
cno Clostridium novyi NT
ctc Clostridium tetani E88
cac Clostridium acetobutylicum ATCC 824
cdf Clostridium difficile 630
bca Bacillus cereus ATCC 10987
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bce Bacillus cereus ATCC 14579
btk Bacillus thuringiensis sv konkukian 97-27
btl Bacillus thuringiensis Al Hakam
bat Bacillus anthracis Sterne
ban Bacillus anthracis Ames
bar Bacillus anthracis Ames Ancestor
bcz Bacillus cereus E33L
bcl Bacillus clausii KSM-K16
bha Bacillus halodurans C-125
bsu Bacillus subtilis 168
bld Bacillus licheniformis ATCC 14580 (Novozymes)
bli Bacillus licheniformis ATCC 14580 (Novozymes)
oih Oceanobacillus iheyensis HTE831
gka Geobacillus kaustophilus HTA426
lwe Listeria welshimeri sv 6b SLCC5334
lin Listeria innocua Clip11262
lmf Listeria monocytogenes 4b F2365
lmo Listeria monocytogenes EGD-e
sav Staphylococcus aureus aureus Mu50
sau Staphylococcus aureus aureus N315
sas Staphylococcus aureus aureus MSSA476
sam Staphylococcus aureus aureus MW2
saa Staphylococcus aureus aureus USA300
sac Staphylococcus aureus aureus COL
sao Staphylococcus aureus aureus NCTC 8325
sar Staphylococcus aureus aureus MRSA252
sab Staphylococcus aureus RF122
sep Staphylococcus epidermidis ATCC 12228
ser Staphylococcus epidermidis RP62A
ssp Staphylococcus saprophyticus saprophyticus ATCC 15305
sha Staphylococcus haemolyticus JCSC1435
efa Enterococcus faecalis V583
lsa Lactobacillus sakei sakei 23K
lpl Lactobacillus plantarum WCFS1
lsl Lactobacillus salivarius salivarius UCC118
ljo Lactobacillus johnsonii NCC 533
lac Lactobacillus acidophilus NCFM
ldb Lactobacillus delbrueckii bulgaricus ATCC 11842
spm Streptococcus pyogenes MGAS8232
sps Streptococcus pyogenes SSI-1
spg Streptococcus pyogenes MGAS315
spy Streptococcus pyogenes M1 GAS
spk Streptococcus pyogenes MGAS9429
spj Streptococcus pyogenes MGAS2096
spi Streptococcus pyogenes MGAS10750
sph Streptococcus pyogenes MGAS10270
spb Streptococcus pyogenes MGAS6180
spz Streptococcus pyogenes MGAS5005
spf Streptococcus pyogenes Manfredo
spa Streptococcus pyogenes MGAS10394
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sag Streptococcus agalactiae 2603V/R
san Streptococcus agalactiae NEM316
sak Streptococcus agalactiae A909
spd Streptococcus pneumoniae D39
spr Streptococcus pneumoniae R6
spn Streptococcus pneumoniae TIGR4 454
ssa Streptococcus sanguinis SK36
stl Streptococcus thermophilus LMG 18311
stc Streptococcus thermophilus CNRZ1066
smu Streptococcus mutans UA159
llm Lactococcus lactis cremoris MG1363
sth Symbiobacterium thermophilum IAM 14863
mcp Mycoplasma capricolum capricolum ATCC 27343
mmy Mycoplasma mycoides mycoides SC PG1
mhy Mycoplasma hyopneumoniae 232
mhj Mycoplasma hyopneumoniae J
mhp Mycoplasma hyopneumoniae 7448
mpu Mycoplasma pulmonis UAB CTIP
msy Mycoplasma synoviae 53
mmo Mycoplasma mobile 163K
mpn Mycoplasma pneumoniae M129
mge Mycoplasma genitalium G37 454
mga Mycoplasma gallisepticum R
mpe Mycoplasma penetrans HF-2
uur Ureaplasma parvum sv 3 ATCC 700970
mfl Mesoplasma florum L1
ayw Aster yellows witches-broom phytoplasma AYWB

α-proteobacteria

rco Rickettsia conorii Malish 7
rfe Rickettsia felis URRWXCal2
rbe Rickettsia bellii RML369-C
rty Rickettsia typhi Wilmington
rpr Rickettsia prowazekii Madrid E
wol Wolbachia endosymbiont of Drosophila melanogaster
wbm Wolbachia endosymbiont TRS of Brugia malayi
nse Neorickettsia sennetsu Miyayama
erg Ehrlichia ruminantium Gardel
eru Ehrlichia ruminantium Welgevonden (CIRAD)
erw Ehrlichia ruminantium Welgevonden (CIRAD)
ecn Ehrlichia canis Jake
ech Ehrlichia chaffeensis Arkansas
aph Anaplasma phagocytophilum HZ
ama Anaplasma marginale St. Maries
pub Candidatus Pelagibacter ubique HTCC1062
bqu Bartonella quintana Toulouse
bhe Bartonella henselae Houston-1
bbk Bartonella bacilliformis KC583
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nwi Nitrobacter winogradskyi Nb-255
nha Nitrobacter hamburgensis X14
rpc Rhodopseudomonas palustris BisB18
rpe Rhodopseudomonas palustris BisA53
rpd Rhodopseudomonas palustris BisB5
rpb Rhodopseudomonas palustris HaA2
rpa Rhodopseudomonas palustris CGA009
bja Bradyrhizobium japonicum USDA 110
atc Agrobacterium tumefaciens C58 (Dupont)
atu Agrobacterium tumefaciens C58 (Dupont)
sme Sinorhizobium meliloti 1021
rle Rhizobium leguminosarum bv. viciae 3841
ret Rhizobium etli CFN 42
mlo Mesorhizobium loti MAFF303099
mes Mesorhizobium sp. BNC1
bms Brucella suis 1330
bmb Brucella abortus bv 1 9-941
bmf Brucella melitensis bv Abortus 2308
bme Brucella melitensis 16M
mag Magnetospirillum magneticum AMB-1
rru Rhodospirillum rubrum ATCC 11170
gox Gluconobacter oxydans 621H
gbe Granulobacter bethesdensis CGDNIH1
pde Paracoccus denitrificans PD1222
rsq Rhodobacter sphaeroides ATCC 17025
rsh Rhodobacter sphaeroides ATCC 17029
rsp Rhodobacter sphaeroides 2.4.1
jan Jannaschia sp. CCS1
rde Roseobacter denitrificans OCh 114
sil Silicibacter pomeroyi DSS-3
sit Silicibacter sp. TM1040
hne Hyphomonas neptunium ATCC 15444
mmr Maricaulis maris MCS10
ccr Caulobacter crescentus CB15
nar Novosphingobium aromaticivorans DSM 12444
sal Sphingopyxis alaskensis RB2256
eli Erythrobacter litoralis HTCC2594
zmo Zymomonas mobilis mobilis ZM4

β-proteobacteria

bpa Bordetella parapertussis 12822
bbr Bordetella bronchiseptica RB50
bpe Bordetella pertussis Tohama I
bxe Burkholderia xenovorans LB400
bam Burkholderia cepacia AMMD
bch Burkholderia cenocepacia HI2424
bcn Burkholderia cenocepacia AU 1054
bur Burkholderia sp. 383
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bvi Burkholderia vietnamiensis G4
bps Burkholderia pseudomallei K96243
bpm Burkholderia pseudomallei 1710b
bpd Burkholderia pseudomallei 668
bmv Burkholderia mallei SAVP1
bma Burkholderia mallei ATCC 23344
bml Burkholderia mallei NCTC 10229
bmn Burkholderia mallei NCTC 10247
bte Burkholderia thailandensis E264
rso Ralstonia solanacearum GMI1000
reh Ralstonia eutropha H16
rme Ralstonia metallidurans CH34
reu Ralstonia eutropha JMP134
pnu Polynucleobacter sp. QLW-P1DMWA-1
har Herminiimonas arsenicoxydans

vei Verminephrobacter eiseniae EF01-2
rfr Rhodoferax ferrireducens T118
pna Polaromonas naphthalenivorans CJ2
pol Polaromonas sp. JS666
ajs Acidovorax sp. JS42
mpt Methylibium petroleiphilum PM1
azo Azoarcus sp. BH72
eba Azoarcus sp. EbN1
dar Dechloromonas aromatica RCB
cvi Chromobacterium violaceum ATCC 12472
nma Neisseria meningitidis Z2491
nme Neisseria meningitidis MC58
nmc Neisseria meningitidis FAM18
ngo Neisseria gonorrhoeae FA 1090
mfa Methylobacillus flagellatus KT
tbd Thiobacillus denitrificans ATCC 25259
net Nitrosomonas eutropha C71
neu Nitrosomonas europaea ATCC 19718
nmu Nitrosospira multiformis ATCC 25196

γ-proteobacteria

ecs Escherichia coli O157:H7 Sakai
ece Escherichia coli O157:H7 EDL933
ecj Escherichia coli W3110
eco Escherichia coli K12
ssn Shigella sonnei Ss046
ecp Escherichia coli 536
ecc Escherichia coli CFT073
ecv Escherichia coli APEC O1
eci Escherichia coli UTI89
sbo Shigella boydii Sb227
sfl Shigella flexneri 2a 301
sfx Shigella flexneri 2a 2457T
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sdy Shigella dysenteriae Sd197
sec Salmonella enterica enterica sv Choleraesuis SC-B67
stm Salmonella typhimurium LT2
spt Salmonella enterica enterica sv Paratyphi A ATCC 9150
sty Salmonella enterica enterica sv Typhi CT18
stt Salmonella enterica enterica sv Typhi Ty2
ent Enterobacter sp. 638
ypp Yersinia pestis Pestoides F
yps Yersinia pseudotuberculosis IP 32953
ypn Yersinia pestis Nepal516
ypm Yersinia pestis biovar Microtus 91001
ypk Yersinia pestis KIM
ype Yersinia pestis CO92
ypa Yersinia pestis Antiqua
eca Erwinia carotovora atroseptica SCRI1043
plu Photorhabdus luminescens laumondii TTO1
sgl Sodalis glossinidius morsitans
wbr Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis
bpn Candidatus Blochmannia pennsylvanicus BPEN
bfl Candidatus Blochmannia floridanus

bcc Buchnera aphidicola Cc
bab Buchnera aphidicola Bp
buc Buchnera aphidicola APS
bas Buchnera aphidicola Sg
vvu Vibrio vulnificus CMCP6
vvy Vibrio vulnificus YJ016
vpa Vibrio parahaemolyticus RIMD 2210633
vch Vibrio cholerae O1 bv eltor N16961
vco Vibrio cholerae O395
vfi Vibrio fischeri ES114
ppr Photobacterium profundum SS9
aha Aeromonas hydrophila hydrophila ATCC 7966
pin Psychromonas ingrahamii 37
sdn Shewanella denitrificans OS217
sfr Shewanella frigidimarina NCIMB 400
saz Shewanella amazonensis SB2B
slo Shewanella loihica PV-4
sbl Shewanella baltica OS155
spc Shewanella putrefaciens CN-32
shw Shewanella sp. W3-18-1
son Shewanella oneidensis MR-1
shn Shewanella sp. ANA-3
shm Shewanella sp. MR-7
she Shewanella sp. MR-4
sde Saccharophagus degradans 2-40
maq Marinobacter aquaeolei VT8
pha Pseudoalteromonas haloplanktis TAC125
pat Pseudoalteromonas atlantica T6c
ilo Idiomarina loihiensis L2TR
cps Colwellia psychrerythraea 34H
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csa Chromohalobacter salexigens DSM 3043
hch Hahella chejuensis KCTC 2396
abo Alcanivorax borkumensis SK2
aci Acinetobacter sp. ADP1
pcr Psychrobacter cryohalolentis K5
psp Pseudomonas syringae pv. phaseolicola 1448A
psb Pseudomonas syringae pv. syringae B728a
pst Pseudomonas syringae pv. tomato DC3000
pmy Pseudomonas mendocina ymp
ppu Pseudomonas putida KT2440
pen Pseudomonas entomophila L48
pae Pseudomonas aeruginosa PAO1
pfo Pseudomonas fluorescens PfO-1
pfl Pseudomonas fluorescens Pf-5
hha Halorhodospira halophila SL1
aeh Alkalilimnicola ehrlichei MLHE-1
noc Nitrosococcus oceani ATCC 19707
mca Methylococcus capsulatus Bath
xcv Xanthomonas campestris pv. vesicatoria 85-10
xac Xanthomonas axonopodis pv. citri 306
xcc Xanthomonas campestris pv. campestris ATCC 33913
xcb Xanthomonas campestris pv. campestris 8004
xoo Xanthomonas oryzae pv. oryzae KACC10331
xft Xylella fastidiosa Temecula1
xfa Xylella fastidiosa 9a5c
hdu Haemophilus ducreyi 35000HP
hso Haemophilus somnus 129PT
hin Haemophilus influenzae Rd KW20
hit Haemophilus influenzae 86-028NP
msu Mannheimia succiniciproducens MBEL55E
apl Actinobacillus pleuropneumoniae L20
pmu Pasteurella multocida multocida Pm70
lpn Legionella pneumophila pneumophila Philadelphia 1
lpp Legionella pneumophila Paris
lpf Legionella pneumophila Lens
cbu Coxiella burnetii RSA 493
tcx Thiomicrospira crunogena XCL-2
ftl Francisella tularensis holarctica

fth Francisella tularensis holarctica OSU18
ftw Francisella tularensis tularensis WY96-3418
ftf Francisella tularensis tularensis FSC 198
ftu Francisella tularensis tularensis SCHU S4
rma Candidatus Ruthia magnifica Cm
bci Baumannia cicadellinicola Hc
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