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Abstract

This thesis developes computer modelling techniques, and their use in the investigation
of biochemical systems, principally the photosynthetic Calvin cycle. A set of metabolic
modelling software tools, “Scampi”, constructed as part of this project is presented.
A unique feature of Scampi is that it allows the user to make a particular model the
subject of arbitrary algorithms. This provides a much greater flexibility than is available
with other metabolic modelling software, and is necessary for work on models of (or
approaching) realistic complexity.

A detailed model of the Calvin cycle is introduced. It differs from previously pub-
lished models of this system in that all reactions are assigned explicit rate equations
(no equilibrium assumptions are made), and it includes the degradation, as well as the
synthesis, of starch. The model is later extended to include aspects of the thioredoxin
system, and oxidative pentose phosphate pathway. Much of the observed behaviour is
consistent with experimental observation. In particular, Metabolic Control Analysis of
the model shows that control of assimilation flux is likely to be shared between two
enzymes, rubisco and sedoheptulose bisphosphotase (SBPase), and can readily be trans-
ferred between them. This appears to offer an explanation of experimental evidence,
obtained by genetic manipulation, that both of these enzymes can exert high control
over assimilation. A further finding is that the output fluxes from the cycle (to starch
and the cytosol), show markedly different patterns of control from assimilation, and
from each other.

An novel observation in behaviour of the Calvin cycle model is that, under certain
circumstances, particularly at low light levels, the model has two steady-states and
can be induced to switch between them. Although this exact behaviour has not been
described experimentally, published results show charecteristics suggesting the potential
is there in vivo.

An explanation of all the observed behaviour is proposed, based upon the topology
of the model. If this is correct then it may be concluded that the qualitative behaviour
observed in the model is to be expected in vivo, although the quantitative detail may

vary considerably.
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program [4]. All document preparation was carried using the “PasTex” [60] distribution

of the IXTEX [79] document preparation system.
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Chapter 1

Introduction

1.1 Aims of the Thesis

The original motivation for the work upon which this thesis is based was three-fold:

1. To identify and characterise the metabolic components of plants that determine
the allocation of photosynthetically assimilated carbon between various parts of

the plant.

2. To develop the computer modelling skills necessary to build, and analyse, models

of realistic biological complexity, and apply these to photosynthesis.

3. To use such results to identify useful investigative techniques that may be applied
to other systems, and to draw more general conclusions relating system structure

to behaviour.

As the project progressed, the scope of these goals narrowed considerably, and those of

this thesis are correspondingly more modest:

1. To describe computer software, constructed as part of the project, that allows

large metabolic models to be effectively investigated.

2. To present the results of using this software in conjunction with a detailed model

of the Calvin cycle of photosynthesis.

3. To demonstrate that these results are consistent with experimental observation,

and that model results and experimental observation can be shown to arise from



from the topology of the Calvin cycle

Although some room for improvement in the realisations of these goals may remain, it
is hoped that all three areas show improvements over the works of those who have gone
before, but without which this thesis would not have been possible.

The remainder of this chapter serves to describe in outline, the flow of carbon within
plants, traditional and modern views on the control of metabolism, and the principles
of computer modelling of biochemical systems, and concludes with an overview of the

subsequent chapters.

1.2 Photosynthetic Carbon Metabolism

1.2.1 Photosynthesis

Photosynthesis is the process by which energy recovered from the absorption of light by
certain pigments, is used to assimilate COy, releasing oxygen, and incorporating carbon
into metabolically useful compounds. As CO; is the end point of most other metabolic
processes, photosynthesis, by recycling the carbon, is essential for sustainable life on
earthl.

Photosynthesis is common amongst the prokaryotes as well as the eukaryotes, but
only the latter are considered in this thesis. The radically different intra-cellular organi-
sation of the two means that results obtained from one are not readily applicable to the
other.

Eukaryotic photosynthetic organisms may be sub-divided into three categories: C-3,
C-4, and crassulacean acid metabolism (CAM) [111]. C-4 photosynthesis and CAM are
thought to have evolved in response to arid conditions. The operation of C-4 photosyn-
thesis is dependent upon a specialised leaf anatomy, and CAM upon an unusual diurnal
cycle. Both C-4 and CAM photosynthesis are extensions to, and not substitutes for, C-3
photosynthesis, which is therefore present in all photosynthetic eukaryotes. Accordingly,
this thesis is restricted to the consideration of C-3 metabolism.

The process of photosynthesis, exclusively confined to the chloroplast, is divided into
two, logically and physically separate, components: the energy harvesting light reactions,

located on the thylakoid membrane; and the carbon fixing Calvin cycle, located in the

!With the possible exception of habitats around deep ocean geo-thermal vents, and similarly
exotic locations
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Figure 1.1: General outline of the Calvin
cycle , showing the flow of carbon through
the three limbs.

Figure 1.2: Main carbon pathways in pho-
tosynthetic plant cells.

chloroplast stroma. It is with the latter that this thesis is predominantly concerned.
The light reactions are essential to drive the Calvin cycle, and although the potential
for interaction between the light reactions and Calvin cycle is considered in the thesis,

the underlying mechanisms of the light reactions are not.

1.2.2 The Calvin cycle
Structure

It is the Calvin cycle, the source of carbon for photoautotrophic organisms, and the
ultimate carbon source for heterotrophs, that is the main object of study in this thesis.
In its minimal form, the cycle consists of a set of thirteen reactions, comprising a rather
complex whole. However, for many purposes, this complexity may be greatly simplified
if the Calvin cycle is considered to be comprised of three separate limbs, or branches:
the assimilatory, the reductive, and the regenerative, as illustrated in Figure 1.1.

The assimilatory limb is comprised of a single reaction; the formation of two molecules
of the three carbon compound phosphoglycerate (PGA) by the addition of CO5 to the
five carbon ribulose bisphosphate (RuBP), catalysed by the enzyme ribulose-bisphosphate
carboxylase-oxygenase (rubisco).

The two reactions of the reductive limb are the point at which most of the energy
investment from the light reactions is made, reducing the relatively oxidised PGA to
three carbon triose phosphate (TP).

The remaining reactions form the most complex component of the cycle, the regen-



erative limb, which have an overall stoichiometry of 5TP +P; — 3RuBP. Although an
investment of one molecule of ATP for each molecule of RuBP is made, in this context

it is more convenient to regard ATP as a carrier of P;, rather than of energy.

Fate of products

Carbon that is assimilated, but not regenerated to RuBP has two immediate possible
fates. It can either enter the starch synthesis pathway, located within the the stroma,
or be exported in the form of TP or PGA, from the chloroplast to the cytosol.

The purpose of (chloroplast) starch is to provide a buffer, or reservoir, of carbon
against the possibility of carbon demand exceeding assimilation [87,26]; this is obviously
the case at night when photosynthesis cannot take place, but has also been reported
under experimental conditions in the light [128]. Under normal physiological conditions
starch is synthesised during the day and degraded at night. Although it is probable that
several routes exist for the degradation of starch, one of these is certainly the simple
reversal of the synthesising reaction [94,12], hence chloroplastic starch metabolism can
serve to act as a sink or a source, of Calvin cycle intermediates. As will be shown
in subsequent chapters, the presence of starch metabolism has a major effect on the
behaviour of the Calvin cycle , and, for the purposes of this thesis, will be regarded as
an integral component of it: the storage limb.

Carbon is exported from the chloroplast (at least in the light), in the form of TP
and PGA, exclusively mediated by a transport protein, the triose phosphate - phosphate
translocator (TPT) [59,36,27]. As its name implies, the TPT exports TP in strict
counter exchange for P; and this is of major physiological significance for several reasons,
one of which is that it enables (the concentration of) cytosolic P; (=P;,,,) to act as a
signal for carbon demand. Therefore, the process of export will also be regarded as a
limb of the cycle. In higher plants? exported carbon has two main fates: the anabolic
sucrose synthesis pathway (ultimately exported into the phloem), and the catabolic
route to respiration. Although cytosolic respiration is known to occur in the light its
physiological significance remains unclear [71].

The major carbon routes, described above, are illustrated in Figure 1.2. The scope
of most of this thesis is confined to consideration of the Calvin cycle, including the

storage and export branches.

2Those with a recognisable vasculature



1.3 The Control of (Photosynthetic Carbon) Flux

1.3.1 Background

The history of biochemistry may reasonably said to have begun at the turn of last
century, with the investigations of fermentation, initiated by the Buchner brothers in
1897, and continued by Harden and Young through the first decade of this century.
The realisation that hitherto incomprehensible processes took place in small, discrete
steps, amenable to isolation and individual investigation, prompted an explosion of
activity, with the result that by the end of the 1950s the routes taken by almost all
main metabolic processes had been elucidated. It would, of course, be foolish to assert
that any particular field of academic inquiry is complete, however, the metabolic map
of textbooks of thirty years ago is little different from that of those today.

At the same time that the pathways of metabolism were being mapped out, attention
was also turned to the understanding of the individual, enzyme catalysed, reactions that
comprise them. This endeavor appears to have been equally successful, resulting in the
field of enzymology, and since perhaps the mid 1960s little new fundamental work in this
field has appeared, although matters such as experimental design and data handling are
still areas of current work. The state of the art is such that it has led one prominent
worker in the field to state “. .. the analysis of the steady-state behaviour of an individual

isolated enzyme may now be regarded as a solved problem” [21].

1.3.2 Problems in understanding multi-enzyme systems

Despite the formidable body of knowledge representing the individual steps that make up
the pathways of metabolism, and the mathematical rigor with which those steps may be
characterised, understanding of the behaviour of pathways in terms of their constituent
steps remains poor. This state of affairs may be attributed to several causes, acting
simultaneously.

Given that rate equations for individual reactions can, in principle, be determined
with precision, it might be hoped that the individual rate equations for a given pathway
could be combined to yield a rate equation for the whole pathway. Unfortunately, this
is not the case: the non-linearity that is inherent in all enzyme rate equations results
in such an extreme increase in the complexity of any simultaneous solution to a set

of such equations, that this approach is not generally regarded as viable [21]. Under



certain circumstances it may be possible to render the problem tractable by the use
of simplifying assumptions: either reducing the number of reactions assumed to be
present, or by simplifying the rate equations, or both. The approach can be useful, and
is discussed more fully in chapter 6. However, much information is inevitably lost, and
anyway begs the questions as to what are reasonable simplifying assumptions, and as

to what effects such simplifications have upon the final results.

1.3.3 The quest for rate limiting steps

A second obstacle to developing a general understanding of biochemical systems appears
to have arisen as a result of taking the process of simplification to its logical conclusion,
and assuming that the system behaviour may be approximated by that of a single
enzyme. Such putative crucial enzymes have been variously known as “rate limiting”,
“regulatory” or “pace-maker” enzymes. The expectation of a rate limiting enzyme tends
to be justified with the observation that in any system comprised of a group of enzymes,
one will be the slowest, and that the flux through the system is therefore determined
by that step, and that by controlling that step the rate through the whole pathway is
controlled. This may be compared, by analogy, with a convoy of ships (for example)
whose speed is determined by that of the slowest. The earliest formulation of this
hypothesis is usually accredited to the work of F. F. Blackman, in the first decade of
this century [30,137]. Although Salisbury and Ross [112] credit Blackman with proposing
the term “rate-limiting factor”, they attribute the concept to the work of Liebig in 1840.

Both Blackman and Liebig were investigating the response of plant growth and
photosynthesis to changes in environmental factors, a long time before the mechanisms
of photosynthesis were known; they investigated such external factors as the availability
of nutrients, which at low concentrations limit growth. It is not clear when the idea of
rate limiting factors was applied to the activity of enzymes, but Krebs [70], in 1957 takes
the existence of pacemaker enzymes as granted. It is certain that since then, discussion
of the control and regulation of metabolic systems has been dominated by the search
for, and characterisation of, rate-limiting steps.

Unfortunately, although at first sight the convoy analogy appears obvious, it is quite
wrong. The speed will be governed by many, possibly conflicting, factors, including sea
and weather conditions, the urgency for cargo to be delivered, the increase in fuel costs

by travelling more quickly, and so on. The only statement that can be made with



certainty about the possible contribution of a single ship to the speed at which the
whole convoy moves, is that the mazimum speed at which the convoy can travel is equal
to the maximum speed that the slowest ship can attain.

In recent years there has been a steady accumulation of theoretical and experimental
evidence, that as a general principle, the rate limiting step hypothesis is flawed. The
experimental evidence is discussed in some depth by Fell [31], and due to considera-
tions of space will not be discussed further here. This thesis make its contribution to
undermining the rate limiting step hypothesis by showing that, in a detailed model of
the Calvin cycle, control over a given flux is likely to be shared between at least two
steps, can change dramatically in response to environmental change, and that even if
one enzyme does attain the characteristics of a rate limiting step, that this degree of
control is conferred by the structure of the whole system, and cannot be determined by
consideration of that enzyme alone.

Although alternatives to the rate limiting step hypothesis have gained ground, it is
probably true to say that, at the time of writing, this hypothesis remains the current
orthodoxy, and has led to many workers devoting their time to the detailed study of
a single enzyme. One of the more striking examples of this is rubisco, the enzyme
catalysing the initial CO» fixing reaction in the Calvin cycle This is frequently assigned
the central, if not the sole réle in the control and regulation of photosynthetic carbon
assimilation [86,138,139]. Perhaps the most convincing piece of evidence as to the great
extent of this idée fize, is that a recent electronic search of literature published since
1990 containing “rubisco” in the title, key-word list, or abstract, yielded some 1200
articles. Repeating this for “Calvin cycle’ resulted in only 350.

1.3.4 Concepts of distributed control

The concept of rate limiting steps is qualitative and absolute: an enzyme is either the
rate limiting step for a pathway, or it is not; and if not, has no effect upon pathway flux.
The period between the late 1960s and mid 1980s saw the publication of a consid-
erable body of work providing a theoretical framework within which the influence of a
given enzyme over pathway flux, or more generally, the influence of any parameter over
any variable, can be quantified.
These can be divided into three major schools of thought: biochemical systems

theory [119], Newsholme and Crabtree’s work [24] called flux oriented theory by some,



and metabolic control analysis. The former two have played no role in the work of this
thesis; metabolic control analysis appears to have received much more attention, both
in terms of theoretical development, and experimental application, and provides the

definitions of control used here.

1.3.5 Metabolic control analysis

The fundamental, quantitative, definitions of control, from which the field of metabolic
control analysis grew, were independently proposed by Kacser and Burns [63] (recently
updated and re-issued [64]), and Heinrich and Rapoport [57]. The authors used different
nomenclature, but this was standardised in 1985 by international agreement [17]. The
original work considered the effects of enzyme activity upon linear pathways; this was
subsequently extended to show its validity for branched pathways [33], for cycles [118],
and finally for systems of arbitrary topology [106].

The definitions of metabolic control analysis

With respect to the control of flux, and at its most elementary, metabolic control analysis
proposes two characteristics of an enzyme, local and global, and defines relationships

between them.

Elasticity, €¢**¢, is defined as the proportional change in the rate of the isolated
enzyme, xase, brought about a (vanishingly) small proportional change in the concen-
tration of metabolite, S. More formally, this is the scaled first partial derivative of the
rate equation with respect to the metabolite:

. 61)1' S
€ = 7— 1.1
S o8 v; ( )
where v is the activity of enzyme i, and S is the metabolite under consideration. Poten-
tially, every enzyme can have an elasticity to every metabolite in a system. If an enzyme

is entirely unaffected by a metabolite then no term for that metabolite will appear in

the rate equation, and equation (1.1) will be equal to zero.

The flux control coefficient, C7, of an enzyme is defined as the proportional change

in pathway flux resulting from a (small) change in the activity of an enzyme: that is,



the scaled first partial derivative of pathway flux with respect to enzyme activity:

J. 6Ja£

Ja — 1.2
= B T (1.2)
where J, is the flux in pathway a. Equation 1.2 may be re-written as:
dlnw;
J 1
ve = 1.3
! Oln J, (1.3)

which has the practical significance that if measurements of v; and J, can be made,

then CiJ‘"‘ can be directly determined as the slope of a In —In plot of J, versus v;.

Values of C? within a system are related to each other via the summation theorem:

z": ¢l =1 (1.4)
i=1

and via the connectivity theorem, to elasticities:
n
S Clel =0 (15)
i=1

Thus, in a linear system of n reactions there will be n — 1 connectivity relationships and
one summation, and, if all elasticities are known, a set of simultaneous equations can
be constructed to determine values of C?. An important point to be drawn from this,
is that any explicit equation for C”, achieved in such a fashion will necessarily contain
terms originating in the kinetic equations of all other enzymes in the system, i.e. control

is a system property, not an enzyme property.

In branched or cyclic pathways, the summation and connectivity theorems alone
yield a singular set of equations, but additional relationships defined in [33] and [118]
allow soluble sets of equations to be found under these conditions. In the case of linear
pathways an increase in enzyme activity cannot result in a decrease in flux, and it
therefore follows from the summation theorem (eqution 1.4), that 0 < Cg <10 =
1---n). In branched pathways this is not so: increasing the activity in one limb is likely
to reduce flux in the other, leading to values of C’ < 0. Under such circumstances

other values of C? > 1 do not represent a violation of equation 1.4.

A further complication in the interpretation of C’ values occurs in reversible path-

ways: it follows from equation 1.2 that as J — 0,C? — +00 and changes sign at .J = 0.



This can lead to an apparently paradoxical situation in the storage limb of the Calvin
cycle : despite the fact that an increase in starch synthase activity can only increase
flux to starch, under circumstances of net degradation CEo*"™" is negative.

It is not the purpose of this thesis to further expound or expand the theory of
metabolic control analysis. Values of C? can be quickly and easily determined using

computer modelling techniques (described in chapter 2), and these in turn can be directly

compared to experimentally determined values.

1.4 The Use of Computer Modelling

The main tool used in this thesis to investigate the behaviour of the Calvin cycle is
computer modelling. The use of computers to model natural systems is by no means
new and various approaches exist, but the majority of this thesis is concerned with
modelling systems of biochemical reactions as sets of first order ordinary differential
equations (ODEs)® . This is a well established general technique, dating from the time
of Sir Isaac Newton, although it is only relatively recently that it has been applied to

biochemical systems, and has yet to become widely established.

1.4.1 Approaches to ODE models of biochemical systems

There are two approaches to using ODE techniques to model biochemical systems.
The first is to simplify the system under consideration, so as to render it analytically
tractable, extract explicit solutions, and then use a computer program to calculate vari-
ables of interest over a range of parameter values. The second is to forgo the possibility
of an analytical solution, construct the model in as much detail is as known, and use
numerical approximation to determine variables for sets of parameter values. for the
purposes of this discussion, the two will be described as simple, and detailed modelling

respectively.

Simple models

It is arguable that this approach should be called something other than computer mod-

elling: the modelling activity is performed by the human, and although in the last stage

3Since the main input to these models is the kinetic equations of the individual reactions,
this is often described as kinetic modelling
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of the process the computer alleviates the arithmetic burden, no information is generated
that could not have been obtained without a computer.

As described in chapter 6 the approach can yield considerable benefit. By simplify-
ing, it may be possible to show that behaviour observed in the un-simplified system is
a general property of all systems sharing some common feature.

However, there are also a number of disadvantages. Firstly, as many features in
the original system are removed, the influence of those features on the behaviour of the
system cannot be assessed, although they may be known, or at least assumed to be phys-
iologically important. In a similar vein, if some feature is assumed to be unimportant,
and omitted from the model, then the possibility of observing a hitherto unsuspected
role for that feature is eliminated.

Secondly, it is not necessarily clear which components of a complex system should
be removed to create a simplified model. For example Giersch [43] considered two
simplifications of the Calvin cycle , and demonstrated that not only do both of the
resulting models have similar behaviour, but the underlying mathematical structure of
the two is also similar, and it is thus not possible to decide which of the two exhibits
more realistic behaviour.

A similar problem exists if different simplified models generate contradictory con-
clusions. Hahn [50] published a simplified model of photosynthesis, and claimed that
photorespiration? was essential in maintaining stability in the system. However many
models (see chapter 6) have been described which neither include photorespiration, nor

report lack of stability.

Detailed models

In contrast to simple models, detailed models represent the known biochemical charac-
teristics of the system in as much detail as possible. Clearly the model will provide a
representation of the system under consideration more realistic than the simple model,
but the price that is paid is the loss of analytic solutions, and hence formal proofs. De-
spite this intractability, numerical solutions can generally be found for such systems, via

the use of standard algorithms for solving (steady-state determination), and integrating

“Rubisco can also catalyse a reaction between O» and RuBP, generating a two carbon
species (glycolate) and a three carbon compound. Glycolate undergoes a series of reactions in
the cytoplasm, some carbon is lost as CO2 , and the rest ultimately converted to PGA. The
process, called photorespiration, is well documented, and although its biological purpose is the
subject of some controversy, it is not considered further in this thesis.
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(time dependent behaviour), such systems. In this approach almost all of the mathe-
matical effort is provided by the computer, leaving the modeler free to concentrate on

the physiological relevance of the results thus generated.

Detailed modelling has been criticised on the basis that subsequent model behaviour
tends to be nearly as complex as that of the subject, and nearly as hard to explain
[44,50,14]. Although the observation may be true, the criticism should be rejected: if
the in vivo behaviour is complex, then so must be that of a realistic model. Modelers
have the advantage over their experimental counterparts of being able to alter or measure
any aspect of the system, with a speed and precision that is many orders of magnitude

greater than could be accomplished by other means.

Thus although, on initial investigation, model behaviour may be complicated, it is
reasonable to hope that enough information may be generated to first characterise the
behaviour of the model, and then by classic scientific method, test hypotheses to explain
it. Most of the modelling work undertaken during this project has followed this strategy.

Software requirements, and other technicalities, are discussed in chapter 2.

1.4.2 Elementary modes analysis

A recently developed technique for the analysis of biochemical systems, complementary
to kinetic modelling, is based solely on consideration of the stoichiometry matrix, as
described by Heinrich and Schuster [58,125]. The object of the analysis is to iden-
tify groups of connected reactions (elementary modes) whose net flux can be altered
independently of other fluxes in the system, and without effect on any intermediate con-
centrations. The primary motivation for the development of elementary modes analysis
is the identification of discrete subsystems in very large (~ 100s) systems of reactions.
In this thesis it proved to be particularly valuable in identifying those reactions which
must be present in a system to allow any flux, regardless of kinetic parameters, to flow

between source and sink metabolites (as described in chapter 4).

Determination of elementary modes requires the use of software designed for this
purpose. One such program, Empath, has been written by an ex-colleague, John Woods
[140], who kindly used it to provide the elementary modes results described elsewhere

in this thesis.
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1.5 Overview

Chapter 2 describes in detail the facilities offered by the “Scampi” software package.
This takes the form of a set of “C” programming language libraries, that allow the user to
make a given model the subject of arbitrary algorithms. The interface is the language,
and this provides advantages of complete flexibility, cross platform portability, error
recovery, and speed, over other software used for similar purposes. In the eyes of many
potential users, the necessity of using “C” will present a major obstacle. Although this
is a real disadvantage, it is the author’s belief that the detailed examination of a model.
of the complexity presented here, could not have been achieved with any other currently
available software. Furthermore, even relatively simple models have the potential for
such unexpectedly complex behaviour, that an interface based on a language, and not
the “control panel” paradigm of most modern GUI software, appears to offer a faster
and more reliable route to characterising the behaviour of models. Only when behaviour
has been characterised, is it possible to offer an explanation for it.

Chapter 3 compares the advantages of stochastic algorithms over their more con-
ventional deterministic counterparts. One particular category of stochastic algorithms,
evolution strategy (ES) algorithms are discussed in more detail, and their potential use
in biochemical modelling described. The chapter concludes by presenting the results of
applying ES to a real-world problem : fitting the parameters of a model to time course
data.

Chapter 4 starts by introducing a model of the Calvin cycle , the study of which
forms the basis for most of the rest of the thesis. Results of the investigation of the
model’s behaviour are presented, including response to external factors, control analysis,
and dynamics. Some novel behaviour, not previously reported, is described.

Chapter 5 describes the use of ES to optimise the model of the Calvin cycle accord-
ing to a realistic, if simple, selection pressure: to maximise assimilation by the Calvin
cycle , while simultaneously minimising the total amount of protein required for the
purpose. The process results in a population® of optimised models, and these are char-
acterised statistical. It is shown that the optimisation, unexpectedly, results in models
that have dynamic behaviour that is quantitatively closer to experimental observation

than the non-evolved model, despite the fact that dynamic behaviour played no part in

°In this thesis, in the context of ES, the term population carries its biological, and not
statistical meaning
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optimisation process.

Chapter 6 contains three main sections. Firstly skeleton models of the Calvin cycle
cycle are investigated, with the aim of determining a model of minimal complexity, whose
behaviour encompasses that of the more complete model. Next, the modelling work in
this thesis is compared with other published models of the Calvin cycle . Finally, the
modelling work is compared to experimental observations of the Calvin cycle .

Chapter 7, is the concluding chapter, and starts by building on the material in the
previous chapter, to propose a common explanation for behaviour of the Calvin cycle
as observed in both skeleton and detailed models, and in vivo. Possible physiological
and implications of this are also discussed. Next the approaches to computer modelling
used in the thesis are summarised and appraised. Finally the desirability of extending
the Calvin cycle model is discussed, and in particular that of including parts of cytosolic

metabolism, that might enable it to be placed within the context of the complete cell.
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Chapter 2

Scampi - The Users

Perspective

2.1 Introduction

When work on the model (described in chapter 4 onwards) was commenced, the SCAMP
modelling package, written by Herbert Sauro [116,117] was used. It was soon realised
that, although SCAMP provides a convenient and natural format to describe the struc-

ture of biochemical systems, problems existed with the investigation of large models.

These problems were observed to fall into three separate areas: poor error handling,
lack of flexibility in controlling the model once defined, and instability. A further consid-
eration was that the software was only available for a single hardware platform. It was
thought that the cause of these problems lay not in the underlying numerical algorithms,

or their implementation, but in the flow of control and information between these.

It was also apparent that in order to undertake studies of a model with complex,
and, at that time, unknown behaviour, the ability to describe sequences of actions, and
take decisions on the basis of the results of such actions was essential. This requirement

mandates the use of a language to control the model.

The considerations above led to the development the “Scampi”, which formed a
large part of the work of this thesis, and made possible the modelling investigations and

results described in later chapters.
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2.2 Overview

Scampi, as the name implies, is a direct descendent of the SCAMP! modelling package,
written by Herbert Sauro [116,117,115]. It is a package providing a number of utility
libraries and associated files, allowing the user to write programs in the C programming
language that control models whose structure (i.e. topology, reaction kinetics, and
identifier names), has been defined using SCAMP. Four libraries are supplied: Scampi,
Evol, Math2, and Lists. The “Evol” library supplies functions concerned with evolution
strategy algorithms, and is described in chapter 3. “Lists” and “Math2” provide low-
level functionality used by the “Scampi” and “Evol” libraries, and available to the user,
but a description of these is not relevant to this thesis, and is therefore omitted.

All of the modelling functionality is provided by the Scampi library. This ranges in
complexity from the providing the ability to read the value of a single, named, concentra-
tion, through finding steady-state solutions and simulating models, Metabolic Control
Analysis (MCA) functions, up to functions (for example) analysing the dynamic prop-
erties of a model. In most cases, such actions are performed through a single function
call, and the user’s knowledge of C, and general programming techniques, need not
be great. Data thus generated may either be stored internally for subsequent analysis

and/or saved to a file as plain (tab delimited) ASCII.

2.2.1 Generating executables using Scampi

Using Scampi keeps the model definition, and the model control phases of an investiga-
tion physically as well as logically separate. The structure of Scampi allows, but does
not demand, a similar separation between the model control (data generation) and data
analysis phases to be maintained. Thus, the ability to modify the model iteratively,
assess the effect, and re-modify accordingly, is a straightforward programming exercise.

It is not (at present) possible to change the structure of a model, but no other
restrictions are imposed. If a specific high-level function is not available, the lower-level
functions are thought to be sufficiently generalised to allow it to be readily constructed.

Scampi considers that a usable model has a predefined structure, associated with
sets of individually, and uniquely, named model variables. The names of the model

variables are part of the model structure and are therefore constant. Functions supplied

!Familiarity with basic SCAMP features is assumed in this chapter.
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by the Scampi library allow the user to control the model by, directly or indirectly,
accessing the values of identified model variables. No other access is possible.

The structure of a model is defined in a SCAMP .cmd file, and SCAMP is used to
process this, producing a corresponding .1st file? . Scampi converts the .1st file to a
C source code file, containing only model definition information. The user incorporates
this into their own source code which passes (references to) the model to the functions
implemented in the Scampi library.

For example, consider the construction of a program called ”DoThingsTo”, acting

on a model named “MyModel”. The user must perform the following actions:
1. Define the model structure in a file MyModel.cmd.

2. Use SCAMP to generate the corresponding MyModel.1st file. The “codegenr” and

“runexec” phases of SCAMP modelling can be omitted.

3. Use the Scampi parser, spicg (= Scampi Code Generator), to generate the files

MyModel.cand MyModel.h, containing the C description of the model structure.

4. Write the program source code in DoThingsTo.c. As a minimum this source code

must:

e #include the header file Scampi.h (described in section 2.4).
e #include the file MyModel.h.

e Contain the main() function call.

5. Compile the two source files to their corresponding object files, and link these with

the relevant libraries.

. With the exception of steps 1 and 4 the whole process can be conveniently described in
a single makefile (see appendix A.2.3 for an example). Furthermore as it is likely to be
necessary to perform many investigations on a model without changing the structure, the
process of using Scampi to investigate model tends to be cyclical: write the controlling

source code, make and run the executable, assess the results, write more source code.

2SCAMP produces a number of other files at this stage of processing, but it is the “.1st”
file that provides the sole interface between SCAMP and Scampi.
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2.3 The modular structure of Scampi

The Scampi library consists of a set of hierarchical and interdependent modules, covering
a spectrum of levels of abstraction. Modules providing a high level of abstraction are
dependent on those providing a low level of abstraction. Thus the dependencies within a
user’s program are determined by the highest level of abstraction required. The modules
available to the user and the services they provide are, in ascending order of abstraction,

as follows:

ScampiConst
(Scampi Constants) A very small module containing some fundamental and essen-

tial constants. It is described in section 2.4.

Scampi
This module provides the lowest usable level of abstraction, and, from the user’s
perspective, is the core module of the Scampi package. It provides mechanisms to
identify and control models, and to generate output from them. The functionality
supplied by this module allows the user to read and write values of model variables,
to determine steady state solutions of models, and to simulate models over a period

of time.

Scampi _Ute
(Scampi Utilities) Services provided by Scampi_Ute fall into two categories; The
first provides mechanisms to read and write groups of model variables. The second

comprises MCA and related functions.

Scampi Dyn
(Scampi Dynamics) The module provides approaches to determining dynamic be-
haviour of models. One is determination of eigenvalues of the model at steady-

state. The other is based on Fast Fourier Transform (FFT) of simulation results.

In addition to these modules any user program depends upon at least one model
module. Model modules define the structure® and initial values of a model. As such they
represent a specific instance of a type, ScampiModel_t declared in Scampi.h and imple-
mented by Scampi module. They are generated using SCAMP and spicg as described

above, and later in section 2.4.

3i.e. the model structure, not the data structure
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User Program

Scampi-Ute Scampi_-Dyn
User Model
Scampi
Scampi
ScampiConsts T

ScampiConsts
Figure 2.1: Dependencies within Figure 2.2: Minimal dependencies
Scampi user modules of a user program

Figures 2.1,2.2 and 2.3 illustrate dependencies within the Scampi library, a mini-

mally, and a maximally dependent user program, respectively.

2.4 The Scampi application programmers interface

2.4.1 Header files

The application programmers interface (API) is defined in a collection of C header
files, corresponding to each of the modules described above. The file ScampiConst.h is
#include’d by Scampi.h, and may be treated by the programmer as an integral part
of the Scampi module. Scampi_Ute.h and Scampi_Dyn.h do not #include Scampi.h,

which must therefore be explicitly #include’d before them.

The header files contain (external) function declarations, type declarations, and
constant definitions. There are no global variables. Macros are used to provide house-
keeping for the compiler (e.g. conditional compilation to prevent problems caused by
multiple inclusion), but do not form a part of Scampi per se. As long as the compiler is

able to locate them, the location of the headers in the file system is not important.
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Figure 2.3: Maximum dependencies of a user program

2.4.2 Representation of models

Individual models in a user program are treated as variables of an abstract data type

(ADT) via an opaque pointer as declared in Scampi.h :

typedef struct ScampiModel *ScampiModel_t ;

The user has no access to the underlying struct ScampiModel; attempts to dereference
a variable of type *ScampiModel_t are forbidden and, in most cases, will be rejected

[

by the compiler. The two binary operators (assignment) and “==” (comparison)
are legal, but rarely needed. The unary “&” (address of) operator is also valid, and
hence normal C array manipulation is possible. As pointer semantics apply to this data
type, customary care must be taken to avoid “losing” models when using the assignment
operator.

Other operations (e.g. ++ etc.) on variables of this type may be syntactically valid,
but are always semantically invalid. The effect of such operations is to render the model
variable invalid, with respect to functions that take variables of ScampiModel_t as a
parameter

Because the user is unable to modify the structure of a model, an initialised instance

of a variable of type ScampiModel_t is supplied in the header file of a specific model

module. In the example given in 2.2.1 the file MyModel.h contains nothing more than:
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extern ScampiModel_t MyModel ;

The underlying implementation of MyModel is defined in MyModel.c, and should be

regarded as private by the user.

2.4.3 Model variables

Scampi models contain four sets of model variables: Parameters, Concentrations, Ve-
locities and, a special set containing exactly one value, Time. Thus in order to access
a model variable the user must specify both the set to which it belongs, and its name.

The sets are identified by use of the enumerated data type defined in ScampiConsts.h:

enum Component_id {Time, Param, Conc, Vel} ;

In most cases it is sufficient to refer to a set using one of the four literal values above,
but the user may declare variables of enum Component_id if desired.

Model variable names are standard C NULL terminated strings of characters. Names
of parameters, concentrations, and velocities correspond to those defined by the user in
the .cmd file, Time has the fixed name “Time”.

Certain Scampi functions require that a number of model variable names are speci-
fied. In these circumstances names are referred to as a NULL terminated array of pointers
to NULL terminated strings.

Model variable values are declared as type double. Values of parameters and con-
centrations are initialised in the model . c file using initial values from the .cmd file (to
six significant figures). Initial values of velocities are undefined. The internal precision

of values is machine dependent.

2.4.4 A Trivial Example

The information presented above provides the foundation for the Scampi API. Almost all
Scampi functions take some combination of ScampiModel_t, Component_id, and name.

Maintaining the file names of the example given in 2.2.1, and assuming that MyModel
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contains a metabolite called “Met”, it becomes possible to construct a complete (if not

very useful) program, that reports the initial value of “Met”:

/**x DoThingsTo.c - a simple but complete Scampi program **x*/

#include <stdio.h> /* because we will use printf */
#include <Scampi.h> /* basic Scampi functions x/
#include "MyModel.h" /* header containing declaration of MyModel */

int main(){

double MetCon ; /* will hold value of concentration "Met'" */

/* use the Scampi function GetMDval to
assign the value of the model variable called
"Met", which is a concentration in the model
MyModel, to the 1local variable MetCon  */

MetCon = GetMDval(MyModel, Conc, "Met") ;
printf ("Concentration of Met is %e\n", MetCon) ; /* and tell the user */

exit(0) ;

2.4.5 Controlling output from Scampi

Although the previous example illustrates a means for communicating internal model
values to the external environment, it is rather crude. The user may, for example, desire
to record several groups of model variables in different files. Under these circumstances
the approach of 2.4.4 will produce source code cluttered with many calls to GetMDval().
Furthermore, simply obtaining the value of a single model variable does nothing to assist
the user wishing to maintain, in code, the logical separation between the activities of data
generation and data analysis. Furthermore, as described later, this approach will not
allow the user to record information generated over a simulated period of time. Scampi
provides a single solution to these problems: the OutputDesc_t (Output Descriptor
type).

Like the ModelDesc_t the OutputDesc_t is an ADT. Unlike the ModelDesc_t, it
must be explicitly initialised at run time (with the function Init0PDesc()). Initialisa-
tion of a variable of QutputDesc_t specifies three things: The destination(s) of the model
data, the source model for the data, and the names of the relevant model variables.

Information can be sent to one, or both, of two destinations: a named file, and

an internal store. If a file name is specified Init0PDesc() will attempt to open it
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for writing and, if successful, uses the specified model variable names to print column
headings. Subsequent updating of a variable of OutputDesc_t causes the current values
of the specified model variables to be printed in the corresponding column of the file.
If values are to be stored internally, the same updating function adds current values to
the store. The values may later be retrieved, in the order in which they were written.
To allow the possibility of simultaneously updating two or more Qutput Descriptors,
the relevant function, print0Ps (), takes as its parameters (a pointer to) the first element
in an array of initialised OutputDesc_t, and the number of elements to be updated. The
semantics of C pointer and array operations are such that if a single OutputDesc_t is
to be updated, an array is not necessary, the user passes a pointer to the QutputDesc_t

and specifies an array length of one.

2.4.6 Error handling

The Scampi library functions have been designed to ensure that as long as the user
fulfils certain defined preconditions, functions always return useful information. The
structure of the API is such that the user does not demand that a certain operation be
performed upon a model, because the possibility may exist that the demand might not
be possible (e.g. determining the steady state of a partially closed system). Rather the
user requests that an action be performed, and the user is informed of the result of the
attempt to fulfill the request.

Scampi functions use one of three possible strategies to respond to errors: silent
ignorance, success/failure indication, and error description. Silent ignorance is the re-
sponse when failure has no effect on the model, and success/failure indication when
there is only one possible reason for a failure to occur. Functions not falling into these
categories use error indication.

Silent ignorance is used in one context only, that of certain functions taking model
variable names as their parameters. If such functions are passed a non-existent name,
it is simply ignored. The behaviour is silent only in the context of the run-time en-
vironment: the function will send a message to stderr identifying the function and
the offending variable name. This mode of behaviour was adopted because in the ap-
plications originally envisaged for Scampi, such problems would only arise as a result
of mistakes in the user code. As it is not possible to write code that corrects its own

bugs, there is little point in reporting the problem back to the calling code. If the
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user program is large (perhaps using Scampi to provide a back-end to a program with
a front-end GUI), such behaviour is less acceptable. In this case the simplest solution
is test names for existence before passing them to such functions. A Scampi function
exists for this purpose (see 2.5.1).

Functions that return a resource allocated by the OS (files or memory) use suc-
cess/failure indication. Such functions return a pointer to the resource, and, in keeping

with C convention, return NULL if the allocation fails.

The enumerated error type

All other functions for which the possibility of failure exists, indicate their final status
via an enumerated type, defined in ScampiConsts.h:

enum SPI_err{ OK, NegConc, Out0fTol, SingMat, LsodaError, NoMem, BadFile } ;

These functions take as a parameter a pointer to a variable of this enumeration,
whose value will be set when the function returns. The initial value of the variable is al-
ways ignored. The enumeration is ordered in increasing order of severity, and interpreted

as follows:

OK

The function call succeeded.

NegConc
The model currently contains one or more negative concentrations. The condition
can result from one of the steady-state solution functions (the simplest), or from
simulation. It is frequently possible to recover from this condition by selecting a

different set of starting concentrations.

OutOfTol
The steady-state and simulation functions depend on successive approximation
algorithms, and are passed a parameter, the tolerance, specifying “how close”
the user wishes the approximation to be. OutOfTol is the error condition if this
tolerance was not achieved. OutOfTol takes precedence over NegConc, because
as far as the numerical algorithms are concerned the model is a set of differential

equations whose solutions may involve negative values, although in general this
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is not a solution the user wants. In contrast, if the tolerance is not achieved the

function genuinely has failed.

SingMat
This is a more serious error condition in steady-state solution functions, referring
to the model possessing a singular Jacobian matrix. The most likely explanation
for this condition is that the model is structurally insoluble, although it may also

result from a bad choice of initial concentrations models in with complex topology.

LsodaError
The name refers to the LSODA algorithm, on which the simulation function is
based. LSODA was not implemented as part of this project but derived from the
implementation released as part of SCAMP 2.5GA. Although it performs excel-
lently, the structure of the underlying source code is not entirely clear. Hence, it
is only possible to supply a general “failure to proceed” error condition. The most
likely causes of the condition are making the step size too large when simulating,

poor initial concentrations, or a structural problem.

NoMem
If a function needs dynamically allocated memory and cannot obtain it, the error
condition is NoMem. If the allocated memory is to be returned to the user, the
relevant pointer is set to NULL. By the standards of current hardware the memory
requirement of Scampi programs is small, ~ 100s of Kb. Hence, the occurrence of
this error is most likely to be due to a memory-management problem elsewhere in

the users code.

BadFile

Set by functions that attempt to open named files, and fail.

Scampi error messages

Error messages from a program using Scampi functions come from one of three groups:
explicit, implicit, and low-level. Explicit error messages are output by functions written
by the user that interpret values of the enumerated SPI_err type. In order to facilitate

this ScampiConsts.h supplies an array of strings mapping SPI_err values to English:
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#ifdef WANT_SPI_ERR_MSG

char *SPI_errMsgs[] = {
"No Error",
"Negative concentration",
"Requested tolerance not achieved",
"Newton-Raphson can’t get steady state with these start conditions",
"Simulation can’t proceed from this position",
"Out of memory",
"Couldn’t open file" } ;

#else
extern char *SPI_errMsgsl[] ;

#endif

The purpose of the conditional compilation directive is to allow ScampiConst.h
to be #included by more than one file. The user code must not #define the macro
WANT_SPI_ERR_MSG, or the resultant object file will fail to link.

Implicit error reporting is performed by certain Scampi functions and is not con-
trollable by the user. Messages of this type identify the function generating them, and
some indication of the problem encountered. Implicit error messages fall into two broad
categories: User warnings and debugging messages. User warnings are issued if a condi-
tion is encountered that should be brought to the user’s attention, despite the fact that
the relevant data structures are still intact. This is the behaviour of functions whose
error handling strategy is silent ignorance. Debugging messages indicate the detection
of an internal inconsistency, and in general result from either incorrect parameters being
passed to a function, or previously executed code having corrupted a Scampi internal
data structure.

Low level reporting originates in the numerical routines from which the integrator
and steady-state solver are constructed. They are recognisable by the inscrutability of
their content. In general it is safe for the user to ignore them, if the condition that
triggered them represents a genuine problem this will be reported back to the user via
the SPI_err mechanism. If a piece of user code generates a large stream of such error

messages, this is probably in indication of incorrect parameters and/or corrupt memory.

2.4.7 Function specification

In order for the functions in a library to be of use, the user must be informed of their

behaviour. This information should be complete, concise, and unambiguous, and not
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depend on context or an implicitly assumed level of knowledge of the user. This goal is
not easily achieved using “conversational” human language.

The approach used here is to specify functions using pre and post conditions, with-
out using a formal specification language. Instead a notation comprising of commonly
used symbols to represent logical and mathematical operations, and English language
assertions to describe states not readily representable in terms of the symbolic operators.
Although this falls some way short of a formal specification language, it does fulfill the
criteria that the user is informed of the conditions that must be ensured before a given
function is invoked, and the effects that such an invocation will have, in a form concise
enough to be incorporated into the relevant header files, maintaining the human, and

machine descriptions in the same place.

Notation used for function specification

All specifications of functions in the Scampi package are given as a comment immedi-
ately following the function declaration. The precondition starts with the string “pre:”
and continues up to the post condition, which commences on a new line starting with
“post:”, and continues to the termination of the comment. The C stdio library function

putchar () would thus be specified*:

putchar (char c) ;
/* pre: TRUE
post: c is sent to the stdout file stream */

The logical and numeric operators used are the C language equivalents, where these
exist. Their meanings are given in Table 2.1. If (part of) the precondition of a function
is that another function has been previously invoked, that function is given as a clause in
the precondition. This implies that its preconditions were met, and that if the function
return has a value that may be treated as boolean, that value was TRUE. The parameters
for the precondition function are not defined unless they form part of the specification,

for example the "putc()” function might be specified:

4the example is to illustrate the syntax of the specification. The specification itself is a
simplification, because it ignores the returned value, and the possibility that the user may have
previously closed the standard output.
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Table 2.1: Logical and numeric symbols used in function specification

Symbol Meaning
, Clause separator
&& Logical AND

Il Logical OR, Selection of non-booleans
! Logical inverse, NOT

=> Implies that
* Pointer dereference when used as unary operator
* / + - | Standard arithmetic operators
- exponentiation
< <= > >= | Standard comparison operators
== Is equal to

1= Is not equal to
= Has been assigned to
Range operator (as in Array[0..Max] etc.)

putc (char c, FILE *fp) ;
/* pre: fp = fopen(name, mode), mode is writable
post: c is sent to fp */

In this instance the usual mapping between NULL and FALSE, and !NULL and TRUE is
assumed. Thus the precondition clause ”fp = fopen(name, mode)” stipulates that not
only must fp have been assigned the return value of fopen(), but also that the resulting
value evaluates TRUE (= INULL). The name of the file concerned is of no relevance, but
it is essential that is when opened the ability to write to it was granted to the user.

If the specification imposes identical restrictions on the values of parameters passed
to a function, these are grouped together inside parenthesis, and separated with commas:

(x >0) & (y > 0) = (x,y) > 0.

2.5 Basic Functions

2.5.1 Determining constant characteristics of a model

The three Component_id values Param, Conc, and Vel are each associated with an
internal array (or vector) of values. Although the user has no direct access to these, it
is sometimes convenient to be able to determine their size. To this end Scampi provides

the function:
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extern int GetMDvecSize(ScampiModel_t md, enum Component_id comp) ;
/* pre : md valid,

post : GetMDvecSize(md, comp) = number of elements in md of type comp **/

Several Scampi functions take arrays of names as a parameter. If the user desires
an array all names of a given Component_id they may be conveniently obtained with

the function:

extern char x*GetAllNames(ScampiModel_t md, enum Component_id comp,
int *n_names) ;
/* pre : md Valid, comp == (Param || Vel || Conc)

post : (n_names > 0 ) => return is a null terminated array of null
terminated strings which are all the names of type comp in
the model.

(n==0) =>malloc fail
*/

The function allocates memory on behalf of the user, but once (a pointer to) it is

returned, management of the allocated memory becomes the user’s responsibility.
On occasion the user may wish to determine whether or not a component of a
particular name exists (e.g. section 2.4.6), ExistsMDname () fulfils such a requirement:

extern int /* bool */ ExistsMDname(ScampiModel_t model,
enum Component_id comp, char *name) ;
/* pre : model is valid
post : (ExistsMDname(model, comp, name)) =>
model has a component of type comp called name */

In this case, in common with all other functions returning a boolean value, the usual
C mapping between int and boolean types is assumed. TRUE and FALSE are convention-

ally defined in ScampiConsts.h.

The number of free metabolites in a model may be determined:

extern int GetNFree(ScampiModel_t Mod) ;
/* pre : Mod is valid
post : returns number of free concentrations in Mod */

2.5.2 Functions to read and write values of model variables

Scampi provides three pairs of functions to manipulate model variables: as individuals,

as a group, or as a set.
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extern double GetMDval(ScampiModel_t model, enum Component_id comp,
char *name) ;
/* pre : model is valid
post : if mod has a variable of type comp and name name
value of name is returned
otherwise a warning is sent to stderr */

extern void PutMDval(ScampiModel_t model,
enum Component_id comp, char *name, double val) ;
/* pre : model is valid
post : if model has a variable of type comp and name its value is
set to val
otherwise a warning is sent to stderr */

These two functions follow the “silent ignorance” error handling strategy, which is
arguably poor. The behaviour can be improved without altering the implementation,
by restricting the pre-condition and simplifying the post-condition:

extern double GetMDval(ScampiModel_t model, enum Component_id comp, char *name) ;
/* pre : model is valid, and has a variable of type comp and name name
post : returns value of name */

extern void PutMDval(ScampiModel_t model,
enum Component_id comp, char *name, double val) ;
/* pre : model is valid and has a variable of type comp and name name
post : value of name is set to val */

It is frequently convenient to refer to a number of variables as a group, saving the
clutter of repeated calls to the previous functions. A pair of analogous functions dealing

with subsets of values is supplied:

extern double *GetSubSet_md(ScampiModel_t model,
enum Component_id val_type, char x*names) ;
/* pre : model is valid, names is NULL terminated array of strings
post : returns new array of copies of values of names in model
in order corresponding to names
NULL if no memory for return array */

extern void PutSubset_md(ScampiModel_t model, enum Component_id val_type,
char *xNames, double *Vals) ;
/* pre : model is valid, names is NULL terminated array of n strings,
vals[>n]
post : Vals[0..n-1] == GetMDVal(model, val_type, Names[0..n-1]) */

These also operate “silent ignorance” error handling and the previous comments on

the subject apply equally to these functions.
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All values of a given Component_id may be referred to by the functions:

extern double *GetMDvec(ScampiModel_t model, enum Component_id comp,
enum SPI_err *err) ;
/* pre : md valid,

post : (err == 0K) => (GetMDvec(md, comp) == a copy of the
current comp vector in md)
(err == NoMem) => no memory available, returns NULL */

extern void PutMDvec(ScampiModel_t model, enum Component_id comp, double *vec) ;
/* pre : md valid, vec[ >= GetMDvecSize(md, comp)]
post : values in vec copied into corresponding model values */

The functions do not give information as to the size, or the order, of the arrays
concerned. In general the order will not be the order in which identifiers were declared
in the original SCAMP command file. Although not essential it is generally convenient
to use these as a pair with the vector returned from GetMDvec() passed back into
PutMDvec(). Code fragment 2.1 shows how this pair of functions may be used to perform

simple, but robust error recovery.

Code Fragment 2.1 Simple error recovery (C language)
VAL L
Assume the usual #includes and a model called mod
*okokk /
enum SPI_err err ; /* error indicator */

double *0rgConcentrationsns ; /* where we will keep "back up" values */

/* read the set of concentrations in mod */
OrginalConcentrations = GetMDvec(mod, Conc, &err) ;

if(err '= 0K){

/** panic !! couldn’t get memory for OrginalConcentrations !! *x/

else{
PerformLethalFunctionTo( mod ) ; /* could be anything */
PutMDvec(mod, conc, OrginalConcentrations) ; /* mod is restored */

2.5.3 Defining and using output

As described (2.4.5), Scampi provides an ADT whose purpose is to handle output from

models, the OutputDesc_t. Before variables of this type can be used they must be
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initialised. Initialisation of an output descriptor specifies the model with which it is to
be associated, the form in which output is to be recorded, and the names of the values

to be recorded:

extern OutputDesc_t InitOPDesc(char *fname, int /*boolx/ Mem,
ScampiModel_t model, int /*bool*/ Time,
char **params, char *xconcs, char **vels) ;
/* pre : model valid
post : ( (op = InitOPDesc()) != NULL) =>

file fname open with header described by Time, params, concs, vels.

op is valid. ( (Mem == TRUE) iis precondition for "Read*Val()"

functions) */

If the file specified could not be opened for writing Init0PDesc () will return NULL.
Otherwise the function follows silent ignorance as far as names associated with params, concs,
and vels are concerned. If a name is specified but not found the function will send a
warning to stderr, and continue with the names that are found. The case of no names
being found does not render the resulting output descriptor invalid. The empty string
“” is a legal value of fname and results in no file being opened. If, in this case, the Mem
parameter is FALSE, an output descriptor will result whose output goes nowhere.

Although these special-case behaviours may not appear to be useful, the general
philosophy of Scampi is “Trust the user”. It is not the programmer’s responsibility to
forbid courses of action to the user on the sole grounds that they do not appear to be

useful.

Output is sent to output descriptors using the print0Ps () function:

extern void print0OPs(OutputDesc_t *op, int n) ;
/* pre : n >= 0, op is an array of <= n valid OutputDesc_t
post : op[0..n-1] updated  */

The case of n == 0 is valid; in this case no descriptors are updated. Although such
behaviour might also seem to be of no benefit, Scampi puts it to good use (see 2.5.5).

Two functions exist to access data that has been stored internally:

void Read1stValOP(OutputDesc_t op, double *result, enum SPI_err *err ) ;
/* pre : op valid and initialised with Mem == TRUE,A
result allocated to hold >= number of values declared in
Init0OPDesc()
post : (err == 0OK) => result is first set of values recorded in op */
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extern void ReadNextValOP(OutputDesc_t op, double #*result,
enum SPI_err *err ) ;
/* pre : ReadlstValOP(op, result, error), error == (K
post : (err == OK) => result is the next set of values recorded in op,
(err != 0K) => no more values to read */

Note that this is an example of a precondition (for ReadNextValOP()) inheriting
that of a previously declared function (Read1stValOP()).
Data is saved in an output descriptor in the order in which it was received. Assuming

preconditions to have been met, a typical code fragment to read all the stored data is:

Read1stValOP(op, MyResults, &err ) ;

while(err == 0K){
DoSomethingUsefulWith( MyResults ) ;
/* we got the first set from ReadlstValOP */

ReadNextValQOP(op, MyResults, &err ) ;
/* now get some more, if there are any */

Read1stValOP() may be called repeatedly to reread the stored data. Internally

saved data may be erased, and the associated memory freed, with the function:

extern void FreeMemOP (OutputDesc_t op) ;
/* pre : op initialised with MEM == TRUE
post : internal memory freed, internally stored results destroyed */

After calling this function the output descriptor may be used as before. Output

descriptors may be completely destroyed, and all associated resources relinquished by:

extern void DestroyOPD(QOutputDesc_t *op) ;
/* pre : op = InitOPDesc()
post : op == NULL, op !valid, associated memory freed */

Under certain circumstances the user may wish to determine the number of values

being referred to by a given output descriptor. The following is provided to achieve this:

extern int SizeO0f0P(OutputDesc_t op) ;
/* pre : op = InitOPDesc()
post : Size0f0P(op) == (number of variable names recorded by op) */
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2.5.4 Steady-state determination

The core algorithm used by Scampi to determine steady-states is based on the Newton-
Raphson method [95]. The numerical source code used is that released with the “code-
genc” version of SCAMP, with only minor changes, but Scampi employs entirely different
strategies for error and memory management (the latter of which is invisible to the user).

Scampi allows the user to apply the Newton-Raphson method to a model via three
functions. The first makes one attempt to find a steady state and reports the result. This
depends on the system being within the vicinity of a steady-state, and is therefore not
very robust. The other two employ different algorithms to search for suitable starting

positions for Newton-Raphson.

Direct determination of steady-states
The simplest interface to the Newton-Raphson algorithm is the function Find_ss() :
extern double Find_ss( ScampiModel_t model, int MaxIters, double tol,

enum SPI_err x*err) ;
/* pre : model is valid, MaxIters > 1, tol > 0.0

post : (err == 0K) => model is in steady state to within
tolerance tol, all concentrations >=0.0,
(err == NegConc) => model is in steady state to within tolerance

tol but contains >= 1 concentrations <0.0,
(err == Dut0fTol)=> failed to get within tol after MaxIters
iterations,
(err == SingMat) => singular Jacobian => insoluble model,
(err == NoMem) => Couldn’t allocate memory,
(0K <= err <= Qut0fTol) =>
return value is tolerance achieved */

Find_ss() performs up to MaxIters iterations of Newton-Raphson, stopping as
soon as the requested tolerance is achieved. In the cases in which requested tolerance
was not reached, the specification gives no information as to the state of the model,
which is therefore undefined. This does not mean that the variable of ScampiModel_t is
no longer valid, rather, the model does not currently hold useful information regarding
concentrations and reaction velocities. Such situations may be easily redeemed using
the approach suggested in section 2.1.

The specification admits the possibility of Find_ss () failing due to a lack of memory.
In practice this is extremely unlikely. The necessary memory is allocated to the model
the first time it is subjected to Newton-Raphson. Repeated invocations of Find_ss ()

do not result in any further allocation. Several other functions provided by Scampi
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depend upon dynamically allocated memory. Such functions use the same internal data
structures as Find_ss () and memory allocation is performed by the first of these to be
invoked. Subsequent invocations will not result in further attempts to allocate memory,
hence, if an initial call to Find_ss () does not result in a NoMem error the user may safely
ignore the possibility for later functions.

A known problem with the Newton-Raphson algorithm is the fact that if the system
to which it is applied is not sufficiently close to a solution, the algorithm will fail to
converge. It is not possible to determine in advance how close a system needs to be to a
solution in order for Newton-Raphson to converge (within a given number of iterations)
, nor to calculate the distance from a solution (because knowing the distance implies
knowing the position of the solution).

A second problem for the biochemical investigator is the possibility that system
has multiple solutions, one or more of which contains negative values. Scampi provides
two functions to overcome these problems. Both depend upon searching for a more
favourable starting point for Newton-Raphson, but differ greatly in their search algo-
rithm. Before starting the search, both functions invoke Find_ss(), and only continue
if the error flag !'=0K. There is therefore little point in using Find_ss() for routine
steady-state determinations. Its intended use is for those users who wish to implement

other algorithms that search for favourable starting points.

Simulating to steady state

The two algorithms for seeking suitable starting positions are simulation and Evolution
Strategy (ES). The first of these attempts to find a steady-state, and, if this fails,
simulates the time course of the system over a period of time. This is repeated over
increasing periods of time and temporal resolution until either a solution is found, or a
maximum number of attempts (specified by the user) is reached. The final values of the
simulation time and number of simulation points are returned to the user, and hence

the corresponding parameters are passed by reference:

extern void Sim_to_SS(ScampiModel_t model, double *duration, int *n_points,
double tol, int iters, int MaxTry, enum SPI_err *err) ;
/* pre : model valid, (*time, *n_points, iters, MaxTry) > O
post : (err == 0K) => model reached steady state to within tol after
simulating for duration time and n_points,
and <= iters iterations of Newton-Raphson
(err !'= OK) => model unchanged
(err == NegConc) => SS found, but contained -ve concs
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(err == 0ut0fTol)=> couldn’t reach tol

(err == SingMat) => Newton-Raphson suggests structural
problem in model

(err == LsodaErr)=> Integrator suggests structural problem

(err == NoMem) => Couldn’t allocate memory

*/

Despite the extra parameters resulting in a more complex pre-condition, the post
condition of the function is very similar to that of Find_ss(). However if the speci-
fied tolerance was not achieved Sim_to_SS() restores the model to its original state.
Because the function exposes the model to the integrator, an additional possibility for
failure arrises, as indicated by (err == LsodaErr). Possible interpretations of this are
discussed in section 2.5.5. Memory management is the same as for Find_ss().

The total number of points simulated by Sim_to_SS() increases exponentially with
each iteration of the Find_ss() - Integrate cycle. A poor choice of values for the initial
duration and number of simulation points can therefore result in spectacularly bad
performance from this function. The function also performs (unsurprisingly) badly if

the steady-state solution is unstable.

Evolving to steady state

The alternative to simulating to a position from which Newton-Raphson proceed is to
evolve to such a position using an Evolution Strategy (ES) algorithm. The basis of
this is that a group of randomised starting positions are evaluated, and a proportion
of the “best” positions are then used as seeds for a new set. The process continues
iteratively until an acceptable solution is found, or a maximum number of iterations
have been performed. The algorithm used here is based on that described by Hoffmeister

et al [61,10], and discussed in more detail in chapter 3. The function is specified:

extern void Ev_to_SS(ScampiModel_t model, double tol, int MaxGens,
double MuteSize, double MuteRate, enum SPI_err *err) ;
/* pre: model valid, (tol, MaxGens, MuteSize) > 0, 0 < MuteRate <= 1.0

post: (err == 0K) => model at steady-state within tol
(err == NegConc) => at steady-state but contains -ve concs
(err == Out0fTol) => requested tolerance not achieved
(err == NoMem) => couldn’t allocate memory
*/

The parameters model, tol, and err carry the same meaning as those of the same

name in previously described functions. The other parameters control the ES compo-

36



nent of the function. MaxGens specifies maximum number iterations of the randomise-
evaluate-reseed cycle that ES performs, MuteRate is the mutation rate, defined as the
probability of a given concentration being randomised, and MuteSize defines the relative
size of such a randomisation.

The function returns as soon as a solution is found, and therefore reducing the value
of MaxGens merely reduces the probability of a successful return. The parameter is
nonetheless essential to ensure that the function will eventually return, but the value to
which it is assigned should be a function of the speed of the machine upon which it is
being used, and the length of real time that the user is prepared to wait for a result.

The MuteRate parameter was introduced early in the development of this function.
However, subsequent work strongly suggests that there is nothing to be gained from
using a value other than 1.0 for this parameter.

At present no method is known by which an a priori estimate of the optimum value
MuteRate can be made. Experience suggests that the optimum value decreases with
increasing numbers of concentrations, and increasing reaction elasticities. It is also pos-
sible to be reasonably sure that sub-optimal estimates will result in better performance
than supra-optimal ones.

Although Ev_to_SS() does appear to offer a speed advantage over Sim_to_SS()
not enough experience has been gained to be certain about this. The major difference
between the two is that Ev_to_SS() is able to determine solutions in systems exhibiting
unstable steady-states. The function does not provide information as to the stability of

a solution, but the Scampi library provides the means to achieve this (see 2.6.2).

2.5.5 Simulating time dependent behaviour

Scampi provides a single function to simulate the time course of a model, Simulate():

|
extern void Simulate(ScampiModel_t model, double TimeStart, double TimeEnd,
int n_points, double tol, OutputDesc_t *op,
int n_ops, enum SPI_err xerr) ;
/* pre : 0 <= TimeStart < TimeEnd, (n_points, tol) > O,
op[0..n_ops-1] = InitOPDesc()
post : (err == 0K) => model simulated for n_points over
TimeStart..TimeEnd with output to op[0 .. n_ops-1]
i.e. (n_ops == 0) => no output,
(err == Dut0fTol) => as (err == DOK) but final point was out
of tolerance,
(err == NegConc) => as (err == 0K) but final point contains
at least 1 -ve concentration,
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(err == LsodaErr) => Simulation could not proceed from this
starting point
(err == NoMem) => No memory

*/

The function attempts to integrate n_points between TimeStart and TimeEnd. At
each point integrated output is sent to the array of n_ops output descriptors whose first
element is referenced by op.

The core integration algorithm, Lsoda, is of the predictor-corrector type, which first
predicts the value of the next point by extrapolating from previous points, calculates
the first derivative of the predicted and previous points, and integrates this to provide
a second estimate of the new point. The difference between the prediction and estimate
is taken as an error value, which the integrator iteratively seeks to minimise®. The
tolerance, tol is a measure of the maximum value of the error value that the user
considers acceptable. It is not uncommon for single points near the turning point of a
rapid transient to be out of tolerance, while the rest of the points of the time course are
calculated satisfactorily. Hence simulation will continue if isolated points out of tolerance
are encountered, although a warning will be issued on stderr (as an implicit error
message) informing the user of the time at which the simulation was out of tolerance.
However, if the last point of a simulation is out of tolerance the state of the model is no
longer defined, and the user is informed of this situation by the value Out0fTol of the err
parameter. If a contiguous run of five points out of tolerance is encountered Simulate ()
sets err to LsodaErr and returns, although repeated out of tolerance errors tend to be
indicative of a more serious problem, resulting in premature termination before the limit
of five is reached.

Simulate() does not check the model for negative concentrations at each step, err
is set to NegConc if the final point contains one or more negative concentrations.

The Lsoda algorithm, and its implementation as used by Scampi, is extremely com-
plex, and can fail for many reasons, as attested by its exotic and varied set of internal
error messages. However, in practice, Lsoda is robust and problems tend to fall into one
of two categories: a structurally incomplete model, and lack of machine precision.

If the topology or kinetics of a model is such that one or more concentrations increase
unrestrainedly over time then failure at some point is inevitable (as would be the case

in the real-world system). The user can diagnose this condition by inspection of the

SUp to a maximum of 500 iterations. This limit is not currently accessible to the user
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concentration trajectories generated up to the point of failure.

The minimum achievable tolerance of Lsoda is governed by the complexity of the
model, the requested step-size, and the numerical precision of the hardware upon which it
is implemented. Furthermore the minimum step size is also limited by machine precision.
Internally the effect of approaching these limits is to generate a detectable inconsistency
(e.g. (x + y) == xandy !'= 0.0). Under such circumstances Lsoda sends an internal
error message to stderr, and Simulate() sets err to the catch-all value of LsodaErr
and terminates. The options open to the user to correct such problems are limited. The
first resort is to reduce the step size, but as this has a definite lower bound, defined by
the hardware, this may only achieve the effect of moving the problem from one point in
the algorithm to another. The second resort is to increase the tolerance, but the best

solution, if possible, is to improve the hardware.

2.6 Advanced Functions

2.6.1 Metabolic control analysis
Determination of control and response coefficients

The objective of Metabolic Control Analysis (MCA) is to relate the properties of isolated
components (typically enzymes) of a system (local properties) to the overall behaviour
of the intact system (global properties), and quantify such relationships.

MCA recognises two classes of global coefficient: the control coefficient, measuring
the effects of small changes in enzyme activity, and the response coefficient, providing
information as to the effect of small changes in any other type of system parameter, as
described in the previous chapter, section 1.3.5. However, internally, Scampi maintains
a single homogenous vector of system parameters, hence the distinction between the two
must be left to the user.

A further refinement of the control coefficient is the group control coefficient (e.g.
see [6,49,16], defined as the sum of effects of simultaneous small changes in more than one
enzyme activity, upon defined system variables. Likewise a group response coefficient
may be defined for parameters other than enzyme activity.

In order to calculate any of these coefficients Scampi must make three steady-state
determinations. Although this may be computationally expensive, the additional effort

needed to calculate coefficients of the specified parameters over additional variables is
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negligible.
Scampi provides for the determination of coefficients of any group of parameters

over any group of variable with the function ScaledSensits():

extern double *ScaledSensits(ScampiModel_t md, char **parameters,
char *xvariables, double tol, double perturb,
enum SPI_err *err) ;
/* pre : (tol, perturb) >0.0,
parameters is NULL terminated array of n names,
ExistsMDName (md, Param, names[0..n-1]),
variables is NULL terminated array of n names (all of type Vel)
[l (all of type Conc)
post : (err == OK) => array of group coeff of params of vars is
returned in the order of found in variables,
(err == (Out0fTol || NegConc)) =>
unable to get steady state in tolerance with +ve concentrations,
(err == NoMem) => couldn’t allocate memory */

The syntax and semantics of this function are essentially the same as for previously
described functions. The parameter tol is the tolerance required for steady-state deter-
mination, perturb is the relative size of § P, where P is the value of a parameter, used
to perform a three point differentiation across P.

Although allocated by Scampi the returned array is in the domain of the user, as is
the subsequent memory management. The memory requirement of ScaledSensits()
over and above that of Find_ss() is small, and therefore, so is the chance that err will
be equal to NoMem. However, if this does occur, the possibility exists that the return

value will be NULL, and the user must check this before using the returned array.

Determination of elasticities

Because of the relatively low computational effort involved in determining elasticities,
Scampi provides a single function that returns an array of elasticities of all reaction rates
to a specified metabolite:

extern double *ElastVec(ScampiModel_t md, char *ConcName, double Pert,
enum SPI_err *err) ;
/* pre : ExistsMDName(md, Conc, Name), Pert > 0.0
post : (err == 0K) => returns vector of elasticities of all
velocities to ConcName in order defined by
GetAllNames(md, Vel ..) calculated with
perturbation Pert
(err == NoMem) => Couldn’t allocate memory

The parameter Pert has the same significance as its counterpart in ScaledSensits ().
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As with ScaledSensits() the probability of failure to allocate memory is small,
but if it does occur then the returned value may be NULL, and the user should check

before accessing it.

2.6.2 Analysis of dynamic properties of models

Functions for the investigation of the dynamic properties models fall into two categories,
response of the steady state to a (small) perturbation, and direct analysis of time de-
pendent behaviour. The former of these is faster, but only generates useful results if the

system has been brought to a stable steady state.

Impulse response

The basis of this is the determination of the eigenvalues of the system. Underlying this
is the assumption that the response of a given variable in a system to a perturbation

can be defined in terms of the sum of decaying exponential functions:

=N
&) =) ket (2.1)

Where N is the number of free metabolites, ¢ is time, and & is a function of the size of
the perturbation and the Eigenvector corresponding to the variable under consideration.
Eigenvectors are not discussed further here. The variables \; are the complex eigenvalues
of the system. If the imaginary part of the ith eigenvalue is non-zero, then the system
will display oscillations with a period of m imag();). The real part of the Eigenvalue
is 7, the damping factor, and thus in the case of a non-oscillating system with a single

variable equation 2.1 simplifies to the familiar:

ft) =ke™ (2.2)

Clearly, if the real part of any eigenvalue is greater than zero the system is not
stable. This may be due to structural problems of the types discussed previously, but
may also indicate that the model is in an unstable steady-state. In either case the user

will need to study time course data to determine the true behaviour of the system.
In order to allow the examination of eigenvalues, Scampi defines (in Scampi_Dyn.h)
a data type to represent complex numbers:
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typedef struct complex{
double real, imag ; } Complex_t ;

And an array of this type is returned by the function:

extern Complex_t *GetEigVals_md(ScampiModel_t md, enum SPI_err *err) ;
/* pre : md at steady state
post : (err == 0K) => returns array[0..GetNFree(md)-1] of
eigenvalues of md
(err == DutDfTol) => returns NULL, couldn’t calculate
(err == NoMem) => returns NULL couldn’t get memory */

The underlying algorithm used by GetEigVals_md () is that described in [96]. Ac-
cording to [96] determining eigenvalues is potentially error prone, and the possibility

exists for the calculation to fail, hence the potential for the err to be Dut0fTol.

Analysis of time course data

Superficially the problem of determining the frequency of an oscillatory component in
a time dependent data set would appear to be soluble by simply counting the turn-
ing points. Unfortunately the approach is rendered invalid in the presence of strong
harmonics resulting in multiple turning points per cycle. Consequently Scampi uses
Fast Fourier Transform (FFT) to identify relative amplitudes in a data set, and other
functions using the FFT results to further characterise the behaviour. The initial FFT

function is Spectrum_md():

extern double *Spectrum_md( ScampiModel_t mod, double RunInTime,
double SampleTime, int elen, char *VarName,
OutputDesc_t *u_op, enum SPI_err xerr) ;
/* pre: (RunInTime, SampleTime, ExpSamplePoints) > 0, u_op not
initialised, VarName is name of Conc or Vel in mod
post: (err == 0K) =>
returns array[0..(27elen)-1] containing spectrum of VarName
between RunInTime and RunInTime+SampleTime as real-imag pairs,
op contains the time course data
(err != 0K) => as for Simulate()

*/

Spectrum_md () simulates over an initial time, RunInTime to allow unwanted tran-

sients to diminish, and then simulates again over the length of SampleTime, determining

2¢len ,ints 6. FFT is performed on the resulting data set as described in [97]. Even

SFFT demands that the size of data set is a power of 2
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valued (real) elements of the returned array contain amplitude information and odd
(imaginary) valued elements phase information at frequencies of 11T/2 where n is an in-
dex into the array, the numerator is the result of integer division, and A the time between
sample points. On return the output descriptor, u_op, contains the values of time and
VarName stored internally.

The spectral information returned by Spectrum_md () is not particularly convenient

for the biochemical modeler, and so Scampi provides a function to extract information

and convert it into a more useful form:

extern double NiceSpec(double *spec, int elen, double SampleTime,
double thresh) ;
/* pre: spec = Spectrum_md(... SampleTime, elen ...),
0.0 < thresh < 1.0

post: returns fundamental freq in spec, and converts spec to
freq-amplitude pairs as normalised absolute real values,
spec[0..1] undefined

*/

NiceSpec() converts the spec array into frequency-amplitude pairs, even elements
holding the frequency. The odd (amplitude) elements are normalised against the largest
amplitude found at non-zero frequency. The frequency value of the lowest element whose
amplitude value is greater than or equal to thresh is returned as the fundamental.
The first two elements of the spectrum contain zero frequency (i.e. D.C.) information.
When a time course contains a significant offset (common in biochemical models) this
will swamp the superimposed oscillations. Therefor NiceSpec () ignores these elements
which are hence undefined on return. A typical code fragment to print the information

in a format suitable for display with the software of choice might be:

Code Fragment 2.2 Simple FFT demonstration (C language)

const int elen = 12 /* length of array will be 2712 = 4096 */
int n, len ;
double *spec ; /* this will hold our spectrum */

len = ipow(2, elen) ;

spec = Spectrum_md(.... elen ....) ;
NiceSpec(spec, elen, ...) ;
/* we’ll ignore the return in this example */
for(n = 2 ; n < len ; n+=2) /* scan spec in steps of 2 */
printf ("%e\t%e\n", /* print on stdout, user can redirect */
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spec[n], /* even indices give the frequency */
spec[n+1]) ; /* and odd ones the amplitude */

The user can further process the information in u_op if desired, but a single function,
utilising Spectrum_md () and NiceSpec(), is provided to fully characterise the dynamics

of a model exhibiting periodic behaviour:

extern void DynCharacter (ScampiModel_t mod, char *VName, double RunInTime,
double SampleTime, int elen, double thresh, /*input*/
double #**spec, double *Freq, double *Ampl, /*output*/
double *0ffset,double *tau, enum SPI_err *err) ;
/* pre: mod valid, VName is a variable name in mod,
(RunInTime,SampleTime,elen) > 0, 0 < thresh < 1.0
post: (err == 0K) => mod simulated over RunInTime to
RunInTime + SampleTime,
Freq, Ampl, Offset, tau contain fundamental freq,
(RMS) amplitude, offset and time constant tau, respectively
spec[2..(2"elen)-1] spectrum as freq-ampl pairs

(err == LsodaErr) => unable to simulate from starting point
(err == Qut0£fTol) => time course to complex for FFT
(err == NoMem) => couldn’t allocate memory

*/

Comparison of impulse response and FFT analysis

Although the DynCharacter () performs adequately when exposed to ideal test data,
its performance (i.e. accuracy of results) rapidly degrades unless the magnitude of
is (3 or 4 times) less than the period. Whilst it would certainly possible modify the
implementation to gain some improvement in this respect, the use of FFT imposes an
absolute limit of 2A upon the resolution with which the period may be determined. As
the value of the period is the starting point for calculating the other variables, obtaining
results by this approach, whose accuracy is comparable to other Scampi functions will
require very large (~ 10%) numbers of points, with a concomitant penalty in execution
time and memory requirement.

Even if a relatively low resolution is acceptable, DynCharacter () still exacts a con-
siderable cost in terms of execution time. Comparison of the two approaches (FFT
and impulse), specifying a sample size of 2!2 for DynCharacter (), resulted in an execu-
tion time ~ 100 times greater for DynCharacter () than for Ev_to_SS() (tol = 1079)
followed by GetEigVals_md().
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It would appear therefore that the only justification for using DynCharacter() is in

cases where the system exhibits unstable, but periodic behaviour.

2.7 Testing and concluding remarks

The software described in this (and the next) chapter has, at time of writing (November
1998), been in regular use for about three years. It has been compiled and used, without
modification to the source code, on Commodore Amiga, Sun/Sparc, and PC platforms,

using the gee compiler (Amiga and Sun) and Microsoft C/C++ (PC).

Results from using Scampi on these platforms, and when possible from SCAMP,
have always been consistent. In addition to routine testing at the time of construction,
Scampi has also been tested by demonstrating that error in evaluating the summation

theorem is acceptably low. An example of such a test is given below:

/*

MGP 15/1/96

demonstrate summation theorem

over all inputs and outputs from the calvin cycle, over range of external Pi

*/

#include <stdio.h>
#include <string.h>

#include <Scampi.h> /* basic modelling functions */
#include <Scampi_Ute.h> /* contains MCA functions x/
#include "calvinO.h" /* header file for the CalvinO model */

int main(){

const int n_params = 10, n_vels = 5, iters = 50 ; |
/* number of parameters, reaction velocities and Newt iterations */

const double tol = 1E-6, perturb = 1E-6 ;
/* simulation and SS tol, perturbation for MCA function */

char #params[] = { "Rbco_vm", "FBPase_ch_vm", "SBPase_ch_vm",
"RubPk_ch_vm", "TP_Piap_vm" ,"LR_vm", "Vstsyn_ch",
IIEQMult n , nn },

/* Parameter names */

xvels[] = { "Rubisco", "TP_Pi_apPGA", "TP_Pi_apGAP",
"TP_Pi_apDHAP","St_synthase", ""},/* velocity names */
fname [80] ; /* output file name */

double *results, Pi_cyt, timestart = 0.0, timend = 2.0 ;
enum SPI_err err ; /* error return from Scampi functions */

int vel_count, n ;
OutputDesc_t OP ;

FILE *fp ;
strcpy(fname, *argv) ; strcat(fname, ".out")
fp = fopen(fname, "w") ; /* open a file for output */
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timestart = 0.0 ; timend = 2.0 ;
Simulate(calvinO, timestart, timend, 400, tol, &0P, 0, &err) ;
/* (no output) */

for(Pi_cyt = 0.2 ; Pi_cyt < 0.7 ; Pi_cyt += 0.1){
/* loop over range of */
PutMDval(calvinQO, Param, "Pi_cyt", Pi_cyt) ; /* external Pi */
Simulate(calvinO, timestart, timend, 400, tol, &0P, 0, &err) ;
/* pre simulate - no output */
results = ScaledSensits(calvin0O, params, vels, tol, perturb, &err) ;
/* group fcc of all reactions over all input and output flux */
if (err) fprintf(stderr, "suspect result for Pi_cyt = %e\n", Pi_cyt) ;
/* warn of problems */
for (vel_count = 0 ; vel_count < n_vels ; vel_count++ )
fprintf (fp, "%e\t", 1.0 - results[vel_count]) ;
/* send summation theorem errors to file */
fprintf (fp, "\n") ;
free(results) ; /* relinquish memory */
}
exit (0) ;

This generated the following output:

-6.487926e-10 -1.018172e-10 -2.081233e-10 -2.951179e-10 -3.553318e-09
2.719526e-10 -8.385226e-11  1.340357e-10  2.802697e-10  4.872608e-10
-1.544049e-10 -8.801493e-11 -2.180089%e-10 -1.297609e-10 -7.952063e-10
1.042184e-10  -9.207124e-11  1.412002e-10  9.298351e-11  1.087578e-10
-2.902469¢-10  -6.115841e-11 -1.498925e-10 -4.338641e-11  4.081349e-10
1.454329e-10 -1.967826e-10 -5.577405e-11  6.828738e-11  -4.252267e-10

Which has a worst absolute error value < 3.6x107°, and is probably acceptable
for most purposes. No problems have been encountered with other testing during the
project, and Scampi has proved adequate for all the modelling work described in the

rest of this thesis.
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Chapter 3

Applications of Evolution
Strategy Algorithms to
Biochemical Modelling

3.1 Introduction

In this chapter the general features of stochastic search algorithms (SSAs) are introduced
by a comparison with the more common iterative successive approximation. Several

variants of SSA are outlined, and one, evolution strategy (ES), discussed in more detail.

The API to a library providing ES functions is presented, and this library is used
to construct a simple test program demonstrating the ability of ES algorithms to tackle

problems posing difficulty for more conventional algorithms.

The relevance of ES algorithms to metabolic modelling is discussed, and illustrated
firstly with a description of the Scampi Ev_to_SS()! function, and then by considering
a program using Scampi and ES library functions to fit the parameters of a model to

observed real-world data.

1See section 2.5.4
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3.1.1 Successive approximation algorithms

Many programming problems exist for which an solution cannot be directly computed;
instead, the problem is solved by an iterative process of approximation followed by an
error correction step to generate a new approximation. This is commonly used if a

solution to the problem is (or can be arranged to be) expressed in the form
Y = f(X),|Y|—0 (3.1)

where X is an approximate solution to the equation, and Y contains the error associated
with the approximation. In the current context it does not matter whether or not £(X)
has an exact solution, the goal is to minimise f(X). Assuming this to be the case, an

algorithm to realise equation 3.1 may be described in pseudo-code as follows:

Code Fragment 3.1 General Successive Approzimation (Pseudo-code)

initialise X

Y = f(X)

Error = ErrFunc (Y)

WHILE ( Error > Tolerable ) AND ( Wish to continue ) DO
X = CalcNewX (X,...)
Y = f(X)
Error = ErrFunc (Y)

END WHILE

NOoO O W

The function ErrFunc () in line 3 converts the error vector, Y, into the scalar value
Error, which may then be conveniently compared with the maximum error that the user
is prepared to accept, Tolerable. Achieving this goal for the error value is one of two
termination criteria expressed in line 4, the second, ( Wish to continue ) is necessary to
ensure that the algorithm will terminate, even if no acceptable solution can be found,
and at its simplest need only compare the number of loop iterations with some maximum
value.

Distinction between varieties of successive approximation algorithm is made by con-
sideration of the algorithm implemented by CalcNewX () function at line 4. In addition
to the current best approximation, X, the function will require other information, char-
acteristic of the particular algorithm, as indicated by the ellipsis parameter. There are
two broad classes of strategy for generating an improved approximation: those that (at-

tempt to) bracket a solution and update X so as to reduce the range of the brackets (e.g.
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root finding by bisection), and those that use derivative information to determine the
“downhill” direction of X (e.g. Newton’s method, Simplex optimisation? ). Although

well established, all such algorithms suffer from well known problems:

1. Execution time increases rapidly with dimensionality; the rate of increase for al-
gorithms using derivative information is O(N?), and O(2") for those using brack-

eting, rendering the latter unfeasible for all but very low dimension problems.

2. All are sensitive to initial conditions, resulting in (at least) two possible patholo-

gies:

e The algorithm fails to progress. If the hyper-plane defined by the starting
points of a bracketing algorithm changes monotonically, the algorithm will
converge to one of these points. If an unfavourable starting position is selected
for Newton’s method, the algorithm may fall into a limit cycle, or wander

unpredictably in the space defined by X.

o If f(X) If the search area contains local minima the algorithm may converge

to one of these, rather than the “true” global minima.

3.2 Stochastic Search Algorithms

SSAs are a group of algorithms designed to overcome such problems. These algorithms
also fit into the framework outlined in code fragment 3.1, the crucial difference between
SSAs and more conventional successive approximation algorithms is that the CalcNewX
() function (line 5) in an SSA is not purely deterministic, but relies on some form of
random sampling of the search volume.

The randomised nature of SSAs means that their ultimate success or failure is much
less dependent on initial conditions; the long term trend in £(X) will be down, although
the rate, and in particular the initial rate, of convergence may be slow. The random
component of the algorithm also allows the possibility of escape from local minima,
although whether or not this is achieved within a useful time depends upon the individual

implementations.

? Although this algorithm does not use explicitly calculate 8f(X)/8X it nonetheless esti-
mates the size and direction of the slope of f(X) from N independent evaluations of f(X)
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SSAs proceed by maintaining a population® , P of ) instances of X. Each of these is
evaluated, and a sample of y individuals from P is taken and used to regenerate a new
population® . The process generally ends when one individual is found that is considered
to be an adequate solution. Bearing these points in mind, the pseudo-code for general

successive approximation can be extended to describe a general SSA as follows:

Code Fragment 3.2 General SSA (Pseudo-code)

create P of AX from Xiuivial

Y = f(Xinitial)

Error = ErrFunc (Y)

WHILE ( Error > Tolerable ) AND ( Wish to continue ) DO
X = CalcNewX (P, f, ErrFunc,...)
Y =f(X)
Error = ErrFunc (Y)

END WHILE

~NOoO o, W

It should be noted that in line 5 the function CalcNewX () requires the function f() and

ErrorFunc () in order to update P. This line may then be further refined:

Code Fragment 3.3 Refinement of CalcNewX () (Pseudo-code)
51 select u fittest survivors, S, from P
5.2 FOR Child = FirstChild TO A DO
53 Select parent(s) from S
5.4 P|Child] = copy of parent(s)
5.5 Mutate P[Child]
END FOR

5.6 Calculate fitness of all individuals, n, in P as ErrorFunc ( f(P][n]))
5.7 Sort P by fitness
5.8 RETURN( PJ0])

Each invocation of this function is referred to as a generation. In the form given
above, the assumption is made that in the first invocation P is already sorted by fitness.
Various forms of SSA differ primarily in the manner in which lines 5.3 (selection),
5.4 (reproduction), and 5.5 (mutation) are implemented. The calculation of fitness in
line 5.6 is not a part of the algorithm per se. but is supplied by the user. For the
sake of convenience, the function ErrorFunc (f(P[Child])) will be referred as the fitness

evaluation function, F ().

3In this context “Population” carries its biological, not statistal, meaning.
“This nomenclature was used in [61] to describe ES algorithms. For the sake of consistancy,
it is used here, with the same meaning, for all SSAs.
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3.2.1 Simulated Annealing

The earliest SSA to be described is simulated annealing, attributed to the work of
Metropolis et al. in 1953, by Press et al. [98]. As the name implies, the algorithm
is intended to model the process observed in materials undergoing liquid-solid phase
transition. At the molecular level the arrangement of atoms or molecules is determined
by two opposing forces, intra-molecular attraction and thermal energy. The effect of the
first of these is to cause atoms (or molecules) to associate in crystalline aggregates, and
the latter to cause atoms to be lost from such aggregates. Thus for a given material
the maximum attainable size of a crystal (which is equivalent to minimum energy) is
determined by temperature. If temperature is rapidly reduced to below freezing point
the resulting solid will consist a mass of small crystals. However if temperature is
reduced slowly enough all atoms can aggregate into a single crystal, representing the
minimum attainable energy of the system.

In implementations of simulated annealing the formation and disruption of ag-
gregates is represented by randomisations of X. The resulting energy of the system
is considered to be f(X). Selection is based on the Boltzmann energy distribution,
Prob(E) ~ e F/*T where E is energy, T temperature, and k Boltzmann’s constant.
In Metropolis’ algorithm a new X,, is always selected as the seed for generation n + 1
if it is fitter (i.e. f(X) is smaller) than X,_;. If X, is less fit then it is selected
if e AE/T > U(0,1) where AE = £(X,,) — f(X,,—.) , and U(lo, hi) is a random real
number, uniformly distributed between lo and hi.

Regeneration of P is by randomisation of S. The precise nature of the randomi-
sation is determined by the problem domain. The major difference between simulated
annealing and the algorithms described below is that simulated annealing algorithms
must maintain a value for the current temperature, T', and arrange for this to decrease

monotonically.

3.2.2 Evolution Strategy and Genetic Algorithms

Just as simulated annealing is based upon a model of a natural physical process, Evolu-
tion Strategy (ES) and Genetic Algorithms (GAs) are based upon a biological one: the
fittest individuals in a population (are more likely to) survive to produce offspring, and
these offspring are generally similar, but not necessarily identical, to their parent(s).

The model of evolution is based upon three assumptions:
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1. An organism’s fitness is determined by the interaction of its phenotype with the

environment.

2. The phenotype is determined by interaction of sub-cellular machinery with infor-

mation encoded in the organism’s DNA.

3. An organism’s genotype is a mixture of copies of parental genotypes (recombina-

tion), but the copies may not always be exact (mutation).

Although this description will be immediately familiar to anyone with even the most
limited biological experience, the algorithms described below were developed as a re-
sult of their intrinsic interest for theoretical computer scientists, and their potential
application to problems mainly within the fields of electrical and electronic engineering.
Despite the biological inspiration, a recent search of the “BIDS” database for literature
published since 1990 identified a total of some 60 articles describing work using these

algorithms, but none of these were applied to a biological problem.

Genotype Coding

In the context of ES/GAs, each individual of a population possesses a genome, G which
contains an encoding of the parameter vector X, and one the major perceived differences
between ES and GAs lies in the nature of this coding.

In a GA [136] implementation, the genome is considered to be a bitstring of constant
size. Inasmuch as the concept of an individual gene exists, each gene is represented by
a single bit. The mapping of the genome into X is the responsibility of the user, the
genome is used to represent arbitrary data.

In an ES algorithm the genome is considered to be a set of real numbers, of con-
stant size. In this case individual genes each have their own value, which it is assumed,
represents some actual quantity in the problem domain. Hoffmeister and Béack [61]
describe this difference as being equivalent to the difference between genotype and phe-
notype information. While this is a debatable point from the molecular biological view,
within the context of this thesis it is more convenient to describe any particular instance
of a genome as the genotype, and the phenotype as f(X), or some property derived

therefrom.
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Selection

Having evaluated the fitness of every organism in P, and identified the fittest u individ-
uals as the seed population S, it is necessary to select parents for each individual that
is to be created in the next generation of P.

There exist several possible strategies for selecting the parents of the next generation,
but all can be broadly categorised as proportional or ranked selection. In a proportional
selection scheme the probability of any individual inP being selected for S is proportional
to its fitness. If ranked selection is used then a fraction (determined by the user) of the
fittest individuals form S; by convention individuals are selected from S with uniform
probability [10], although other strategies have been described [83,136].

The identification of S, and the selection of parents from S to generate individ-
uals in the next generation is described here as two separate processes, although this
distinction may not as clear if a proportional parental selection scheme is used

One of the important distinguishing features between GA and ES algorithms is the
way in which this step is implemented. In GA implementations it is mandatory for all
individuals to have (at least) two parents. In ES algorithms individuals generally have

only one parent.

Reproduction

Once parents for a new individual have been selected, then this offspring must be gen-
erated from them. If there is only one parent then the offspring is simply a copy of the
parent.

In the case of more than one parent then three general recombination strategies

exist:
1. Individual genes in the offspring are selected at random from each parent.

2. Genes are continuously selected from one parent until a low probability random
number is generated, at which point genes are selected from the other parent. The
second parent contributes genes. Contributing parents continue to swap in this

fashion until the new genome is complete.

3. If genes are (or represent) real values then offspring genes may be calculated as an

average of the parents’ gene values.
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All of these strategies may be further modified by introduction of a weighting scheme,
based upon the relative fitness of the parents. As the work in this thesis has only used
the one parent reproduction, these points are not considered further.

Another important distinction to be made between different implementations of
SSA is whether or not S goes forward unmodified to become a part of P (where
! denotes next generation). The advantage of allowing this is that the overall fitness
of S is guaranteed to increase monotonically, leading to more rapid convergence. The
counter-argument to allowing this is that it leads to the population representing a less
uniform sample of the genotype space, maybe subject to premature convergence, and
will perform less well in situations in which the fitness evaluation function is either noisy
or variable. Using the ES nomenclature of [10] the former strategy is described (u + A),
and the latter as (u, \).

Mutation

Although it is possible to implement SSAs without recombination, all must have some
form of mutation. As with recombination the details of the implementation are depen-
dent on the coding scheme for G, but only real valued genotypes are considered here. In
this case several possibilities for mutation present themselves, the simplest of which is to
add a random number to each gene. By convention this normally distributed, (although

Levine [83] allows a variety of other distributions).

G, =G;+ N(0,0),0<i<n (3.2)

Where N(z, ) denotes a normally distributed random number. A more powerful variant
of equation 3.2 allows not only the mutation of individual gene values, but also the size
of such mutations (mutability). Under these circumstances the genotype consists of two
vectors, the genotype values, X, an the size of mutation, o, to which each element of

X may be subject:

o) = o;.eN0A9) (a)
) 0<i<n (3.3)
G, = G;+N(0,0) (b

Where Ao is a global parameter. The form of equation 3.3a has two important char-

acteristics. Firstly (assuming o; > 0 in generation 0) it guarantees o > 0, secondly
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it ensures that, unless a selection pressure is operating, o; will remain constant in
the long run (because probability of multiplying o; by z is equal to the probability of
multiplying by 1/z.

The advantage of this scheme over that of equation 3.2 is that mutation sizes o; can
adapt according to the sensitivity of F'() toward G, resulting in faster convergence.
The improvement thus obtained is related to the complexity of F() and under some
circumstances appears to lead to a qualitative as well as a quantitative improvement in

fitness (see Figure 3.2).

3.3 Implementation of ES by Scampi

The Scampi package provides a single module, Evolve, implementing (1 + A\)ES algo-
rithms. The user interface is defined in the header file Evolve.h . As with the other
Scampi modules the interface comprises type definitions and functions acting upon those
types. In contrast to the other modules, the Evolve interface is not defined in terms of
ADTs, consequently allowing much greater public access to data structures. This reflects
the relatively underdeveloped nature of this module; at a later stage these structures
will be encapsulated, and the possibility of direct access eliminated.

The interface defines a single structure type, representing an organism (a population
is an array of these), and two groups of functions acting upon them. The first of these
comprises utility functions, used mainly to initialise organisms and populations. The
second comprises functions applying (1 + A)ES to populations. The major difference
within the latter group lies in the termination criteria, and hence the applications to
which they are most suited. Other differences are concerned with the relative degree to

which the burden of memory management rests with the user.

3.3.1 Maintaining organisms and populations
The organism type

All ES functions in the Evolve module require a population of organisms to act upon.
Currently a population is simply defined as an array of organisms (Organism_t), where

Organism_t is defined:

Code Fragment 3.4 Organism_t type definition (C language)
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typedef enum {FitnessHigh, FitnessLow} Fitness_t ;
typedef enum {FixMute, VarMute } StratSet_t ;

typedef struct OrgStruct {

double *Genome ; /* array of gene values */

double *MuteSize ; /* size of mutation of individual genes */
int LenGenome ; /* length of genome */

StratSet_t Strat ; /* fixed or variable size mutations */
Fitness_t FitHiOrLo ; /* high fitness value is more or less fit */
double FitnessVal ; /* fitness value */

void *user ; /* points to whatever the user wants */

} OrganismStruct, *0rganism_t;

The enumerated Fitness_t allows the user to specify whether a high fitness value is
regarded as more or less fit than a low value. This in turn depends upon the problem to
which ES is being applied® . The second enumerated type, StratSet_t allows the user
to specify fixed or variable mutation strategies, as described by equations and 3.2 and

3.3. If the latter is selected then the MuteSize field is used to hold o.

Although the user may declare structures as OrganismStruct for their own purposes,
the functions within Evolve all operate upon variables of Organism_t, or arrays thereof.
Several functions® are provided to generate new Organism_t of which the most useful
is NewOrg3():

extern Organism_t NewOrg3(int LenGen, double *Adam, double InitMuteSize,
Fitness_t ft, StratSet_t strat) ;
/* pre : Adam[LenGen], InitMuteSize >0.0
post : return (!NULL) => New org with Genome as a copy of Adam and
MuteSize[n] = Genome[n] * InitMuteSize ;
(NULL) => couldn’t get dynamic memory x/

This initialises an Organism_t that is valid as a parameter for any function with
formal parameters of this type. The elements the MuteSize array (i.e. the individual
o;) are initialised using InitMuteSize to calculate relative mutation sizes. This is to
ensure that in instances in which individual gene values (i.e. elements of Genome = G;)
cover a wide range, genes with high values are subject to mutations of reasonable size,
while maintaining those with low values within a reasonable range. Initialisation of the
MuteSize array takes place even if the mutation strategy is set to fixed mutations, but
its contents are ignored unless the Strat field is set to VarMute. If desired the user may

change the value of this field during the course of an organism’s life.

SPrevious discussion has assumed the goal of minimising F(), maximising is achieved by
reversing the order of the sort at line 5.7 in code fragment 3.3.

5The complete interface, Evolve.h may be found in appendix B of which a representative
sample is presented here.
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Generating populations from organisms

Once an organism has been thus initialised, copies of it may be generated by copying
or cloning. The difference between the two is that copying sets the field values of an
existing destination organism to those of a source. Cloning generates a new organism
whose field values are equal to those a parent. Cloning when copying should have been
used results in a memory leak. Copying instead of cloning renders subsequent execution

of the program undefined.

extern Organism_t CloneOrg(Organism_t Orig) ;
/* pre : Orig is valid
post : returns exact copy of Orig else NULL if fail */

extern void CopyOrg(Organism_t src, Organism_t dst) ;

/* pre : src and dst valid and have equal length genome
P q g g
post : dst is a copy of src */

It is then a trivial matter to initialise a new population; C code fragment 3.5 shows
an example.

Code Fragment 3.5 Initialising a population for ES (C language)

const int n_orgs = anything /* > 1 %/, /* num of orgs in population */
n_genes = anything /* > 0 */ ; /* num of genes in genome */

const double InitRelMuteSize = anything /* > 0.0 */ ;

/* initial relative mute size */
int n ; /* index for population */
double InitGeneValues[ LenGenome ] ;

Fitness_t FitnessType ; /* high or low values are fitter */
StratSet_t strat ; /* fixed or variable mutations */
Organism_t Population[ n_orgs ] ;
/**
initialise InitialGeneValues, FitnessType and strat here
*x/
Population[0] = /* create first organism */
NewOrg3(LenGenome, InitGeneValues, InitMuteSize, FitnessType,

strat) ;

for(n =1 ; n < n_org ; n++) /x clone the rest of the population */
Population[n] = CloneOrg(Population[0]) ;

Under certain circumstances the user may consider that the characteristics of an
organism render it so unfit as to have zero probability of surviving into the next gen-
eration, regardless of the state of the rest of the population. To this end the function
KillOrg() is provided :
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extern void KillOrg(Organism_t Victim) ;
/* pre : Victim valid
post : Victim’s fitness val equal deadval according to fitness type */

If need be the ES functions described below will reduce the value of y if this fate

has befallen more than X individuals.

Death, as far as the Evolve module is concerned, is not equivalent to destruction:
dead organisms remain valid, may be subject to the same functions as live ones, and
still have memory allocated to them. In order to release this memory organisms must

be destroyed, individually or en mass:

extern void DestroyOrg(Organism_t Victim) ;
/* pre : Victim is valid
post : Victim is not valid, associated memory freed */

extern void DestroyPop(Organism_t *Pop, int n_org) ;
/* pre : Pop[0 .. n_org-1] are valid
post : Pop[0 .. n_org-1] not valid, associated memory freed */

3.3.2 Evolving populations

In order to subject an initialised population to ES functions, the user must supply the
fitness evaluation function, F(), with a type specified as:

typedef void (*FitnessEval_ft)(Organism_t org) ;

/* pre : org is valid

post : org->FitnessVal updated, other fields in org unchanged */

The specification presented here has been made as restricted as possible: the only
field in the organism’s structure that may change is the fitness value. In fact the
behaviour of the ES functions remain predictable if any of the other fields, except
FitHiOrLo, are modified. However, under such circumstances the functions will (prob-
ably) no longer be implementing ES, at least in the sense described previously. Of
particular note is the behaviour if the fitness evaluation function is allowed to modify
the genome in some way, prior to updating FitnessVal. Whitley [136] describes this as a
hybrid algorithm, and suggests that it is equivalent to Lamarckian inheritance (because
the genome is affected by the experience of the organism). Under some circumstances,
for example in section 3.4.1, such hybrid algorithms show marked improvement over
their purer counterparts. Apart from these considerations, there is no restriction on the
behaviour of fitness evaluation functions, beyond those mandated by good programming

practice.
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Evolve provides functions to allow the user to exploit ES to two different ends,
loosely defined as exploration, and solution. The first of these is of use in cases in which
little is known of the value of the optima of F() (or f()), and the goal of the study
is to obtain sets of G with favourable characteristics, or to investigate the behaviour
of ES algorithms. The second is of use when when one or more optima are known (or
assumed) to exist, and the goal of the user is to (attempt to) obtain exactly one G such

that F'() is equal to or better than a user defined value.

A typical exploration function is Evolve3Static(). “Static” in the function name
refers to the fact that the user must supply an initialised population (because it does
not dynamically allocate one).

void Evolve3Static( Organism_t *Population, int PopSize, int n_Survivors,
int /* Bool*/ Initialise, int n_gens,
FitnessEval_ft FitEval, double DeltaSigma,
double MuteRate) ;
/* pre : Population[0..PopSize-1] valid,

(PopSize, n_Survivors, n_gens, DeltaSigma, MuteRate) > 0

n_Survivors < PopSize, MuteRate <= 1.0,

(Initialise == TRUE) => Population not previously subject to FitEval()

post : performs n_gens of mu+lambda ES to Population,
leaves Population sorted in order of fitness according FitHiOrLo */

With the exception of the parameters Initialise and MuteRate the parameters
to the function are as previously described. Initialise is needed because if the
Population was generated in the manner of C code fragment 3.5 the FitnessVal fields
will be undefined. The parameter MuteRate is used to specify the probability that
a given gene will mutate, the intent in providing it was to restrict the rate at which
populations expand in their genotype space. In practice it has been found to be more
convenient to fix MuteRate as 1.0, and use lower values of DeltaSigma as necessary.

The interface to the function is designed to give the user maximum flexibility. Be-
cause the population is external to the function, the user may readily examine, report,

or even modify, the population or other parameters, between successive invocations.
If the user’s intent is solution rather than exploration then EvolveToTarg() is more
appropriate:

void EvolveToTarg(Organism_t *Population, int PopSize, int n_Survivors,
int n_gens, FitnessEval_ft FitEval, double DeltaSigma,
double MuteRate, double F_Targ) ;
/* pre : Population[0..PopSize-1] valid
(PopSize, n_Survivors, n_gens, DeltaSigma, MuteRate) > 0
n_Survivors < PopSize, MuteRate <= 1.0
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post : performs <= n_gens of mu+lambda ES to Population,
stops as soon as organism as fit or fitter than F_Targ is found,
Population[0] is the fittest found */

With the exception of F_Targ, the fitness target, parameters for this function are the
same as for Evolve3Static(). The design goal of the function is to minimise the number
of fitness evaluations performed. There is no guarantee as to the state of Population
other than the fact that Population[0] is the fittest organism found. In contrast to
Evolve3Static() the purpose of the n_gens parameter is to ensure that the function

will (eventually) terminate, if F_Targ is not reached.

3.3.3 Example
Specification

As an example of a simple application whose purpose is to illustrate the use of the ES

functions described, consider fitting a minimal data set to a rectangular hyperbola:

m.x
k+zx

y = = hyp(z,m, k) (3.4)

where m and k are the parameters whose values we wish to determine.

Design and implementation

This can be achieved with a minimum of two measurements of y for given values of
z, hence organisms representing parameter estimates require 2 genes. Assuming two

known z,y pairs, (z1,y1) and (z2,y2) a suitable fitness evaluation function is

F(ml7kl) = |hyp(m17ml7kl) - y1| + |hyp(xl7mla kl) - y2|

where m' and k' represent the current estimates of m and k. Given a function to cal-
culate a rectangular hyperbola, RecHyp(double x, double m, double k), and global
constants X1,Y1, X2,Y2, the fitness evaluation function can be defined:

void F_eval(Organism_t org) {
double m,k,el,e2 ;

m
k

org—->Genome[0] ;
org->Genome[1] ;
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el = RecHyp(X1, m,k) - Y1 ;
e2 = RecHyp(X2, m,k) - Y2 ;
org->FitnessVal = fabs(el) + fabs(e2) ;

The main statement sequence falls into two logically separate phases: initialising

a population, as described above, and subjecting it to the ES function. In order to

report the progress of the population the ES function will be called repeatedly over

10 generation intervals, until a solution has been achieved. It is frequently difficult to

detect convergence, but in this case, as a solution is known to exist, the program will

simply terminate when some low value of F() is attained. Assuming the existence of a

trivial function, PrintIt () to generate output the main statement sequence is written:

Code Fragment 3.6 Main function to use ES to fit rectangular hyperbola data

(C language)

int main(){

#define n_Genes 2
/* number of genes */
#define PopSize 60
/* population size */

const int n_Survive = 10, /* number of survivors
n_Gens = 10; /* number of generations for ES

const double MuteProb = 1.0, /* probability of mutation
DeltaSigma = 0.5 ; /* mutability

int n, tot_gens =1 ; /* counter, total generations
double InitGenome[ n_Genes ] = {25, 25} ; /* initial geneome
Organism_t MyPop[ PopSize ] ; /* the population

*/
*/

*/
*/

*/
*/
*/

MyPop[0] = NewOrg3(n_Genes, &InitGenome[0], DeltaSigma, FitnessLow,

VarMute) ; /* generate first organism

for(n_org = 1 ; n_org < PopSize ; n_org++)
/* clone rest of population
MyPop[n_org] = CloneOrg(MyPop[0]) ;/* from the first organism

*/

*/
*/

Evolve3Static(MyPop, PopSize, n_Survive, TRUE, 1, F_eval, DeltaSigma,

MuteProb) ; /* initial first generation (init = TRUE)
/**x** End of initialisation, start of ES proper **x*x*/

do{

PrintIt(tot_gens, MyPop[0]) ; /* tell the outside world

Evolve3Static(MyPop, PopSize, /* do n_gens worth of evolution

n_Survive, FALSE, n_Gens, F_eval, DeltaSigma, MuteProb) ;

tot_gens += n_Gens ; /* count total generations

} while (MyPop[0]->FitnessVal > 1le-3) ;
/* until total absolute error < 0.001

PrintIt(tot_gens, MyPop[0]) ;
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shown in code fragment 3.6; note logarith- for fixed and variable mutation from the

mic scale of y axis. progress curve fitting investigation, de-
scribed in section 3.4.3

Assuming m = 4 and k£ = 5 from equation 3.4, the “observed data” X1,Y1 and
X2,Y2 is set to 1,2/3 and -6,24 respectively, representing one point from each side of

the discontinuity.

Results

The program terminated after 260 generations of ES. The fitness progress curve is shown
in Figure 3.1. The logarithmic improvement in fitness appears characteristic of ES
algorithms, having been observed many times, and reported by other authors [62,10].
The estimates of m and k in the final generation were 3.998148 and 5.000443 respectively,
indicating that a satisfactory convergence had been achieved.

Repeating the investigation with the population initialised as fixed mutation or-
ganisms resulted in a failure to converge usefully, after 500 generations. Curve fitting
programs based on more conventional algorithms (gnufit, Macfit [65,105]) failed to fit
this set unless the initial values of m and k were brought to within about 20 % of their

actual value.

3.4 Application to metabolic modelling

During the course of this project ES functions have been used for both exploration
and solution of problems. The Scampi module function, Ev_to_SS(), introduced in
chapter 2 uses EvolveToTarg() to seek steady-state solutions of metabolic models. The
construction of this is described below.

The exploration approach to ES was used to identify and describe populations of
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models of the Calvin cycle optimised in the face of realistic biological constraints, as
described in chapter 5. A simpler use of the exploratory approach is described later in
this chapter, with the object of demonstrating the efficacy of ES in solving an otherwise
difficult problem, and the ease with which a user can integrate the Evolve module with

the Scampi module.

3.4.1 Use of ES to determine steady states

The determination of the steady state of a metabolic model is a search for a set of
internal concentration values such that the rates of change of all concentrations is zero.
The problem is of the form of equation 3.1 and thus would appear to be suitable for
solution by ES, with the genotype representing a concentration vector, C, and a fit-
ness evaluation function calculating |0C/dt|. The approach is attractive because the
computational demand is O(N) in contrast to O(N?) for Newton’s method.

Unfortunately this simple algorithm fails for systems with conserved moieties: the
algorithm converges on C = 0, where C is the vector of non-conserved metabolites.
This appears to be quite a difficult problem, as this is a genuine solution. Attempts to
impose lower limits on reaction velocities resulted in the algorithm simply converging
to this lowest limit. At the time of writing, no method has been found that enables the
potential O(NN) behaviour to be realised.

However, a useful algorithm can be developed if the goal is restated as locating
suitable initial points from which Newton’s method can proceed. In this case the genome
is still C|, but the fitness of the organism is the tolerance achieved by Newton’s method
in some fixed number of iterations (it will be recalled from the previous chapter, section
2.5.4, that Find_SS() returns the tolerance achieved).

This approach was successful, but a significant improvement was gained by copying
the the final concentration vector determined by Find_SS() back into the genome, an

example of Lamarckian inheritance. The fitness evaluation function is written:

Code Fragment 3.7 Fitness evaluation function for Ev_to_SS() (C language)

void ModelSSFitEval(Organism_t org) {

enum SPI_err err ; /* error from Find_SS() */
ScampiModel_t mod ; /* local copy of the model */
int n ; /* counter */

mod = (void *) org->user ;
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/* user field points model, convenient copy */
PutMDvec(mod, Conc, org->Genome) ; /* load genome to concn vec */

org->FitnessVal = Find_ss(mod, 20, LowestEvTol, &err) ;
/* fitness = Newts tol */

if((err '= 0K) && (err !'= Qut0fTol))
/* if neg conc or other problem */

KillOrg(org) ; /* kill the undesirables */

else{ /* else copy final concentrations */
for(n = 0 ; n < mod->n_Mets ; n++)

org->Genome [n] = mod->Met_Vals[n] ; /* back into genome */

The implementation of this function is within the Scampi module, and is thus able
to dereference fields in the private structure referenced by ScampiModel_t. In addition
to the field n_mets (number of metabolites), and Met_Vals[] (the metabolite value
vector) the structure alao contains (amongst other things) a field EvolScrat. This is
(a reference to) a structure maintaining a population and related information for ES
algorithms as described in this chapter. Using these fields makes the implementation of

Ev_to_SS() quite straightforward:

Code Fragment 3.8 Implementation of Ev_to_SS() (C language)

void Ev_to_SS(ScampiModel_t model, double tol, int MaxGens,
double MuteSize, double MuteRate, enum SPI_err *err) {

int ¢ ; /* g.p. counter */
double in_fit ; /* initial fitness val */

in_fit = Find_ss(model, 20, tol, err) ; /* try for SS w/o evolving */
if ((xerr != 0K) && (*err !'= NoMem)) { /* got SS 7 */
/* no, but mem 0K */
for( c= 0 ; c < model->n_Mets ; c++)
/* copy concs into first genome */
(model->EvolScrat->Population[0])->Genome[c] =
model->Met_Vals[c] ;

(model->EvolScrat->Population[0])->FitnessVal = in_fit ;
/* we know first fitness val */

EvolveToTarg2(model->EvolScrat->Population, /* try to evol to */
model->EvolScrat->PopSize, /* target fitness of */
model->EvolScrat->n_Survive,/* user supplied tol */
MaxGens, ModelSSFitEval, MuteSize, MuteRate, tol) ;

if (model->EvolScrat->Population[0]->FitnessVal <= tol)
xerr = 0K ; /* if successful tell the user */
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3.4.2 Determination of enzyme kinetic parameters from progress

curves

A common problem facing the experimental biochemist is the determination of the
kinetic parameters of enzymes. The traditional approach to this task has been the use
of initial rate methods: for a number of different substrate concentrations the initial
rate of conversion of substrate to product is recorded, and an appropriate rate equation
is fitted to the curve thus constructed.

Although well established, there are two major inconveniences associated with the
approach, if used for any but the simplest enzymes. Firstly the number of observations
needed increases exponentially with the number of participating reactants; secondly
when more than one reactant is involved, the problem of fitting a curve becomes a
problem of fitting a (hyper)surface.

An alternative to initial rate methods is the analysis of reaction progress curves. The
enzyme rate equation is a differential equation in terms of metabolite concentration(s)
and time, which, if integrated and rearranged yields a function for reactant concen-
tration in terms of time and the enzyme kinetic parameters. Thus, if it is possible to
repeatedly measure metabolite concentrations over a period of time, then the problem
of determining kinetic parameters becomes one of fitting the integrated rate equation to
the observed curve of concentration versus time.

The standard [99] non-linear curve fitting algorithm is the Levenburg-Marquadt
algorithm, and this has been incorporated into the “Dynafit” [74] program with the aim
of fitting the integrated form of kinetic equations to progress data. However, success
with Levenburg-Marquadt is sensitive to initial conditions, and is liable to fail if not

started from a ‘reasonable’ set of estimated parameters.

3.4.3 Investigation of lactate dehydrogenase

This problem was repeatedly encountered by a colleague, Dr. Simon Thomas, who,
during an investigation of the control of the glycolytic pathway in cultured fibroblasts,
wished to determine the kinetic parameters of the enzyme lactate dehydrogenase (LDH),
catalysing the reaction”:

Pyr + NADH=Lac + NAD* (3.5)

" Abbreviations: Pyr - Pyruvate, Lac - Lactate
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This is a particularly attractive reaction to investigate by analysis of the progress
curve, because the concentration of NADH can be determined directly by spectropho-
tometric means. Furthermore the stoichiometry of reaction 3.5 is such that as long
as initial concentrations are known, subsequent values can be determined in terms of
NADH concentration.

The experimental method is also relatively simple. A sample of fibroblast culture is
homogenised and placed in a cuvette. An aliquot of NADH and pyruvate is added to the
cuvette which is then placed in a spectrophotometer. This records the absorbance at 340
nm (the wavelength of the NADH absorbance maximum), at 0.5 s intervals, recording
the data as plain ASCII file.

The enzyme has reversible two substrate kinetics [142], and this fact has been used®

to derive the rate equation:

VmazNADH Pyr ~ NAD Lac

V= Kpyr KNaDH Keq (3 6)
1+ NADH + NADH Pyr NAD Lac + NAD + NAD Pyr ’
Knapu KnapuKpyr KnapKrae Knabp KnapKpyr

where K., is the equilibrium constant, and Kyjetabolite 15 the Michaelis constant asso-

ciated with that metabolite.

Program design

The rate equation and initial concentration values are all that is required to construct
a SCAMP /Scampi model of the reaction system. It is then straightforward matter to
construct a program that reads the file of experimentally determined concentrations,
and invokes an ES function whose genome is the set of kinetic parameters, and whose
fitness is determined by the closeness of a simulated progress curve to the observed.

Once the housekeeping needed to read the input file and initialise associated constant
global data structures has been put in place, the heart of the program is the fitness
evaluation function to be passed to the ES function. Several variants were investigated,
but none showed superior behaviour, either in terms of rate of convergence or final
goodness of fit, than the simplest, presented in code fragment 3.9.

The function depends upon the existence of global constants, holding the values of
the number of data points and time intervals. In addition to these constants, three

global data structures are made available:

8Simon Thomas - unpublished work
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1. The model itself, 1dh.

2. An OutputDesc_t, glob_op, connected to 1dh, and initialised to store TIME and

ldh concentration in memory.
3. Alist ADT, glob_0bs_dal, holding the observed progress curve.

With the exception of the model itself, all global identifiers are prefixed glob_.

Code Fragment 3.9 Fitness evaluation for progress curve fitting (C language)

void FitEval(Organism_t org){

double known[2], /* holds individual observed time/NADH pairs
NADH_est ; /* estimated NADH from model
enum SPI_err err ; /* errors from the Scampi functions
enum dal_err derr ; /* errors from the list handler
org—->FitnessVal = 0.0 ; /* we start perfect
if (HasNeg(org->Genome, org->LenGenome)) /* discard -ve values
KillOrg(org) /* w/o further ado

else{

PutMDvec(ldh, Conc, glob_OrigConcs) ; /* load Initial conc vals
PutSubset_md(1dh, Param, GeneNames, org->Genome) ;
/* load a new set of parameters
Simulate(1ldh, 0.0, glob_Time_End, glob_n_points, le-6,
&glob_op, 1, &err) ;

*/
*/
*/
*/
*/

*/
*/

*/
*/

/* simulate a progress curve, for between t = 0 and global time end,

storing results in the global output descriptor glob_op

if(err !'= OK) /* if something went wrong kill the organism
KillOrg(org) ;
else{

ReadlstValOP(glob_op, &NADH_est, &err) ;/* read first point
/* of simulated progress curve
derr = GetTop_dal(glob_Obs_dal, known) ;/*and observed vals

while(derr == 0K_dal){ /* while we can read data
org->FitnessVal += fabs(NADH_est - known[0]);/* add the

/* absolute difference between observed and

/* calculated to the fitness value

*/
*/

*/
*/
*/

*/
*/
*/
*/

ReadNextValOP(glob_op, &NADH_est, &err) ;/*and read morex*/

derr = GetNxt_dal(glob_Obs_dal, known) ; /* data points
}
}

FreeMemOP (glob_op) ; /* clear out our sim results

Results

*/

*/

Using the parameter set of equation 3.6 as the genome, a population size of 36, with 6

survivors, and code fragment 3.9 for fitness evaluation, the ES algorithm converged as
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shown in Figure 3.2. Using the best parameter set found by the algorithm a simulated
progress curve may be generated that overlays the experimental observations as shown
in Figure 3.3. Although Figure 3.3 shows a good fit, examination of the residuals reveals
that there is some systemic error as the residuals are clearly not evenly distributed about
zero, with a “saw-tooth” time dependency (Figure 3.4).

Encouragingly, it has been suggested [18,19] that this pattern is characteristic of a
fitting algorithm having converged to within the limit of precision imposed by the input

data.

Conclusion

Figure 3.3 clearly demonstrates the ability of ES algorithms to fit simulations to real-
world data sets, and thereby determine real-world parameter values. The time taken to
achieve convergence in the results shown was of the order of 10 minutes on a slow (20
MHz 68020/68881) computer, and of the order of seconds on a more modern machine
(Sun SPARC-Ultra), and so use of the technique is a practical proposition.

The motivation for developing this example was to test the behaviour of ES al-
gorithms in the face of real-world experimental data. A better goodness of fit than
might be reasonable to hope for has been shown in Figures 3.3 and 3.4. This is all the
more satisfactory when it is considered that software based on the more conventional
Levenburg-Marquadt algorithm failed entirely to fit the data set shown.

However a particular problem remains to addressed if the program is to be extended
to become a practical tool for routine fitting: the determination of confidence limits.
Although the idea of determining these on the basis of an analysis of the whole final
population has obvious attractions, this is made (probably fatally) complicated by the
fact that each individual in the population does not represent an independent estimate

of the parameter set, and populations tend not to be normally distributed.
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Figure 3.3: Observed and simulated data sets after fitting equation 3.6 using ES algo-
rithm as described in section 3.4.3
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Figure 3.4: Differences between fitted and observed data sets in Figure 3.3
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Chapter 4

Investigation of the Behaviour
of Computer Models of the

Calvin Cycle

4.1 Introduction

As described in Chapter 1 several groups of workers [51-53,77,75,78,91,138] have de-
veloped and analysed detailed kinetic models of the Calvin cycle and related reactions.
All have simplified the system either by using simplified kinetic equations, or by assum-
ing that steady-state concentrations of groups of metabolites are at equilibrium with
one another, thus reducing the number of unknown concentrations and simplifying the
topology.

The approach used here is to make no attempt to simplify the topology of the system,
minimise the kinetic simplifications, and to use the software described in Chapter 2 to
define a model with a structure as complete as knowledge of the system allows. Once
defined, the behaviour of the model was investigated empirically, the results from one
investigation being used to form hypotheses tested by subsequent investigation. Such
investigations included alterations of the structure, as well as the parameters, of the
model. In this chapter investigations of three refinements of the model of the Calvin cycle
, described in Section 4.2, are presented. Discussion of the physiological and theoretical

significance of these is deferred until Chapter 6.
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The results in this chapter were generated using a conventional strategy for mod-
elling: parameters thought likely to be important were varied over an appropriate range,
and the effects of these variations on the behaviour of the model recorded. A major
problem with this is the fact that this model (in common with any other of realistic
complexity) contains a large number of parameters and the number of potential inves-
tigations increases combinatorially with the number of parameters to be investigated.
This problem is compounded by the fact that interaction between parameters cannot
be readily predicted. Furthermore it is not possible to dismiss individual parameters
as being of no importance to the behaviour of the model without investigation. The
results in Chapter 5 use the Evolution Strategy algorithm (Chapter 3) to attempt to

ameliorate such problems.

4.2 Model Definition

4.2.1 The Petterssons’ model

Of the models cited, the most complete description of the Calvin cycle was that of
Pettersson and Ryde-Pettersson [91], and this was used as a starting point for develop-
ment of the model described in this chapter. In common with most others, development
of the model in [91] was based on the assumption that substrates and products of fast,
reversible, reactions are maintained at equilibrium, and that this assumption may be ex-
tended to cover arbitrarily large groups of metabolites interconverted by such reactions.

The assumption was used to simplify the system to a set of six reactions.

4.2.2 Removal of equilibrium assumptions

In this chapter the topological simplification is removed by assigning rapid reversible

reactions, described as “Fast” in Table 4.1, linear kinetic equations of the form:

VoK (H 5 - L= b Pj) (@)

i=1 keq

where V is the reaction velocity, ke, the equilibrium constant, S and P substrate and
product concentration(s) respectively, and K is a rate constant whose dimensions are
determined by the molecularity of the reaction. Unless stated otherwise K was set to

5x108 for all fast reactions, and values for ke, as described in [91]. Non-equilibrium
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reactions, described as “Slow” in Table 4.1, were assigned the same reaction kinetics as

in [91].

In common with many other researchers in the field of plant physiology, Pettersson
expressed reaction rates in dimensions of ymol.h—!.(mg Chl)~!, and these are the units
used here. When equation 4.1 is scaled! to yield V' in units of M—1S~!, K (for a bi-
molecular reaction) becomes equal to 5.4x107 M ~1S~!. This compares with substrate-
enzyme binding (forward) rate constants, reported by Fersht [34], falling within the range
108 — 108 M 1S, and well below the diffusion controlled rate limit of 10° M—1S~1.

Although equation 4.1 still represents a significant simplifying assumption, the ex-
plicit inclusion of these reaction, coupled with the very detailed kinetic equations de-
scribed in [91], lead to a model of the Calvin cycle thought to be more complete than
any previously published.

A second assumption is that the light reactions only regenerate ATP from ADP and

P;, with reaction kinetics:

VL0ight - ADP.P;
V= (4.2)
(ADP + K, App)-(Pi +K,,p, )

(Where Viignt is taken to be the light reaction activity for the purposes of this model)
and that NADPH, NADP™, and Ht are maintained at constant concentration. Although
at first consideration this appears to be a rather drastic simplification, examination of
Figure 4.1 suggests that the effect of this, at least in terms of response of the model
to light reaction activity, is not likely to be great. The only reaction involving these
constant metabolites is v3 (G3Pdh) and the topology of the Calvin cycle is such that
at steady state the flux through this reaction is equal to that through v (PGK). Both
of these reaction utilise products of the light reactions as substrates (NADPH and ATP
respectively) and both have products (NADP* and ADP) that are substrates of light
reactions. Thus the (local) effect of a reduction in NADPH/NADP™ ratio resulting from
decreased light reaction activity would be decreased flux in G3Pdh/PGK. This effect
is in any case achieved by the reduction in the ATP/ADP ratio resulting from reduced

light reaction activity.

! Using Pettersson’s estimate of stromal volume as 30uL.(mg.Chl)™*
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Figure 4.1: Reactions of the Calvin Cycle used in the initial model. Abbreviations are
described in Tables 4.1 and 4.2.

4.2.3 Other changes to the model

In the first versions of this model a typing error resulted in Vz;4n¢ being entered as 3500
instead of 350 umol.h~!.(mg Chl)~!. However, as shown in Section 4.4, the model pre-
sented here is insensitive to changes in this parameter over most of this range. Further-
more Pettersson [91] points out that experimental evidence exists [13] suggesting that
the value of 350 ymol.h~!.(mg Chl)"'may be a considerable underestimate of Vrignt,
and hence the results here remain consistent with the assumption in [91] that the model

is saturated with respect to light.

The structure of the initial version of the model is shown in Figure 4.1 with additional
information in Tables 4.1 and 4.2; the complete SCAMP .cmd file for the model is
presented in Appendix A.

Various problems were encountered with the initial SCAMP implementation of the
model, and eventually it was found that they could be attributed to two ultimate causes.
One was the absence of an error handling strategy in SCAMP; this was one of the
motivating factors in the development of the Scampi tool-kit described in Chapter 2.
The other was the loss of carbon in the form of PGA resulting in an insufficient flux in
the regenerative limb to keep the cycle sustainable. This was overcome by inclusion of

a factor in the TPT rate equation modulating its rate toward PGA, denoted Opgahere.
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Table 4.1: Reaction subscripts, abreveations, names, and kinetics, used in the Calvin
cycle model.

Subscript | Abbreviation | Name Kinetics
1 Rubisco Ribulose bisphosphate carboxylase-oxidase Slow
2 PGK Phosphoglycerate kinase Fast
3 G3Pdh Glyceraldehyde-3-phosphate dehydrogenase Fast
4 TPI Triose phosphate isomerase Fast
5 F.Aldo Aldolase (FBP reaction) Fast
6 FBPase Fructose-1,6-bisphosphatase Slow
7 F.TKL Transketolase (F6P reaction) Fast
8 S.Aldo Aldolase (SBP reaction) Fast
9 SBPase Sedoheptulose bisphosphatase Slow
10 S.TKL Transketolase (S7P reaction) Fast
11 R5Piso Ribose-5-phosphate isomerase Fast
12 X5Pepi Xylose-5-phosphate epimerase Fast
13 Ru5Pk Ribulose-5-phosphate kinase Slow
14 PGI Phosphoglucose isomerase Fast
15 PGM Phosphoglucose mutase Fast
16 StSyn Starch Synthase Slow

TPT TPT Triose phosphate translocator Slow
Subscript indicates metabolite)
- StPase tarch Phosphorylase Slow

Table 4.2: Metabolite abreviations and names
used in Fig. 4.1 and elsewhere

Abreviation | Name
PGA Phosphoglycerate
BPGA Bisphosphoglycerate
GAP Glyceraldehyde phosphate
DHAP Dihydroxy acetonephosphate
FBP Fructose 1,6-bisphosphate
F6P Fructose 6-bisphosphate
E4P Erythrose 4-phosphate
SBP Sedoheptulose 1,7-bisphosphate
S7P Sedoheptulose 7-phosphate
X5P Xylose 5-phosphate
R5P Ribose 5-phosphate
Rub5P Ribulose 5-phosphate
G6P Glucose 6-phosphate
G1P Glucose 1-phosphate
P; Inorganic phosphate
P, External P;
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Unless stated otherwise fpgawas set to 0.1 throughout this thesis.

4.3 Model response to external P;

4.3.1 Flux response

Carbon flux into and out of the Calvin cycle model as a function of P;_, is shown in

lext

Figure 4.2. The response is clearly bi-phasic: at low P;_, (<~ 0.03 mM) assimilation,

lext

export, and storage fluxes all increase monotonically with P At some point between

fext'
0.03 and 0.04 mM, an abrupt transition occurs, and a region is entered in which assim-
ilation is relatively insensitive, export responds positively, and storage flux negatively

to P This behaviour has not been previously described in a Calvin cycle model,

fext*
however, results presented in sections 4.5, and discussed in chapter 6, demonstrate that
such transitions can be induced in the model under a variety of circumstances.

As P;_, is further increased, TP export reaches a maximum at P;_, ~ 0.6 mM.

lext lext

After this point all fluxes then fall with increasing rapidity until a catastrophic “over-

load breakdown” occurs at P;_, = 1.5 mM. This breakdown is associated with (and

lext

presumably caused by), loss of sugar phosphate intermediates while ATP concentrations

remain unaffected (see Figure 4.3.

4.3.2 Metabolite concentrations

The bi-phasic nature of the response to P;_, is also seen in metabolite concentrations in

lext

Figure 4.3. Below the transition point, almost all of the conserved P; of the Calvin cycle
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Figure 4.3: Response of metabolite concentrations in the Calvin cycle model (without
starch phosphorylase) to P;_.: (¢) - PGA, ( + ) - total sugar phosphate, (O ) - free P;.

is in the form of PGA, with most of the rest in distributed amongst other phosphorylated
intermediates; only ~ 0.02 % of the total is in the form of free P; . Immediately above
the transition point, the concentration of PGA drops and most of the P; is redistributed
amongst the other intermediates. There is also an increase in free P; concentration, the
relative size of which is comparable to that occurring in the non PGA intermediates.

As P;__, is increased beyond the transition point, PGA and total sugar phosphates

fext
decrease, and free P; increases, monotonically. It is interesting to note that none of
these curves contain a maxima corresponding to the assimilation flux maxima seen in
Figure 4.2. This observation remains true for response curves of individual metabolites

(data not shown). The response stays constant until P;_, reaches the breakdown point,

lext

when all intermediates, with the exception of P; fall to zero.

Disequilibrium ratios

The mass action ratios of all the fast reactions with the exception of G3Pdh remained
close to their respective K., (0.99 < p < 1.0) and showed some variation with P;_,

As shown in Figure 4.4, the disequilibrium ratio of G3Pdh remains far from 1.0
(the expected value if equilibrium assumptions hold true), and varies considerably as a

function of this parameter.

4.3.3 Flux Control

Flux control coefficients over the three external fluxes, (assimilation, export, and starch

synthesis) shown in Figure 4.2, over the same range of P;_, , are presented in Figure

7
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4.5. C77P7 is calculated as the control coefficient over the sum of the three component
fluxes oof this step.

There are a number of noteworthy features in Figure 4.5. Firstly, despite some
similarities, there are major differences in control over the three fluxes. Secondly control

changes quite dramatically as a function of P

lext *

Control of assimilation flux

The simplest pattern of control is that of assimilation. At low values (<~ 0.9 mM) of

P;i_,, the only enzyme to have any significant control is SBPase. As the value of P

lext lext

approaches the point at which the cycle breaks down the control of assimilation by the
light reactions, fast reactions and FBPase increases dramatically, with little or no change
in the control by SBPase. The control exhibited by rubisco, Ru5Pk and StSyn remains
negligible, and that of TPT becomes rapidly more negative (i.e. increasing the activity

of this step results in a decrease in the assimilation flux).

Control of export flux

At values of P;_,, below 3 mM, the TPT has the majority of control over its own flux,

lext

while SBPase maintains a negative control over export. The fast, and the light, reactions
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have small positive control coefficients while that of FBPase is small and negative.
As P,
at 0.6 mM P

increases, the positive control exerted by the TPT diminishes rapidly and,
i, Decomes negative, exhibiting the counter-intuitive behaviour that an
increase in the activity of this step results in a decrease in the flux through it. As the
control coefficient of the TPT decreases, that of SBPase increases reaching a plateau of

about 0.7 at 0.5 mM P;__. As the breakdown point approaches the control characteristics

fextr
become similar to those of the assimilation flux, with control by light reactions, fast
reactions, TPT, and FBPase increasing rapidly in magnitude, and with relatively little

control shown by rubisco, Ru5Pk or starch synthase.

Control of storage flux

Control over the storage flux and export fluxes bear more resemblance to each other than
either do to that of assimilation; nonetheless there are important differences between the
two. The first point of note is that control coefficients over starch synthesis are much
(5 to 10 times) greater than corresponding coefficients over TPT flux.

Control by SBPase and TPT remain positive and negative respectively and do not
(>~ 0.2 mM),

change signs with increasing P;_,@. Over most of the range of P

lext lext

StSyn maintains C? over its own flux in the range (0.7 < Cgi“ss;r‘l‘ < 1.0). This is the
only one of the three external fluxes over which the enzyme has any degree of control;

however it should be noted that, over the entire range of P there are always other

lext 7

steps exerting much greater positive and negative control.

4.4 The inclusion of starch phosphorylase

Despite some important differences, the results presented thus far are generally com-
parable to those reported in other experimental and modelling work (see chapter 6).
However, in terms of the interaction of the model with its external environment, the
model is not complete as the possibility exists for starch to be a carbon source, due
to the presence of starch phosphorylase (StPase) [12], as well as a sink. Furthermore,
it would seem unlikely that the overload breakdown described above is a feature of
chloroplasts in an intact organism (despite being observed in isolated chloroplasts, see
Chapter 6). It was conjectured that the additional carbon source provided by StPase

might overcome this problem. Therefore a step was added to the model described in
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section 4.2 representing StPase, catalysing the reaction:
Starch +P; — G1P (4.3)

At a rate determined by the equation:

maz i
v = Vi (4.4)

Pi +Kn (1+S12)

(where V4 denotes the maximum velocity, k,, the Michaelis constant, and k; the

inhibition constant due to G1P) based on the following considerations:
1. The reaction is irreversible.

2. StPase will have Michaelis-Menten kinetics with regard to P; , but will be in-
sensitive to changes in the starch substrate (to which a meaningful concentration

cannot be assigned).
3. StPase will be (competitively) product inhibited by G1P.

These local considerations are also compatible with the physiological role that the reac-
tion will play in the context of the Calvin cycle . Under conditions of carbon starvation,
P; concentration must necessarily increase (as a result of the conservation relationship),
and that of G1P decrease; thus supply of carbon into the cycle via StPase will increase
under the circumstances in which it is most needed. Furthermore the effects of G1P and
P; upon StPase are in the opposite sense to those upon StSyn. Viez, K, and k; were
assigned values of 40 pumol.h~1.(mg Chl)~!, 0.1 mM and 0.05 mM respectively, based
on the assumption that the maximum rate of degradation will be comparable to the
maximum rate of synthesis, and that, in common with the other irreversible reactions,
the K, values will be similar to the relevant metabolite concentrations.

A possible cause for concern about the addition of StPase to the model is the intro-
duction of a futile cycle between starch synthesis and degradation. The degree of futile
ATP cycling in the data sets presented here is generally less than 1% of the light reaction
flux, and always less than 2%. Although in this model starch may be simultaneously
synthesised and degraded it is the net flux to starch that is physiologically relevant here.
Thus flux to starch reported here is calculated as the flux through PGI: positive values

indicate net synthesis, negative net degradation.
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4.4.1 Response of external fluxes to P

iext

The inclusion of StPase has a marked effect on the response of the Calvin cycle model

to P As can be seen in Figure 4.6, the overload breakdown at high P;_, is abolished,

lext® lext

and the carbon flux to the cytoplasm can exceed that of assimilation, with the differ-
ence being met by degradation of starch, as indicated by the negative flux to starch.
However, the overall pattern of response of the two versions of the model is the same:
the assimilation flux is insensitive to cytoplasmic demand; changes in demand are met
by changes in the rates of starch synthesis. The point at which flux to starch becomes

negative is inversely dependent upon the sensitivity of the TPT to PGA.

4.4.2 Response of metabolite concentration to P

iext

Metabolite concentrations are not greatly changed by the inclusion of StPase in the

model. However, as shown in Figure 4.7, the overall variation in response to P;_, is

much more constrained. All metabolites are asymptotic to a fixed concentrations: free

P; increases with increasing P;__, mainly at the expense of PGA. The total concentration
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of other phosphorylated intermediates increases to a maximum at P ~ 0.5, and

thereafter decline slightly.
Disequilibrium ratios in the new model were also very similar to the old. All re-
mained very close to (but less than) 1.0, with the exception once more of G3Pdh as

shown in Figure 4.8.

4.4.3 C’ responses to P

iext

The inclusion of StPase in the model has a strong effect on the control of external fluxes,

and their response to P;_,, (Figure 4.10). The greatest effect is on the control of the

fext
assimilation flux where the only reaction to have any significant control is SBPase, which
thus behaves as a classic “rate limiting” step.

Control of flux through the TPT is less simple, with several enzymes exerting both
positive and negative control. In contrast to the model with no StPase, the light reac-
tions have no significant control. StSyn and FBPase both have small negative control

coefficients that show little variation in response to P The majority of positive con-

iext
trol is held between four steps, and this control appears to be exchanged between two

pairs as P;__, varies. The two steps having most control are those catalysed by SBPase

lext

and TPT: at low P
P;

most the control is by TPT itself, but this is lost to SBPase as

lext

increases until high P;__, concentrations are reached, when both of these steps have

ext lext

approximately equal control. In contrast to the version of the model without StPase,
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TPT maintains positive control over its own flux as P;_, varies. The group control

fext
coeflicient of the equilibrium reactions, and that of StPase, is relatively small, not rising
much above 0.2. The former decreases, and the latter increases, monotonically with
increases in Pj_,.

Both the size of individual values, and the response (to P;,_,) of, control coefficients
over the flux to starch are, to an extent, the result of a mathematical artifact caused by
the original definition of a flux control coefficient (1.2). Because the denominator con-
tains reaction flux as a term, as flux approaches zero, the control coeflicient approaches
+oo. The sign change indicates the change of direction of flux in this pathway. When
flux to starch is positive SBPase, FBPase, and StSyn, in decreasing order, have positive

control, and StPase, the near equilibrium reactions, and TPT have increasingly negative

control. Once again rubisco, Ru5Pk and the light reactions have negligible control.

Effect of altered SBPase activity

Given that SBPase appears to be acting as a true rate-limiting step for assimilation, it
is of interest to examine the effect of increasing the activity of this step. The result is
somewhat unexpected: as can be seen in Figure 4.9, an increase in the V,a0f SBPase
only brings about a propotrional increase in assimilation flux over a limited range,
beyond which there is a an abrupt decrease in assimilation flux. The point at which
this transition occurs can be increased by increasing P;_, or fpga, but assimilation flux

remains considerably lower than the limit imposed by the V,,xvalue of rubisco.

4.5 Response of the model to light

As noted in section 4.2 the light reactions are not modelled in detail, rather the maximum
activity of ATP synthase is taken as an approximation of overall light reaction activity,
and hence light intensity. In this section “light”, and “light reaction activity” should be

treated as being synonymous with maximum ATP synthase activity.

4.5.1 Flux and concentration responses

Figure 4.11 shows the response of the model to changes in light. The model was first
evaluated at a light value of 1500 gymol.h—!.(mg Chl)~!, and this was decremented in
steps of 25 to a minimum of 900 ymol.h~!.(mg Chl)~!, at which point the process
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was reversed, and light incremented until the upper limit was once again reached, as
indicated by the arrows on Figure 4.11(A). Figure 4.11(B) shows the response of the
output fluxes, and Figure 4.11(C) metabolite concentrations, over the same range of
light values. The discontinuities, which appear to represent true switching behaviour,
at 1050 and 1175 gymol.h~1.(mg Chl) lobserved in all variables.

It can be seen in Figure 4.11(A) that the assimilation flux is insensitive to changes
in light until a critical value at about 1050 ymol.h~1.(mg Chl)~!is reached, below which
point assimilation flux decreases monotonically with light. Although neither the assimi-
lation or light reaction (not shown) fluxes are sensitive to changes in light over the upper
range, the model does respond by altering the partitioning between starch synthesis and
TP export fluxes. As can be seen in Figure 4.11(B) the system (when in the faster
steady state) responds to a decrease in light by increasing the flux to starch, with a
concomitant decrease in the export flux. When the system is in the slow steady state,
assimilation, TPT, and starch fluxes all respond monotonically, and in the same sense,
to changes in light. The flux to starch becomes negative at a point close to, but not

coincident with, the fast-slow transition.

The slow steady-state induced by low light levels appears to be very similar to that
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Table 4.3: Effect of pgaon the model switching response to varying light levels.

Opaa -ve transition +ve transition A Light | A Assimilation Jstsyn
(Dimensionless) (umol.h~1.(mg Chl)~1) (umol C .h—!.(mg Chl)~1)
0.15 1200 1550 350 65 42
0.2 1050 1175 125 50 36
0.25 925 975 50 40 23
0.5 - - 0 0 -36

brought about by low external P;, described in section 4.3.1. Comparison of Figures
4.3 and 4.11(C) shows that in both cases, in the slow steady state, conserved P; is
predominantly in the form of PGA, total sugar phosphates are low, and P; very low.
Flux responses are also very similar. In Figures 4.2 and 4.11(A and B) assimilation,
export, and storage fluxes all responded monotonically, and in the same sense, to changes
in the relevant parameter.

The light levels at which the switch seen in Figure 4.11 occurs, and indeed whether
or not it occurs at all, are sensitive to fpga (which modulates the Vyax of the TPT
toward PGA - Section 4.2.3). As shown in Table 4.5.1, the effect of decreasing Opgais
to increase the light levels at which both positive and negative transitions occur, and
the distance between these points, in both the dependent (i.e. light) and independent
variables. It should be noted that although switching is absent for Opga >~ 0.5, under
these conditions flux in the starch synthesis/degradation branch is negative, even at

high light levels, and cannot therefore represent a physiologically sustainable state.

4.5.2 Response of Control Characteristics

Perhaps not surprisingly, the two steady states described above have quite different
control characteristics. Figure 4.12 shows flux control coefficients over the input and
output fluxes as light changes. These were recorded with the same model parameters as
previous figures, but for the sake of clarity only results from decreasing light values are
shown.

As described in Section 4.4.3, under conditions of high light control of assimilation
flux is dominated by SBPase. At the point at which the system switches from fast to slow
steady state there is an abrupt change in the distribution of flux control: SBPase, StPase,

and RubPk assume negative flux control coefficients in decreasing order of magnitude,
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Table 4.4: Control of input and output fluxes at fast and slow steady states

State Fast Slow

Flux Assimilation TPT Starch | Assimilation TPT Starch
+ve C7 | SBPase TPT SBPase | TPT TPT Light
ve C7 | - SBPase TPT SBPase SBPase SBPase

and TPT, the light reactions, StSyn, FBPase, and the fast reactions take significant

control, again ordered by decreasing size.

The TPT flux becomes hypersensitive to the activity of individual reactions as the
switch is approached, although there is much less difference in control coefficients on
either side of the switch than is seen for the assimilation flux. Positive control is more
or less evenly shared between TPT, the light reaction, the fast reactions, and, to a lesser
extent, StPase. In the slow steady state, control is dominated by TPT, with relatively
little control held by StPase and the light reaction, and almost none by the fast reactions.

SBPase maintains negative control throughout.

Interpretation of control of the starch flux is made complicated by the fact that
the starch flux changes sign from positive to negative just after (i.e. at a slightly
lower light value than) the fast-slow transition. The very large peak seen at 975
pmol.h~1.(mg Chl)~lis due to the sign change in flux, not the switch. At higher light
levels positive control is held almost entirely by SBPase, with negative control dis-
tributed amongst other reactions, the greater part of which is held by TPT. At the
light-dark transition the magnitude of all control coefficients increase markedly with
SBPase, StPase and Ru5Pk (descending order of magnitude) gaining negative control.
Most of the positive control is shared between the light reaction, StPase and FBPase,
with TPT and the fast reactions playing a relatively minor role. On the low light side of
the discontinuity caused by the change in sign of the starch flux the signs of all control
coefficients change but the relationships between them remain the same. It is interest-

ing to note that in the slow steady state StSyn and FBPase have almost identical flux

control coefficients.

The major negative and positive control coefficients of the input and output fluxes

at fast and slow steady states are summarised in Table 4.4
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4.5.3 Dynamic Response

Figures 4.13 and 4.14 show the dynamic response of assimilation the Calvin cycle model
to changes in light. All other variables follow the same pattern. When the model is in
the fast steady-state, transient changes are heavily damped and of short duration. When
the initial fast-slow transition occurs there is a burst of moderately damped oscillation
of ~ 40 pmol.h~'.(mg Chl) 'amplitude and ~ 13 s period. As light is further decreased
these oscillations become smaller in initial amplitude, and more heavily damped.

When light is increased this process reverses: oscillations are increasingly sustained
and of greater amplitude. The model exhibits continuous oscillation at for the two light
values immediately before the slow-fast transition, hence steady-state values were not
found for these points. Once the model has returned to the fast steady state the response
is as before. As can be seen in Figures 4.13 and 4.14 light values have a major effect
on the amplitude and damping time of oscillations in the model, however the period
remains unchanged.

This general pattern of dynamic behaviour has been in all cases in which switching
in the model has also been observed. The continuous oscillation prior to the slow-fast
transition is not always seen: it is more common for the model to exhibit a brief spell
of exponentially increasing (i.e. 7 > 0) oscillation at the transition point, which then

settles on to the fast steady state.

4.6 Conclusions

A detailed computer model of the Calvin cycle has been constructed and investigated.
Responses to two physiologically important environmental parameters, external P; sig-
nalling demand for TP, and light, which provides the necessary energy to drive the
cycle, were described. It was demonstrated that the inclusion of starch phosphorylase
provides a high degree of protection against overload breakdown under conditions of
high TP demand.

The response to both of these parameters is bi-phasic: under conditions of low P;_,
or light, the Calvin cycle exists in a slow steady-state which contrasts with the fast
steady state which is seen when either of the parameters are raised above a certain

threshold.

The slow steady-state is characterised by a distribution of metabolite concentrations
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in which the predominant species is PGA, and in which the total sugar phosphate
concentration is considerably greater than that of Py Another characteristic of this state
is that assimilation, export, and storage fluxes have comparable responses to parameter
changes.

In the fast steady-state there is a much more even distribution of metabolites, and
responses of external fluxes are qualitatively different: Assimilation flux is, to all intents
and purposes, insensitive to parameter changes, and export and storage fluxes respond
in strictly opposite sense to one another.

The model was also shown to exhibit damped oscillation in response to changing
light levels. In the fast steady-state this is extremely heavily damped, but much less so
in the slow steady-state, in which it is possible to observe what appears to be undamped
oscillation, under certain values of light reaction activity.

Metabolic control analysis demonstrated a number of surprising features:

1. Significant differences exist in the patterns of control of assimilation, export and

storage fluxes.

2. In the fast steady-state, assimilation flux appears to be entirely controlled by

SBPase.

3. Control coefficients can vary greatly according to environmental conditions. The
transition between the two steady-states is accompanied by a major rearrangement

of the distribution of control.

Most of the results in this chapter are reasonably consistent with experimental ob-
servation (as will be discussed in chapter 6) and physiological function, although some
plant physiologists may be surprised by item 2 in the list above. However, the model
has many parameters, which represent observations made on different organisms under
different conditions. It is therefore not clear whether the behaviour thus far described
represents typical, real, biological behaviour, or is a result of some particular, but un-
realistic, combination of parameter values in the model. The next chapter make an

attempt to address this issue.
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Chapter 5

Use of Evolution Strategy to
Investigate a Computer Model

of the Calvin cycle

5.1 Introduction

The results presented in the previous chapter were obtained by a conventional approach
to modeling, echoing scientific method: changes to parameters were made and the effects
recorded, explanations were sought to relate the observations to the model, and these
were tested by further changes to parameters. The approach has met with some success,
inasmuch as the results, whilst containing some surprises, are capable of being given
physiological interpretation, are broadly consistent with experimental observation, and
do not violate known physical laws.

However, the validity of such an approach depends upon the quality of the orig-
inal parameter values used. In the case of Petterssons model [91], kinetic data was
drawn from a variety of experimental investigations into different organisms, under dif-
ferent conditions, and by different workers. In addition to concern about this implicit
assumption, (that different organisms maintain constant and equal enzyme activities)
examination of Petterssons data set suggests that it may not be internally consistent.

Firstly this set assigns Vmax values for rubisco and SBPase as 340 and 40 ymol.h—!.(mg Chl)~!

respectively. However, the stoichiometry of the Calvin cycle is such that the steady-
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state assimilation flux is three times the flux through SBPase, thus these values of
Vmaxrepresent an almost three fold “overinvestment” in rubisco. Given the very low
catalytic constant of this enzyme and its high molecular weight, it is not obvious that
these values represent optimal protein investment.

Furthermore, the various parameters not described by Pettersson were estimated
in an entirely ad hoc fashion. The V,x of the starch phosphorylase was made equal
to that of starch synthase on the basis of the assumption that net maximum starch
degradation would be approximately equal to the maximum rate of synthesis. The
rate constant (initially equal for all) for the fast, reversible reactions was an arbitrary
constant, sufficiently large to maintain a flux through the cycle.

Thus, although individual parameter values used in the model of the previous chap-
ter lie within a realistic range, it is not at all clear that the relationships between
parameter values are realistic. In an attempt to determine a parameter set with more
realistic relationships the evolution strategy (ES) algorithm ( [61,10] and chapter 3) was
used to optimise the model with the goal of maximising the assimilation flux, whilst
simultaneously minimising the protein load required to support the flux. In this chapter

results of optimisations are presented, with detailed discussion deferred to chapter 6.

5.2 Implementation

The optimisations were performed using the Scampi and ES software libraries described
in chapters 2 and 3. The model used was that described in chapter 4, modified so that
the fast reactions had individual rate constants, instead of a single rate constant for all.

Optimisations were carried out using variable mutation sizes, a population size of
600 with the 100 fittest individuals going through to the next generation, an initial
mutation size of 0.02, and a mutation rate of 1.0. In this instance high fitness values are
considered more fit than low (in contrast to the the curve fitting described in section

3.4.3). The populations were evolved over a period of 400 generations.

5.2.1 Fitness evaluation

As described below, several versions of the fitness evaluation function, Eval_f (), were
investigated, but all were incremental developments of that shown in Code fragment

5.1. The general goal of the optimisation is to maximise the assimilation flux, whilst
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simultaneously minimising the total protein requirement (protein load).

Code Fragment 5.1 Basic fitness evaluation function (C language)

void Eval_f(Organism_t org){

enum SPI_err err ;

const double tol = le-6 ;

double dur = 2.0 ;

const int iters = 20, retries = 4 ;
int points = 200 ;

PutSubset_md(mod, Param, ParamNames, org->Genome) ;

Sim_to_SS(mod, &dur, &points, tol, iters, retries, &err) ;
if ((err == 0K)
org->FitnessVal = GetMDval(mod, Vel, "Rubisco") / ProteinLoad() ;
else
org->FitnessVal

0.0 ;

In this example the Calvin cycle model has been assigned the globally accessible
identifier mod, and the names of the parameters represented in the organisms’ genomes
are the (NULL string terminated) global array of strings, ParamNames. The function
ProteinLoad () calculates the current protein load of mod, as described below. The
other functions used by Eval_f are described in detail in chapter 2.

Fitness values, assimilation rates, and protein loads of the surviving population were
recorded at increasing intervals (because the most rapid change occurs in the early gener-
ations), and after the last generation the complete parameter and concentration vectors
were saved (using the OutputDesc_t mechanism) for the whole population. Other char-
acteristics of individuals in this final population were then determined by writing small
programs that reloaded the parameter and corresponding concentration vector of each

individual.

5.2.2 Calculation of protein load

The protein load of an individual was calculated as:

cur

=N
L=3 2l (5.1)
Orig "™t '
i=1 Yi

where L is the total protein load of an individual organism, N the number of reactions,

v§¥" and viOTig the (slow) activity or (fast) rate constant of the i**reaction, and I; the load
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Table 5.1: Protein costs associated with enzymes and
reactions in the Calvin cycle

Enzyme Cost gprot-min.M~! Source
Aldolase 1.69 Spinach leaf
G3Pdh 2.27x1072 K
3PGK 1.65x102 K
R5Piso 1.62x10~* K
Rubisco 4.92x10! ”
StSynth 1.14x10* ”
StPase 4.34x10°3 ”
X5Pepi 3.49x1072 Yeast
TKL 5.75%10! ”
PGM 9.48x1073 ?

PGI 1.18x10°! K
TPI 1.24x1073 K
FBPase 1.37x1072 ?
SBPase 1.37x1072 ”
TPT 4.71 mean value
Ru5Pk 4.71 mean value
Light reactions | 10.0 arbitrary

associated with the i*"reaction. Scaling the load of an individual against the original
load circumvents dimensional problems caused by the mixture of rate constants and

Vinez values in the parameter vector.

Loads for individual reactions were calculated from the k..:, molecular mass, and
enzyme concentration values, reported by Albe et al. [7], as mass of protein per unit
activity (g.min.mole~!). If plant isoforms were not reported then the figure for most
closely related available form was used, as detailed in Table 5.1. The assumption here is
that yeast is more closely related to plants than are mammals. Although the assumption
is arbitrary it was used consistently. Three proteins, SBPase, TPT and Ru5Pk, were not
reported in [7]. SBPase was assigned the same load value as FBPase (the two enzymes
have a high degree of homology [25]), and TPT and Ru5Pk the arithmetic mean of
the others. In the model used here, one enzyme, ATP synthase, serves to represent all
light reactions. Thus this one enzyme was arbitrarily assigned a relatively high protein
cost, intended to reflect the investment made not only in this enzyme, but in the whole

thylakoid apparatus. The information is summarised in Table 5.1.
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5.3 Initial Optimisation Attempts

Despite the apparent simplicity of the goal, early optimisations revealed a number of
pitfalls, which although unexpected, with the benefit of hindsight proved entirely under-
standable, but none the less required some effort to remedy. Some of these are described
here in order explain the form of Eval_f () used to generate the final results.

The first attempt to optimise the model used the Eval_f () as shown above, and all
parameters were allowed to mutate. The first problem to be encountered was the abrupt
(within one generation) extinction of populations that had appeared to be evolving
satisfactorily. It transpired that this was due to a lack of isolation between organisms,
(due to the communication provided by the concentration vector in the global model):
if a single organism possesses a genome which causes all concentrations to fall to zero,
subsequent organisms inherit this condition, and the stoichiometry of the Calvin cycle
is such that progress is impossible under these conditions. Thus the effects of a lethal
mutation in a single organism infect the whole population. The solution is to save an
initial (global) concentration vector before the population is evolved, This vector is then
loaded into the model before each the fitness evaluation function attempts to determine
a steady state.

The next problem to be encountered was the presence of negative values in the
genome. This was revealed when a population that had apparently converged showed a
sudden improvement in fitness, coinciding with the assimilation flux exceeding rubisco
Vmax- Investigation revealed that this was due to one of the rubisco inhibition constants
assuming a negative value. The initial solution was for the fitness evaluation function
to kill those organisms with negative valued genes. However, this solution was not
entirely satisfactory, as it was found that even after many generations of ES, a large
proportion (~ 50%) of the population was being killed off in this fashion. Thus, in order
to maximise the number of viable individuals, a modified mutation function was used,
that “reflected” negative gene values back into the positive domain. Although this will
change the distribution of mutated values, the algorithm does not depend on new values
being drawn from any particular distribution, and the original distribution was chosen
for purely pragmatic reasons [61,10].

With these modifications in place it proved possible to evolve the through many
hundreds of generations, maintaining viable and improving populations. However, it

was observed in the final generation, that StSyn activity had fallen to near zero: The
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ES algorithm was sacrificing the ability to store starch (which does not support the
goal of increasing assimilation), in order to reduce the total protein load. This was
undesirable for two reasons. Firstly real chloroplasts do synthesise starch; eliminating
the ability thus makes the model qualitatively unrealistic. Secondly it appears that much
of the model behaviour described in the last chapter stems from the fact that carbon flux
through the cycle has two degrees of freedom, and removing one would mean that the
evolved model was no longer structurally comparable to the original. The solution was
to modify Eval_f () such that those organisms maintaining a net starch synthesis flux
close to 50% of the assimilation flux are treated as more fit than those with otherwise
comparable characteristics maintaining a starch synthesis flux displaced from 50% of
assimilation.

Although at this stage, the behaviour of the population under ES appeared sat-
isfactory, the steady state solver Sim_to_SS() (section 2.5.4) was reporting numerous
failures to achieve steady state, and even more warnings of individual points out of tol-
erance in the integrator. Although it was not possible to diagnose a cause on the basis
of this output alone, the behaviour was thought to be unsatisfactory, and in an attempt
to overcome the problem, Sim_to_SS() was substituted for Ev_to_SS(), which does not
depend on integration (see section 2.5.4).

The result of doing this was to greatly reduce the number of failures to attain steady-
state. However, subsequent investigation of the dynamic properties of individuals in
the final populations revealed that the true long term behaviour of the model was a
limit cycle oscillation about an unstable focus (similar in character to that shown in
Figure 5.8.C). Although of possible theoretical interest, such behaviour has never been
experimental observed, and so Eval_f() was modified to eliminate it. This is quite
straight-forward, as the state may be identified by examination of the eigenvalues of the
jacobian of the system: it is characterised by the presence of complex conjugate values,
with positive real parts.

It also transpires that this instability was the cause of the problems with Sim_to_SS,
as the system in this condition has a static steady state, it will not be possible to
simulate onto it. The oscillation contains very rapid transients, and this was the cause
of individual points being out of tolerance in the integrator.

Consideration of all of these points points led to a final form of Eval_f():

Code Fragment 5.2 Final fitness evaluation function (C language)
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void Eval_f(Organism_t org){

enum SPI_err err ; /* Scampi error return
const int MaxGens = 10 ; /* constants of Ev_toSS()
const double tol = le-6, MuteSize = 0.01, MuteRate = 1.0 ;

double Vrub, PGM, StErr; /* rubisco and PGM fluxes, starch error value

KillOrg(org) ; /* start by assuming the worst

if (!HasNeg(org->Genome, org->LenGenome)){ /* all +ve genes 7

PutSubset_md (mod, Param, ParamNames, org->Genome) ;/* load genome

PutMDvec(mod, Conc, OrigConcs) ; /* load good concentration vec
Ev_to_SS(mod, tol,MaxGens, MuteSize, MuteRate, &err) ;

/* get steady state

PGM = 6.0 * GetMDval(mod, Vel, "PGM_ch") ; /* C flux to Starch

Vrub = GetMDval(mod, Vel, "Rubisco") ; /* assim flux

if ((err == OK) && IsStable(mod)){ /* no problems with SS 7

StErr = fabs((Vrub/2.0)-PGM) ;/* penalty for Star # 0.5 assim

org->FitnessVal = Vrub /(StErr+ProteinLoad()) ;

which assumes the existence of functions HasNeg(), which checks for the presence of
negative gene values and returns an appropriate boolean result, IsStable () which de-
termines the stability of the model, using the eigenvalue function described in section
2.6.2, and ProteinLoad () which calculates the protein load, as described by equation

5.1. Other functions used in Eval_f () are described in chapter 2.

5.4 Results

5.4.1 Effect of ES on fitness characteristics of the population
Progress of the population

The progress curves for assimilation, protein load, and fitness of the hundred fittest in-
dividuals in the population are presented in Figure 5.1. The extrema of the vertical bars
indicate the values associated with the least and most fit individual in this population.
In the cases of assimilation and protein load, individuals do not consistently take the
highest or lowest values. If these were to be drawn as continuous curves, for the most
and least fit individual, the two would continually cross and recross. Furthermore the
extrema, do not necessarily indicate limits of assimilation or protein load.

As expected, fitness values increase monotonically, and asymptotically, to a value

1

of ~ 1.8 gprot-min~'.mole !, representing a three-fold improvement on the starting

position. There is a clear point of inflection in the 25!"generation, and a less clearly
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Table 5.2: Fitness characteristics in the first and final generation of a population of
Calvin cycle models under ES. As distributions are generally non-normal, values are
quoted as median and relative inter-quartile range (Rel. IQR)

Generation 1 Generation 400
Name Unit Median Rel. IQR  Median Rel. IQR
Assimilation pmol C .h~!.(mg Chl)~! | 119 0.017 143 0.043
Protein load  gprot-min~!.mole~! 90 0.017 70 0.041
Fitness ?dims 0.69 0.013 1.8 0.04

defined on at the 100¢"generation. In contrast to the fitness progress curve obtained for
the fitting of lactate dehydrogenase data in section 3.4.3, there is no initial lag phase.
The progress curves for assimilation flux and protein load (Figures 5.1.B and C), are
more complex, although, as may be expected, there is an overall increase in assimilation
flux, and decrease in protein load. The assimilation flux rises steadily in early genera-
tions, but drops sharply at the 25! generation, coincident with the point of inflection in
the fitness progress curve. Thereafter, the assimilation flux increases again, but much
more slowly than previously, and becomes stable after about one hundred generations.
The protein load shows no clear pattern of behaviour in the early generations, but
undergoes a sharp drop in the 25!%, then rises to a peak value which is greater than the

starting point, and then declines steadily over the remaining generations.

Characteristics of the final generation

In the final (400'") generation, 327 individuals were viable, Figure 5.2 presents the
distributions of fitness, assimilation flux, and protein load, and compares them with
those of the fittest 100 individuals from the first generation (i.e. after mutation and
fitness evaluation, but without reproduction), the information is summarised in Table
5.2.

In common with most other attributes, these distributions can be described as non-
normal with a high degree of confidence! . It is clear from Figure 5.2 that, in addition
to changing median values of observed properties, an effect of ES is to change the
shape of the distribution. The fitness distribution has a strong positive skew in the first
generation, but is strongly negatively skewed in the final generation.

The distribution of assimilation flux in the first generation suggests the possibility

! As determined by use of the Kolmogorov-Smirnof (K-S) test, [100]
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of two distinct populations of approximately equal size. In the final generation the
impression remains, although one sub-population is clearly much smaller than the other,
the distance between the two is much greater. Use of the K-S test suggests that it
would be unwise to simply dismiss the smaller sub-population as “outliers”, as this
calculates that the probability of obtaining this distribution from a normally distributed
(statistical) population, as 7.4x1073. The distribution of many other values in the
final population also suggest the existence of a small sub-population. Unfortunately
time constraints have precluded the separate isolation and characterisation of this sub-
population, and its significance remains unclear.

Comparison of initial and final values in Table 5.2 shows that ES achieved a 20%
increase in assimilation flux, and a 12% reduction in protein load. Thus most of the
improvement in fitness was achieved by minimising the penalty incurred for starch syn-

thesis flux deviating from 50% of assimilation flux.

5.4.2 Model characteristics of the final population
Enzyme activities

As noted previously, normal distributions tend to be the exception, and not the rule, in
the data sets generated by this investigation. Of the nineteen model parameters under
the influence of ES, only 4 had K-S(normal) > 0.5. Thus Table 5.3 describes values in
the final generation as median and Relative inter quartile range Inspection of this table
shows that eight of the activities and rate constants? increased, and the rest decreased.

The largest overall change was that of StPase, the activity of which was reduced to
slightly less than 3% of the starting value. However, as the fitness evaluation function
takes no account of the desirability of the possibility of starch degradation, it seems
likely that a decreased protein load was achieved at the expense of this enzyme. It is
also notable that the Relative inter quartile range of this step is an order of magnitude
greater than the others, which may be an indication that the activity is still approaching
optimum. However as the activity is so low, further reductions are unlikely to furnish
any great improvement in fitness.

With the exception of StPase, changes in activity (relative to initial value), fell

within the range 0.2-2.7, and eleven of the nineteen within the range 0.8-1.2, of which

2At the risk of sacrificing strict accuracy for convenience, both of these quantities will
subsequently reffered to as “activities”
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Table 5.3: Values and spread of evolved parameters in the final
generation, compared with their initial values. See section 4.2
and table 4.1 for explanation of the abreviations.

Name Initial value Median Rel. IQR  Rel. change
G3Pdh | 5x10°® 1.3x10° 0.032 2.7
FBPase | 2x10? 3.8x10% 0.066 1.9
SBPase | 40 57 0.058 1.4
F.TKL | 5x108 5.8x10%  0.051 1.2
PGI 5x108 6.2x10% 0.081 1.2
TPI 5x108 6x108 0.084 1.2
PGK 5x108 6x 108 0.037 1.2
PGM 5x108 5.4x10%  0.052 1.09
StSyn | 40 39 0.074 0.98
X5Pepi | 5x108 4.8x10%  0.056 0.95
S.Aldo | 5x108 4.4x10%  0.059 0.89
F.Aldo | 5x108 4.2x10% 0.074 0.84
R5Piso | 5x108 4x10%8  0.14 0.81
S.TKL | 5x108 2.8x10% 0.13 0.55
“Light” | 3.5x10° 1.7x10°  0.056 0.49
rubisco | 3.4x10? 1.6x10%2  0.042 0.46
TPT 2.5%x102 1.1x102 0.061 0.44
Ru5Pk | 1x10* 1.9x10® 0.15 0.19
StPase | 40 0.98 1.3 0.024
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Table 5.4: Median evolved flux control coefficients over input and output flux, and their respective

values in the original model (P;_,, = 0.5 mM)

Name Assimilation Export Storage
Evolved Original Evolved Original Evolved Original

Rubisco 6.14x107! 1.70x1073 | -2.06x10~t  1.02x1073 | 1.24 -1.68x1072
FBPase -1.04x1072  -2.55%1073 | -9.99x1072 -1.35x107! | 3.07x1072 -2.94
SBPase 8.44x10°%  1.00 -1.21 3.89x10°1 | 2.77x10°! -1.09x101
Ru5Pk 1.81x1072  2.92x1073 | -2.03x107!  8.48x1073 | 5.31x1072 2.09x1073
TPT 6.92x1072 -4.76x1073 | 1.44 6.11x10~1 | -8.73x10~! 1.16x 10!
StSyn 5.89x1072  837x107* | 3.91x107! -7.81x1072| 1.26x10~! -1.46
StPase -7.08x107¢  1.56x107% | -4.57x10~°  1.08x10~! | 0.00 2.96
G3Pdh 6.09x1072 -6.56x10~% | 3.37x10~!' -6.12x10~2 | 5.80x10~2 -1.15
Light react | 9.94x1072  8.69x1076 | 5.60x1071 3.94x10~* | 9.48x10~2 1.23x1072

ten were fast reactions. Of the remaining fast reactions S-TKL decreased by a factor
of 0.5, and G3Pdh increased by 2.7. With the exception of StPase, this is the greatest
change brought about by ES.

Of the slow reactions, FBPase and SBPase both increased their activities by a factor
of 1.9 and 1.4 respectively. These had the lowest protein cost of the slow enzymes.
Rubisco, ATP synthase, and TPT, all decreased by a factor of ~ 0.4, and Ru5Pk by 0.2.
As might be expected, if relative activity change is plotted against protein cost (Figure
5.3), then a reasonably clear negative relationship is seen, although the enzyme with
the highest cost (rubisco) was not the most diminished. It is also notable that StPase
lies well away from the general trend, providing further evidence that this step has been

treated atypically by the ES algorithm.

Metabolic control analysis of the final population

The median values of the flux control coefficients of individual enzymes in the final
generation, over assimilation, export and starch fluxes are presented in Table 5.4, along
with their respective values in the original model. Once again StPase is an exception,
with negligible C? over input and output fluxes, and will not be discussed further in
this section.

Assimilation flux has undergone the greatest change in its control characteristics:
the control by SBPase is greatly reduced in the final population, with most of this control
having been transferred to rubisco, although the control exerted by the other steps has

also increased markedly. The reduction in control by SBPase in the whole population
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is not as great as might appear from Table 5.4, as its distribution is both positively

skewed and relatively wide. Figure 5.4.2 shows the distributions of Cgesimilaties and

Cagprmiasion | Examination of this figure suggests that control of assimilation flux within

the whole population is mainly shared between rubisco and SBPase, with other steps
(see Table 5.4) making small, but not negligible contributions.

In contrast to assimilation, the control of export flux has become more, not less,
localised in the final generation, with positive and negative control lying mainly with
TPT and SBPase respectively. Control of export by StSyn, G3Pdh, and ATP synthase
also underwent an increase.

Control over starch synthesis flux® has undergone the greatest quantitative change,
with the very large values of Cgguct., Coe™ and , Cpagee,, being reduced by approx-
imately an order of magnitude, although the sense of these is unchanged. In line with
the assimilation control profile, Cfﬁﬁ{;@o has undergone a dramatic increase, apparently
at the expense of Cggaet .

Examination of control by TPT in Table 5.4 shows that Ciisgi==“" is relatively
small, and that C%’%"%"“ and C#ﬁf’r}“ge are of similar magnitude and opposite sign. This
is consistent with the model being in the fast steady-state, as described in the previous

chapter.

Determination of relationships between parameters and variables in the final

generation

Two techniques were used to identify the strongest relationships in the final generation:
linear regression, and Spearman’s rank correlation test.

Results obtained by linear regression must be viewed with a degree of circumspection
for at least two reasons: it cannot be assumed that such relationships as exist will be
linear, and the algorithm used ( [99] section 3) assumes that data are drawn from a
normally distributed (statistical) population. The latter assumption is unsafe in the
light of results described previously in this chapter.

Thus the estimated parameters determined by linear regression are unlikely to be

3A minor complication in considering the figures in table 5.4 relating to starch synthesis is
the fact that the starch flux in the original model was negative (i.e. net degradation), hence
steps with positive values of C7Sterage represent those that increase the degradation of starch.
The opposite if true in the evolved population in which the carbon flux to starch is positive.
The term “positive control” is used here to describe those steps for which an increase in activity
results in an increase in synthesis, regardless of the the numerical sign of C’.
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Figure 5.4: Distribution of control by SBPase and Rubisco over assimilation flux, in the
final population

of any great use. However the linear regression function used here also determines an
estimate of confidence in the calculated parameters, in the form of a standard deviation.
Now, if we assume that, if a monotonic trend exists between two data sets, it will then be
possible to approximate it (albeit poorly) to a linear function, we may use the standard
deviation of the slope to calculate the probability that the slope is equal to zero, or
has the opposite sign to that calculated, and use this probability as a measure of the

“strength” of the relationship. Stating this in terms of the null hypothesis Hy:

the sign of the slope of the linear function representing the relationship be-

tween two data sets is not known

then the probability of Hy, pg is calculated as:

0
Op _1(z=1)2
Do :/ _27re 3(5) d (5.2)

Where the right hand side of the equation is the cumulative normal distribution function
with a population mean of 1, and the relative standard deviation, o, = o/m, where m
and o are the linear coefficient and associated standard deviation as determined by

linear regression.
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The numerical calculation of equation 5.2 depends on the use of the incomplete
gamma, function [101], which is implemented in terms of a successive approximation
algorithm, and liable to fail for o, <~ 1072, equivalent to a value of py ~ 10712
The error is readily detectable, and such values will be reported as here as < 10712,
Calculations of py were made on sets of data sorted by o,, hence the relative position
of two or more items with py < 107'2, in tables below, remains meaningful.

It was found that, under certain circumstances, the results generated from this test
could be badly distorted, due to the presence of the small sub-population. The slope of
the regression line was that of the line joining the centroids of the two populations, not
the slope of the regression line within the main population, (despite the fact that the
sub-population is less than a tenth of the size of the main). The Marquardt-Levenberg
algorithm suffered from the same problem.

An attractive alternative to regression tests was Spearman’s rank correlation as it is
not dependent on assumptions about the distributions of the input data, and less likely
to generate false positive results than parametric correlation tests [100].

This analysis was undertaken in the expectation that most of the possible relation-
ships would be weak, or non-existent, and that it would therefore be possible to identify
a small number of “key” relationships that merited further investigation. In fact this
expectation proved false, and most possible relationships proved to be strong. The two
statistical tests were consistent in this, both found ~ 65% of possible relationships to

be significant at the 5% confidence level.

Correlation of parameters with fitness value

The exceptions to the rule that all relationships are strong are those involving fitness.
Given that fitness is defined as a function of all parameters, such weak relationships
would appear, at first sight, to be paradoxical. In fact it is not, and is to be expected if
the population has converged to an optimum. If a clear relationship exists between any
one parameter and fitness, the ES algorithm would exploit this by moving the population
along the gradient, until it no longer existed.

Two parameters did exhibit a strong correlation with fitness: the atypical StPase
(p02.5x1072,ps7.5x107?), and TPT, (po < 10712,p, = 3x10~*, Figure 5.5.A), and
5.5.B), but much more representative is that between fitness and FBPase (p; = 0.5,p0 =
0.4, Figure 5.5.C).
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Figure 5.5: Correlations of fitness with various protein activities in a population of
Calvin cycle models after 400 generations of ES: A StPase, B TPT, C FBPase



A possible explanation for the correlation of these two parameters with fitness is
due to a threshold effect, and to some extent an artifact of the ES algorithm. If, as
already suggested, StPase plays no part in increasing assimilation flux, then it may be
expected that its optimum activity is zero, because of the associated cost. However,
because negative activity values are not allowed, this optimum cannot be approached
symmetrically, and it may be that it is this lack of symmetry that causes the corelation.
A similar situation exists with TPT. As will be shown later, there is a minimum value
of TPT activity, below which the system becomes unstable. As noted above, the fitness

evaluation function rejects such individuals, and thus a similar lack of symmetry exists.

Correlation of parameters with protein load

Most parameters show a strong corelation with protein load. This appears to require
little explanation, given that the protein load is a simple linear function of all enzyme
activities. The exception to this is StPase (pp = 0.16,p; = 0.2) shown previously
to be atypical. What is more surprising is that six parameters show a strong (p; <
9x107%,p, < 4x1072 for the least significant) negative correlation with protein load.
All of these are fast enzymes within the regenerative limb of the Calvin cycle . These
are not simply the enzymes with the lowest protein cost, so a tentative explanation is
that investment in these enzymes enables a disproportionate saving in rubisco protein
cost to be made, as these (and only these) enzyme activities have comparably strong
negative correlations with rubisco activity. These observations are summarised in Table

9.5.

Table 5.5: Negative correlations between the activity of various
fast reactions with protein load, and with Rubisco activity.

Protein Load Rubisco Activity

Activity | Coefficient Po Coefficient Po

F Aldo | -1.51x10"% 9.08x10~* | -4.74x10° 4.20x10~2
X5Pepi | -3.54x10°% 2.70x107% | -7.10x10°  7.48x10~©
G TKL | -2.47x107% 2.45x1078 | -1.05x10% 8.80x10~°
E Aldo | -3.77x1078% 9.27x107° | -7.53x10° 3.22x107°
R5Piso | -1.85x107%  6.62x107% | -1.66x106 8.13x10~6
TPI -2.90x10~8 <1072 | -2.65x10° < 10712
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Table 5.6: Relationships between assimilation flux and other
factors in the final generation, as determined by Spearmans
rank correlation test (ps), and linear regression (pg)

Activity Ds Activity Do
Light Reactions 2.56x10~2% | FBPase < 10712
TPT 1.08x1073! | Light Reactions < 1072
StSyn 7.42x10732 | StSynthase < 10712
SBPase 3.30x107%* | TPT <1012
Rubisco 2.21x107%9 | Rubisco < 10712
Protein Load 1.71x10~%7 | Protein Load < 10712

Correlation of parameters with assimilation flux

Both po and p; identify the same five factors as being within the six strongest correlations

with assimilation flux, as shown in Table 5.6. .

The five enzymes with negative correlation to protein load and rubisco also correlate
negatively to the assimilation flux. This is to be expected given the strong positive
correlation of protein load and rubisco activity factors to assimilation flux. These are
the only factors with a negative correlation. More unexpected is the strong correlation of
starch synthase with assimilation flux. It is thought that this is be a consequence of the
constraint in the fitness evaluation function favouring individuals that maintain a starch
synthesis flux at 50% of assimilation flux: if an individual has a higher assimilation flux,
then, as long as starch synthase has a positive flux control coefficient over its own flux,
we might expect a concomitant increase in starch synthase activity to maintain the
balance. However, as described later in section 5.4.2; in the final population, starch
synthase does have a relatively large positive flux control coefficient over assimilation,

so this explanation is not complete.

The dependence of assimilation flux, upon the factors in Table 5.6 are shown in
Figure 5.6. The cluster of ten individuals with relatively low assimilation flux that
is clearly seen in these graphs appears to represent a distinct sub-population, as an
outlying cluster of ten individuals is frequently seen when other combinations of factors

(other than fitness) are plotted against one another.
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Figure 5.7: Distribution of period and damping constants in the final population, as
determined from the eigenvalues of the jacobian matrix of each individual.

Dynamic behaviour

Dynamic behaviour of the final generation was determined by calculation of eigen-values
using the Scampi facilities described in Section 2.6.2. Of 328 viable individuals, it proved
possible to calculate sets of eigenvalues for 314. All of these had exactly one pair of
complex conjugate values. The distributions of (the positive imaginary part of) these,
scaled to yield the period of oscillation and damping constant in seconds and inverse
seconds respectively, are shown in Figure 5.7. Neither appear normally distributed;
K-S(normal)for the real distribution is 51072, and incalculable for the imaginary part.
This is presumed to be due the the outliers in the population, as it possible to obtain
a reasonable fit to a normal probability density function in the central part of this
distribution.

Eigenvalues serve to characterise the response of the system to a (vanishingly) small
perturbation. However, in nature, systems are subject to large perturbations, and the
response to such perturbations must also be investigated. Figure 5.8 shows the time
course of light reaction flux (in the fittest individual), when light reaction activity is
positively perturbed for a short time, and then returned to its original value. If the
relative size of the perturbation is small (<~ 0.09) the system appears to display classical
damped harmonic motion. However if the size of the perturbation is increased beyond
a critical point the system exhibits more complex, and undamped, periodic behaviour.
Surprisingly, if the perturbed parameter is not returned to its original value, then a much
greater perturbation is needed in order to induce the complex oscillation (not shown).

The dynamic behaviour is also sensitive to TPT activity. Figure 5.9 shows the real

part of the complex eigenvalue of the fittest individual, as a function of TPT activity.
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Figure 5.9: Response of damping time to changes in TPT activity in the fittest individual
in the final generation of ES

With TPT activity values lower than that shown, the real part of the eigenvalue becomes
positive, and the system exhibits sustained, complex oscillation of the type seen in Figure

5.8.C.

5.5 Conclusions

Subjecting a population of Calvin cycle models to a realistic selection pressure (maximis-
ing assimilation whilst minimising total protein load), has led to a significant improve-
ment in the population. This improvement has been accompanied by a number of other
changes, particularly in the control characteristics. It is notable that in the improved
model, control of assimilation flux is no longer dominated by SBPase; the magnitudes of
all other (CJassimilation (apart from the atypical StPase) have increased substantially, with
rubisco having most control. Comparison of parameter and variable values in the final
population allows no clear conclusions as to which individual parameters, or relation-
ships there between, are the most “important”. Almost all possible pairs of quantifiable

properties show strong correlations. The exceptions to this rule were those involving the
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fitness value itself, which is not expected to correlate with parameters if the population
has converged, and StPase, which ES appears to have eliminated from the model.

A major change in the dynamic properties has also been observed. The period
and damping time have both increased, but more significantly the model becomes pro-

gressively unstable as TPT activity (or P results not included) is decreased, and

iext 7
below a threshold value exhibits sustained, non-linear oscillation. It is possible that this
behaviour represents the slow steady-state, which has now become an unstable focus,
although this has not been fully investigated. If this is the case, then it is predicted that
the same behaviour could be induced by a reduction in light levels (as opposed to the
short, sharp perturbation used in Figure 5.8).

As there are no experimental reports of this behaviour, the results of this ES opti-
misation must be treated with a degree of caution. One approach to improving these
results would be to modify the fitness evaluation function to calculate total assimilated

carbon over a light-dark cycle. As will be described in the next chapter, this would

entail structural modification to the model, as well as the fitness evaluation function.
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Chapter 6

Discussion

6.1 Toward an explanation of the Calvin cycle model

behaviour in terms of skeleton models

A model with the degree of complexity of that described in previous chapters inevitably
suffers from two disadvantages: firstly, it is difficult to explain the observed behaviour
in terms of the known structure (although not impossible, an explanation is offered
later), and secondly, analytic solutions are impossible. In an effort to overcome these
problems, skeleton models were investigated, the aim being to identify the simplest
structure capable of exhibiting the oscillatory and switching behaviour described in

previous chapters.

6.1.1 Model structures

As Giersch [43] points out, the structure of skeleton models may reveal as much about the
preconceptions of the investigator constructing them, as the system under consideration
itself. Thus, before describing the skeleton models, this author’s own preconceptions

concerning the Calvin cycle are as follows:

1. The Calvin cycle fixes carbon by the addition of CO; to a five carbon compound
to produce two molecules of TP!, which is subsequently consumed by cytosolic

metabolism.

for the purposes of this discussion PGA is considered to be a TP
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2. The Calvin cycle takes place in the chloroplast stroma, surrounded by a semiper-
meable membrane, such that TP must be exported in strict counter exchange for

P;.

3. The Calvin cycle is capable of reaching a true steady state, i.e. after infinite time,

all intermediate concentrations are finite and positive.

4. No component of the Calvin cycle violates the laws of conservation of mass or

energy.

Four models, whose topology is described in figure 6.1, were investigated. Initially
reaction kinetics were modelled as first order with respect to substrate, and irreversible
(with the exception of starch synthesis, when included). The kinetic equations were real-
istically non-linear inasmuch as all reactions were assumed to be saturable by substrate
and product, with a K,,term being included for each substrate and product. As the ob-
ject of this investigation is to investigate qualitative behaviour, values of concentration

and activity are arbitrary.

6.1.2 Determination of model behaviour

Even the simplest of the models, ¢y, has twelve parameters, and attempting to determine
behaviour by a systematic mapping of parameter spaces is not a practical proposition.
The parameter vector of each model was randomised (2000 times), steady state deter-
mined (by evolving to steady state as described in section 2.5.4, and starting from a
randomised concentration vector), and when this was successful, eigenvalues and C? of

all steps over input and output fluxes determined.

6.1.3 Results

The results of the steady-state and eigenvalue analysis are presented in Table 6.1. Ex-
amination of this shows that model cg is inherently unstable, while models c¢;—c3 all
attain stable steady-states with relative ease. Although the model ¢g does not strictly
conform to the pre-conceptions of the Calvin cycle described above, it has been included
here to illustrate the benefit obtained by assuming that total phosphate is conserved. A
stable steady state could be found for fewer than 4% of the population of ¢y models, in

comparison to a value of just over 84% for the next worst case (cz).
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Figure 6.1: Skeleton models of the Calvin cycle

Table 6.1: Steady state behaviour in a sample of 2000
models described in figure 6.1 and determined by in-
spection of the eigenvalues of the Jacobian of each
model at steady state, if attained.

Model Co c1 Co c3
Total steady states | 3256 1792 1675 1733
Unstable 258 5 241 359
Damped oscillation | 7 12 305 240
Unstable oscillation | 3 1 2 21
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Table 6.1 shows that although model ¢, is readily able to attain viable steady states,
it shows little inclination to oscillate, with less than 1% of the viable parameter sets
exhibiting stable (i.e. damped) oscillation. Furthermore, it is possible to argue that the
lack of the starch metabolism branch in this version of the model is a more profound
simplification than simply lumping reactions together into blocks, as this reduces the
degrees of freedom in the net carbon flux from two to one. Thus this version of the

model will not be discussed further.

Models co and c3 appear to be quite likely to oscillate, with 24 and 14% respec-
tively of viable individuals exhibiting damped oscillation. The additional complexity
introduced in c3 thus appears to reduce the likelihood of oscillation. On the basis of
these observations it is possible to propose that the “cause” of oscillation in the Calvin
cycle model of earlier chapters, and therefore possibly in the Calvin cycle in vivo is the
combination of the cyclic topology and the additional degree of freedom in the carbon

flux engendered by the presence of the starch synthesis/degradation pathway.

Interpretation of the presence of models exhibiting “unstable” steady states or “un-
stable” oscillations in Table 6.1 requires some care, as the analysis of the eigenvalues
of a system is only strictly applicable at the steady state, especially in a system with
nonlinear topology [132]. Thus although a system with a positive real eigenvalue will
instantaneously depart exponentially from the steady state, as the system moves further
from the steady state, the trajectory will be first influenced, and then dominated by the
non-linear factors in the system. Consequently the safest statement to make about the
unstable models in Table 6.1 is that if perturbed they will move to some other state,
which may or may not be viable, and cannot be determined without further investiga-
tion. Thus, the presence of such individuals can be regarded as evidence, but not proof,

that the model can undergo switching behaviour.

Bearing these points in mind, it would thus far appear that models ¢, and c3 give an
equally good imitation of the behaviour of the detailed model. There is however another
approach that may allow the two to be distinguished. It was shown in chapter 4 that
the complete model of the Calvin cycle could posses two stable steady states, and that
one means of characterising them was the response to cytoplasmic TP demand, and in

particular the response of the rate of starch synthesis: in the fast steady state C%SF“,E}Y““‘

was negative, and in the slow, positive. Therefore if the distribution of C$i™* of one

of the models is bi-modal with one negative and one positive peak this can be taken as
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Figure 6.2: Distribution of C%S;Fy““‘ in viable populations of models ¢y and cs.

evidence of of the potential for the model to switch. These distributions are presented
in Figure 6.2, and it is seen that both models fulfil this criterion. Although it is perhaps
arguable that cg is “more strongly” bi-modal than co, it is hard to avoid the conclusion
that the qualitative behaviours of both models equally well represent the behaviour of
the complete model, and therefore the simpler of the two, cs should be subject to further

analysis.

Switching behaviour in skeleton model c,

That the bi-modal distribution of CJTS}§§Fy““h in Figure 6.2 does reflect the potential for
the model to switch is confirmed by two further investigations. Firstly, it will be recalled

from Chapter 4, that reducing P;__, to very low levels induced a transition from fast to

fext
slow steady-states, and that a characteristic of the slow steady-state is a relatively high
concentration of PGA, the immediate product of CO4 assimilation (Figures 4.2 and 4.3).

Although neither PGA nor P;__, are explicitly represented in these skeleton models,

iext
their equivalents may be considered to be TP (as the product of assimilation), and TPT
activity (simultaneously modulating TP export and P; import) respectively. Figure 6.3
shows the response of TP concentration to TPT activity in model cy. This is qualita-
tively equivalent to the curve in Figure4.3: At low TPT activity TP is high, reducing
with increasing TPT until an abrupt transition is reached, beyond which TP concen-

tration is much reduced. That this represents a true switch, and not simply extreme

sensitivity to TPT, may be confirmed by determining steady-state conditions from a
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range of initial concentrations. Figure 6.4 shows the results of simulating to steady-
state from a range of initial values of TP and RuBP, and demonstrates unequivocally
that two separate steady-states do indeed exist, at least in some regions of parameter
space for this model.

Although switching behaviour in model ¢—2 is established empirically, algebraic
analysis proved intractable due to the presence of the non-linear terms in the rate equa-
tions. To overcome this problem, the rate equations were re-written as linear equations,
first order with respect to each substrate, and with no product terms (other than P; in
the reversible starch synthesis rate equation). With this degree of simplification, a com-
plete solution to the system is possible (see appendix C). The solution is quadratic, but
of such a form that only one root results in all concentrations being positive. Thus, this
form of the model cannot exhibit the switch between two (physiologically) valid steady-
states. It is therefore possible to conclude that the observed switching behaviour is due
to the topology of model ca, in combination with the presence of saturable elements in

the rate equations.

6.2 Comparison with other model studies of the Calvin
cycle

Of the many previously published models of the Calvin cycle (e.g. [51,50,77,75,91,
108,138]) the model presented in this thesis, is thought to be the most complete, both
in the sense of using a minimum number of simplifying assumptions (with the possible

exception of [75]), and in the variety of behaviour that it has been possible to investigate.

6.2.1 Hahn’s model

The earliest model of photosynthate metabolism cited here is that described by Hahn
[51,52]. Hahn’s model encompasses a larger area of plant metabolism, including cytosolic
anabolic reactions from TP up to sucrose synthesis, and was later extended to include
the reactions of photorespiration [53]. In common with the model presented in this
thesis, starch synthesis and degradation were included as separate reactions.

Hahn makes an original simplification to the regenerative limb of the Calvin cycle
by assuming the existence of a free, two carbon intermediate, thiamine pyrophosphate

gycolaldehyde (TPGA). Thiamine pyrophosphate is known to be a cofactor for both
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aldol and keto transferases, forming respectively a two and three carbon, enzyme-bound
intermediate [130]. By treating TPGA generated by the erythrose-aldolase reaction as
a free metabolite and further assuming that the two transketolase reactions are in fact

(irreversible) transaldolase reactions:

S7P — Ru5P 4+ TPGA (6.1)

and

TP + TPGA — Ru5P (6.2)

Hahn greatly simplifies the structure of the regenerative limb of the Calvin cycle .

In addition to this structural simplification, Hahn makes the unusual assumption
(as far as detailed biochemical models are concerned) that all reactions have simple first
or second order kinetics with respect to substrate, (i.e. no saturation or effector terms),
and furthermore, that all reactions are irreversible, with the exception of FBPase which

is made reversible under dark, but not light conditions.

Despite the title given to [52], Hahn concentrates his attentions on the dynamic be-
haviour of the model, and reports damped oscillations of comparable (although rather
greater) period and damping times than those reported experimentally (e.g. [134]). In-
terestingly, Hahn reports four complex conjugate pairs of eigenvalues in his model, which
consequently demonstrates quite complex trajectories under certain conditions. This in
turn could be taken as a basis for the hypothesis that there is more than one source for
the photosynthetic oscillations observed in wvivo. Such a hypothesis is supported, and
implied by Ryde-Pettersson [110,109], who in an analysis of a model similar to that of
Hahn (but omitting photorespiration), describes no less than twenty pairs of metabolites

whose interaction could lead to damped oscillation.

Hahn subjected his model to light-dark-light transitions by setting the ATP syn-
thase rate constant to zero to simulate dark conditions, and, in contrast to the results of
chapter 4 found it able to metabolise starch in the dark phase and recover the previous
light phase behaviour in the absence of the OPPP reactions. This difference in be-
haviour is due to the simplifications described above, primarily the assumption that the
reaction catalysed by FBPase becomes reversible in the dark. Under these conditions a

stoichiometrically correct exchange of TP with P;__, through the TPT becomes feasible,

lext

utilising starch as the carbon source. Furthermore, because regenerative limb reactions
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are assumed to be irreversible, intermediate metabolites do not drain out of the system
as was the case in chapter 4. Even if Hahn had made these reactions reversible, the
introduction of TPGA, described above, would probably allow recovery from dark con-
ditions, because the simplified stoichiometry of the regenerative limb allows generation
of pentose phosphate from hexose phosphate, even if other intermediates are absent.
The major objection to this scheme is, of course, that the phosphorylation of F6P is
energetically extremely unfavourable, and is a text book example of a reaction that must
be coupled to ATP hydrolysis to proceed, and is catalysed by the enzyme phosphofruc-
tokinase (PFK). Stromal isoforms of PFK have not been reported experimentally, but a
more serious objection is that Hahn’s model does not provide the necessary ATP source
under dark conditions, and hence violates the laws of conservation of energy. There-
fore, although the model may mimic some of the behaviour observed in experimental
systems, the similarity is little more than coincidental, and is unable explain the in vivo

observations.

6.2.2 The model of Laisk et al

Laisk et al [77,75,78] present three versions of a model of photosynthesis, varying in the
relative detail with which the light reactions, Calvin cycle, and cytosolic reactions are
described. In all three cases the regenerative limb of the Calvin cycle is considerably
simplified, but in contrast to Hahn (above), reactions are represented with reversible
and saturable kinetic equations.

Despite simplifications, the structure of the model described in [75] is very similar
to that used here. Although equilibrium approximations are used to simplify the regen-
erative limb of the Calvin cycle, this is achieved by grouping equilibrated metabolites
into independent pools, in contrast with some other workers (see below) who group all
metabolites connected by reversible reactions into a single pool. The pools specified were
triose phosphate (TP), pentosemonophosphate (PMP), hexosemonophosphate (HMP),
and mono and bisphosphoglycerate (NPGA). They did not assume (in contrast with
others, see below) that NPGA equilibrates with TP. As demonstrated in chapters 4 and
5 BPGA does not appear to equilibrate with GAP. Furthermore, although the model
used in this thesis shows that pairs of metabolites within the groups specified by Laisk
et al maintain highly linear relationships over a wide range of conditions, pairs from

different groups do not.
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Although Laisk et al were primarily interested in aspects of cytosolic metabolism,
some of the results in [75] are directly comparable to those in chapter 4, specifically

the response of the Calvin cycle to alterations in P;_, and light. Qualitatively their

fext
results are very similar: ATP and P; both increase monotonically with increasing P;_,,
. In contrast to chapter 4, CO, assimilation and starch synthesis rates are also seen
to increase with P;_, , possibly suggesting that their model is in the slow steady state.

Laisk et al also assumed much higher concentrations of P;_, than here (6-20 mM).

iext
However, they also included cytoplasmic TP and PGA in the model, and one might
suppose that as this decreases the thermodynamic gradient across TPT, higher levels

of P;__, would be needed to in order to obtain comparable effects. This supposition has

lext

been tested and vindicated in a model study by Pettersson [92], and thus the much

larger values used for P;_, do not amount to a serious incompatibility between the two

lext

models.

As in chapter 4, the changing light levels were simulated by modulating the Vmax
value of ATP synthase. It was observed, as in chapter 4 that ATP, TP and P; increase,
and PGA decreases monotonically with increasing light. Assimilation flux is seen to be
quite strongly dependent upon ATP synthase V. and from this, an approximate value
of C‘I]ﬁff;’sr‘ymh of 0.86 can be calculated, comparing with the value of ~ 0.5 obtained in

chapter 4 for the slow steady state.

Laisk et al also subjected their model to a light-dark transition, with very similar
results to those in chapter 4 in the absence of the OPPP reactions: the assimilation
flux, ATP, RuBP and TP all drop rapidly, with all but TP approaching zero. The
behaviour of TP and PGA in Laisk’s model is different from that in chapter 4 in that
TP approaches a small but non zero value, and PGA increases to a point where most of

the conserved P; is in this form. In chapter 4 both fall to zero.

The reason for this difference seems to be due to the cytosolic components included
by Laisk et al. Sucrose synthesis is included as a reversible reaction that is the only
reaction capable of generating or consuming sucrose, but which appears none the less to
have been included in the model as a free variable. Under dark conditions, the structure
of the model appears to allow sucrose degradation with concomitant equilibration of
metabolites at least between sucrose and stromal TP. As reactions normally considered
irreversible were modeled (rather more realistically) as reversible reactions with large

(forward) equilibrium constants, it would also seem likely that the other intermediates
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approached equilibrium values, rather than absolute zero. However Laisk et al do not
publish the results necessary to determine this.

Unfortunately Laisk et al do not report results of the complementary dark-light
transition. It would be interesting to know whether or not the low, equilibrated concen-
trations of intermediates presumably present in the regenerative limb of the Calvin cycle
are sufficient to allow normal light activity to resume when light is restored, despite the
absence of the OPPP.

Another feature of this model was that, despite the best efforts of the investigators,
none of the models were observed to oscillate unless an explicit time dependent step
was included [77]. Given the propensity of the model in chapters 4 and 5 to oscillate,
and that (as has been shown in section 6.1) models of similar, but greatly simplified,
topology also oscillate with ease, this is rather surprising. However there is no obvious

no explanation for this.

6.2.3 The model of Woodrow

Woodrow [138] presents a model in many ways similar to, but simpler than, that of Pet-
tersson (see chapter 4 and below). Woodrow’s model includes the Calvin cycle reactions
of assimilation, reduction, regeneration and storage, along with cytosolic sucrose syn-
thesis, represented as a single reaction with cytosolic FBP as a precursor, and sucrose
and cytosolic P; as products. The model does not include light reactions: ATP/ADP
and NADPH/NADP are fixed as parameters. Woodrow uses the approximation that
substrates and products of fast reactions can be treated as though at equilibrium with
some enthusiasm. Not only are all stromal intermediates (with the exception of RuBP)
assumed to be related solely in terms of equilibrium constants, but equilibration of TP
and P; across the chloroplast membrane is also assumed, thus removing any influence

that may be exerted by either TPT and P As these factors have been shown, by

fext -
experimental [28,36,93] and modelling studies ( [75,91,92] and chapter 4), to have a
considerable impact on the behaviour of the Calvin cycle results from this model must
be treated with caution.

Woodrow’s main interest was the determination of flux control coefficients, and the
influence of rubisco upon them; to this end used the model to determine values C7Assim.

over a range of rubisco and FBPase activities. The curve of rubisco versus C74ssim- bears

some qualitative resemblance to that shown previously (chapter 4, figure 6.11), inasmuch
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as Cfﬁﬁfé’&; was ~ 1.0 at lower values, declining sigmoidally (and more gradually than
in figure 6.11), with other enzymes gaining control in a complementary fashion. The
major difference is that at high rubisco activity, control is taken up more or less equally
by SBPase and Rub5Pk, instead of SBPase alone as seen in figure 6.11. The reason for
the difference is probably that the value for Ru5Pk activity (as a proportion of rubisco
activity) used by Woodrow was much lower than that used in earlier chapters (~ 1.1
compared with ~ 30 in chapter 4 and an average value ~ 12 in the evolved population
of chapter 5).

In addition to the effects of rubisco, Woodrow also determined C’asim. over a range
of FBPase activity values. As FBPase activity was varied between 0.75 and 1.5 times its

initial value quite a large exchange of control between FBPase and rubisco was observed.

The effects of such changes on the model of chapter 4 were negligible (results not shown).

6.2.4 The Petterssons’ model

The model described by Pettersson and Ryde-Pettersson [91] formed the basis of the
model used in this thesis and is introduced in chapter 4. The structure of the model
is very similar to that described by Woodrow (above), except that the reactions of
TPT and ATP regeneration are included, and, like Woodrow’s, depend heavily on the
assumptions that all fast reactions reach equilibrium.

The approach used to calculate steady state values was to define a system of equa-
tions consisting of equilibrium relationships, conservation relationships, kinetic equa-
tions of the slow steps, and a set of equations relating the (steady-state) velocities
across the slow steps to the assimilation flux. The resulting set of 29 equations were
solved simultaneously using “standard algorithms” (which algorithms were not stated).
A possible concern with the approach is that although it is clear that the equation set
used will hold true under steady state conditions, it is not clear from [91] that it will
only hold true under these circumstances. Although ODEs for individual metabolites
were defined, these were not used in the Petterssons’ solution of the model.

As noted in chapter 4 there were numerous qualitative and quantitative differences
between the results generated by Pettersson’s model, and the version used in this thesis.
Given that the two had ostensibly identical structure (i.e. topology, rate equations and
parameters) and differed only in implementation issues (simplifying assumptions, algo-

rithm for steady state solution etc.) it is clear that at least one of the two sets of results
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Table 6.2: Comparison of d/dt of metabolites, and p of fast reactions in the Calvin
cycle model, as calculated A: from concentrations determined by Pettersson [91] and
B: as described in chapter 4. Figures rounded to 3 s.f. but all p < 1.0 for B

d/dt (umol.h=!.(mg Chl)~1) Disequilibrium Ratio, p
Metabolite | A B Reaction | A B
RuBP 7.41x102 -3.19x10-10 || PGk 1.54 1.00
ADP -6.25%107  1.56x107!2 || G3Pdh 2.80x10~!  1.11x1073
BPGA -6.25%107 -1.98x10~12 || TPI 1.23 1.00
GAP 4.51x105 4.43x10713 || F-Aldol 1.25 1.00
DHAP -1.20x10%  9.74x10~'2 || PGI 9.97x10~1  1.00
FBP -3.40x10° 2.36x10~'? || PGM 9.95x10~1  1.00
F6P 9.85x10° -1.25x107? | F-TKL 1.40 1.00
G6P -6.54x10% -2.88x107% || E-Aldol | 9.26x10~! 1.00
PGA 6.25x107 8.49x10710 | S-TKL 1.28 9.94x10~1
E4P -3.12x10% -7.31x1071° || R5Piso 8.33x10~1  1.00
SBP 4.00x10° -2.94x10~° || X5Pepi 7.46x1071  1.00
S7P 3.12x10° 2.43x10 12
R5P -5.31x10%  4.50%x10712
Ru5P 1.01x107 1.80x10 12
X5P -8.11x10%  2.69%x10~12
G1P 8.28x10% -1.67x10~10

does not accurately reflect the true behaviour of the model. Using the approach to im-
plementation (of a specified model) taken by Pettersson, there are three distinct areas
that could give rise to error: incorrect solution of the intermediate equations, incor-
rect derivation of intermediate equations, and invalid modelling assumptions. Problems
arising from the first two of these causes could (but not definitely) be identified by the
presence of internal inconsistencies in the results generated, but the third can only be
identified by comparing results with those of other implementations of the same model.
Examination of the relevant equations in [91] reveals no obvious problem, thus elimi-
nating the second source of error. Table 6.2 furnishes results from which an attempt to
identify the other two may be made.

The results in table 6.2 were generated by first calculating (using Scampi) instan-
taneous values of disequilibrium ratios (p) of the fast reactions, and values of d/dt for
individual metabolites, from the concentrations and parameters reported in [91]. The
model (as described in 4 was then brought to steady state, with a tolerance of x10~°

and the same values recalculated.

If a set of concentrations represents true steady state values, then, by definition, d/dt
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for all metabolites must equal zero. Inspection of table 6.2 shows that in the case of the
concentrations reported in [91] this is far from the case. The reason for the very high
values for most metabolites is the large rate constant used for the reversible reactions
(see section 4.2), however, BuBP/dt cannot be reasonably said to be = zero, despite the

fact that this metabolite is neither substrate nor product of any of the fast reactions.

Given that Pettersson assumed that fast reactions were at equilibrium, it follows that
p should be equal to 1.0 for all fast reactions, regardless of any other considerations.
Examination of table 6.2 shows that this is not the case. Furthermore, for several
reactions, p > 1.0, implying that those reactions are running in the reverse direction.
Although this appears to be a major inconsistency the possibility that the calculated p
values are inaccurate, due to the relatively low precision of the concentrations reported in
[91], (which in some cases had only one significant figure) cannot be ruled out. Certainly
it has proved possible to move values from p < 1.0 to p > 1.0 and wice versa by altering
concentration values by £0.5 s.f. However it is not certain that a set of concentrations

within £0.5 s.f. of those in [91] which simultaneously bring all p to 1.0, can be found.

In contrast the results generated by the model in chapter 4 show no such problems.
The values of d/dt are consistent with the model having achieved steady state within the
requested tolerance. Although no assumption was made that substrates and products of
fast reactions would approach equilibrium, all but one do, and for all reaction p remains
less than 1.0. Although this does not prove an absence of error in the implementation
of the model in this thesis, it is clear that this model is much more consistent than
Petterssons. On the basis of these comparisons it is possible to suggest that a problem
exists with the method used by Pettersson to solve the model. This in turn could
be because solutions of the intermediate equations do not uniquely represent steady
state conditions, or that there is a programming error in the implementation of the

determination of such solutions.

It is also possible to conclude, with rather more certainty, that the assumption that
fast reactions achieve equilibrium at steady state is not justified in this model, as despite
maintaining internal consistency pgy is displaced from 1.0, as described in chapters 4

and 5.

Despite the differences, there remain nonetheless, some similarities between the two

models: the response of input and output flux to P;__, are qualitatively the same, as

lext

is the response of CJassim. to P at least at higher values. In particular Pettersson

lext?
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reports very low values of CA:=i=- for all values of P

i i » and large negative values for
J Assim.
Crpr™ (P

iee > 0.15 mM). The control exerted by SBPase is large and positive (P;_,

> 0.15 mM), and shares this control with the ATP regenerating steps.

Pettersson also reports that the model can exhibit two possible steady state solu-
tions, but reports that the slower (with regard to carbon assimilation) was dynamically
unstable, and that following a small (£1%) perturbation of RuBP the system either
returned to the fast steady state, or collapsed. Consequently Pettersson dismissed the
slow steady state as being of no relevance. It will be recalled from chapter 4 that it
appeared possible to induce switching from the fast to the slow steady state by reducing

P;... to very low levels (section 4.3.1 figure 4.2), and that the signs of Cis3™ and

lext

Ciss= change at the transition. Interestingly Petterssons results show just such a

change occurring at a value of P;__, somewhere between 0.05 and 0.15 mM, although the

fext
authors do not comment on it. Surprisingly, despite examining simulated time course
data, and the eigenvalues of the Jacobian of the system, Pettersson does not report any

oscillatory behaviour.

6.2.5 The models of Giersch

Giersch and others [44,43,108] have reported on the behaviour of two skeleton models in
many ways similar to, but with greater analytic success than, those described in section
6.1. The object was to investigate two hypotheses explaining oscillation in the Calvin
cycle .

The first of these [44] simplifies the Calvin cycle to three reactions, roughly equivalent
to RubPk and PGK both driven by ATP hydrolysis, and ATP synthesis. The model
has 5 intermediates: ATP, ADP, P;, and two lumped metabolites, roughly equivalent to
Ru5P and PGA respectively. Although P; is imported (at a constant rate) there is no
concomitant export of TP, with the result that total P; accumulates. The problem is
circumvented by re-arranging the model equations so as to allow ATP, ADP, P; and
Ru5P to reach static positive steady values, with the apparent corollary that PGA
(to which none of the reactions are sensitive) accumulates. Giersch points out that this
problem does not alter the hypothesis that oscillation is the result of the interdependence
between sugar-phosphate and adenylate turnovers. When simulated, the model did
produce damped oscillations of appropriate period and damping time, although this

was quite sensitive to values of individual parameters: changes in parameter values of
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more than 10% resulted in unrealistic behaviour. Damping time was also shown to
be sensitive to external P;, decreasing the rate of P; import resulted in oscillations of
increasing amplitude. Furthermore, parameter changes that led to decreased free P;

also resulted in increased damping times, and wvice versa.

The second model is very similar to the first, but neglects P; entirely, and includes
more detailed modelling of the reductive limb of the cycle and the light reactions (in-
cluding the oxidation and reduction of NADP/H as well interconversion of ADP/ATP).
The model has the advantage that it is capable of attaining stable steady states, al-
though, as with the previous model, there is no carbon throughput. The behaviour of
the model with a number of reasonable simple rate laws for the NADPH and ATP syn-
thesis was investigated, and it was concluded that realistic oscillatory behaviour could
only be obtained if it is assumed that the rate of photophosphorylation depends on
NADP concentrations as well as ADP, but NADP reduction is dependent only upon the

concentration of its substrate.

Taken together the two models may appear to pose more problems than they solve.
Firstly, as Giersch points out [44,43], different criteria for simplifying a complex system
can lead to skeleton models that are very similar, making it difficult, if not impossible
to decide which provides a more satisfactory description of the reality. It would appear
reasonable to suggest that this problem in turn is not the result of an inadequacy of
the modelling process, but stems from the nature of complex systems. The possibility
appears to exist that there is no single cause of phenomena such as oscillation in the

Calvin cycle instead, several “causes” may operate simultaneously.

Secondly assumptions made in the construction of such models may result in funda-
mental departures from reality. The accumulation of P; in one of the models has already
been described. In the second model Giersch is able to obtain algebraic expressions for
flux control coefficients of the (the rate constants of) various reactions, and one of these
has C? = 0 which anomalously implies that were the rate constant of this reaction to

be set to zero (i.e. the reaction is abolished) it would still carry a flux.

This is not to say that such modelling endeavours are without value. They represent
the only method (known to the author) of establishing a link between structure and
behaviour of systems. However, the simplifications necessary to obtain a solution mean
that the solution represents a substantial departure from reality, and hence conclusions

drawn must be treated with some caution.
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6.3 Comparison of model behaviour with experimen-

tal observation

6.3.1 Metabolite concentrations

Metabolite concentrations observed in the Calvin cycle model of previous chapters are
presented in Table 6.3 along with experimental observations. Most of these model results
can be regarded as satisfactorily close to observed values. The largest discrepancies
between model and experimental values are in the values of P; and the ATP:ADP ratio.
It can be seen that experimental measurement of other stromal metabolites cover quite a
large range, if the one experimental report of P; lies at the high end of a range, then the
value determined in the model may not be too unrealistic. A possible explanation for
the high ATP:ADP ratio is the relatively low value used for total conserved adenosine of
0.5mM, (Giersch [44,43] uses values of 1.7.and 2.4 mM respectively), it is possible that
the light reactions, as modelled, would be unable to maintain such a high ratio if the
total pool is greater. Furthermore, not only is the chloroplast stroma the site of a great
deal of anabolic activity, but potential shunt mechanisms operate to effectively export
ATP from the stroma [28], so it is reasonable to assume that there are other significant

sinks which act to lower the in vivo ATP:ADP ratio.

6.3.2 Response to environmental factors - 1 - Light and light-

dark transitions

The most surprising response in the Calvin cycle model was that of assimilation towards
light. Text-book [81,113] reporting of the response of photosynthetic carbon assimilation
to light shows saturating response curves, further modifiable by environment. Assuming
that the fast steady state (see chapter 4) is the more realistic, the complete insensitivity
of the assimilation rate toward light in this steady state appears grossly at variance with
experimental observation. An obvious possible explanation to the discrepancy, is that
because the light reactions are described in much less detail (section 4.2) than the rest
of the model, it is to be expected that the response to light will not be particularly
realistic. An alternative explanation may lie in the interpretation of experimental data
and its comparison with the model results. Although in the model the assimilation rate

does not vary with light, most variables do, in particular TP export does increase (in
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Table 6.3: Comparison of modelled and experimentally observed stromal Calvin cycle metabolite concentrations in chloroplast suspensions
() and whole leaf material(x). In the model and chloroplast suspension results P;

ext

(the large pool of P; in vacuole makes measurement of cytosolic P; impossible). All concentrations are in mM.

= 0.5 mM but is unreported in the whole leaf data

Modelled Observed
Metabolite | Original Evolved [91] [42]* [123]t [37]t [104]* 107" [80]
DHAP 2.68x10~T 2.2I1x10~T 2.70x10~T | 5.33x10~T 3.70x10~T - - - -
Total TP 2.80x10~" 2.31x10~' 2.80x107' | - - 1.40x10~! 1.20x10~! 1.50 0.3-0.4
PGA 1.26 4.28 5.90x10~! | 8.93 5.70 4.44 4.80x1071 847 35
Total PMP | 8.12x10™% 1.41x10~! 2.40x10~! | - 1.60x10~! 8.00x1072 - - 0.6
RuBP 4.20x1071 217 1.40x10~! | 6.10 6.40x10~"  4.60x10~' 3.60x10~' 1.50 0.2-0.6
G6P 3.74 2.79 3.12 1.13 - - 3.00x10~1  5.70 -
F6P 1.62 1.21 1.36 1.60 - - 1.80x1071 - 0.6 1.5
FBP 2.32x107%2 1.57x107% 2.40x1072 | 1.17 5.20x1071  2.90x10"! 2.50 - 0.10.3
S7P 9.58x10~* 3.53x10~' 2.20x107! | - - - - - -
SBP 2.39 7.02x1072 1.30x107! | - 2.40%x10~! 1.10x107! - - 0.2-1
ADP 2.22x107%  8.78x107% 1.10x107! | - - - 6.00x1072 - -
ATP 497x10~" 4.91x10~' 3.90x10~' | - - - 3.60x10°1 - -
Pi 8.49x10~" 5.40x10~' 8.10 - 4.46 - - - -




the fast steady state) in response to increased light as shown in figure 4.11(B). Thus
if the experimental measurements are not of CO, assimilation per se, but of the rate
of accumulation of radiolabeled cytosolic photosynthate, the model and experimental
results can be reconciled.

The presence of two steady-states, although reported very rarely in natural systems,
has, according to Laisk and Walker [77] (citing a Russian publication [76]), been de-
scribed in the response of carbon assimilation to light, in lilac leaves. The model showed
that this switching behaviour can be modified, or even abolished by varying the capacity
of the TPT to transport PGA (section 4.5) and presumably by other parameters. It
thus seems likely that the possibility for switching is inherent in the Calvin cycle, but
whether or not the possibility is realised depends upon precise environmental condi-
tions. On balance, one would expect the absence of switching to be the norm, for two
reasons. Physiologically it is a disadvantage for the organism to have two steady-states
for the same set of environmental conditions. If two states exist, then one must be less
favourable (if only marginally) than the other, and a selection pressure will exist to
eliminate the less favourable. Secondly, as described below, the switching behaviour in

the model can be abolished if the model is made more realistic.

The influence of the thioredoxin system

An important mechanism responsible for coordinating changes in Calvin cycle enzyme
activity in response to changing light is the thioredoxin system [9,28]. Thioredoxin is
a small mobile protein capable of transporting electrons (originating from ferredoxin
in the electron transport apparatus of the light reactions), and thereby reducing disul-
phide groups in enzymes (with concomitant oxidation of thioredoxin) to break disulphide
bridges, inducing a conformational change in the enzyme, and hence alteration in ac-
tivity. The Calvin cycle enzymes activated by this mechanism are FBPase, SBPase,
Ru5Pk, PGK, and probably (via a third protein, rubisco activase) rubisco.

The thioredoxin system has been implemented in the Calvin cycle model by the
introduction of a new parameter, included in the rate equations of FBPase, SBPase,
Rub5Pk, PGK, rubisco and the light reactions, as a coefficient of the respective V,,
parameters. The response of assimilation towards this parameter is almost perfectly
linear (not shown), and no evidence of switching is seen. Although this response is just

as unrealistic as the response in the absence of thioredoxin, the model representation
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of thioredoxin is obviously crude. In reality one would expect that the proportion of
reduced thioredoxin as a function of incident light is saturable, and if, as the modeling
result suggests, the response of Calvin cycle assimilation to reduced thioredoxin is linear,

then the response to light will be saturable, as observed experimentally.

Consideration of the role of thioredoxin also corrects another departure of the
model’s light response from reality: that of light-dark transitions. In section 4.4 it
was shown that the total carbon export (under light conditions) could exceed the as-
similation rate, the deficit being made up by the degradation of starch. At first sight it
appeared reasonable therefore that the presence of starch phosphorylase would allow a
carbon flux from starch to cytosol to be maintained in the absence of assimilation, and
therefore in the absence of light (reaction activity). However, when light was reduced
to zero the model rapidly collapsed, with all fluxes, and all intermediate concentrations
with the exception of hexose phosphate falling to zero, even with the inclusion of the
thioredoxin mechanism as described above. Furthermore the collapse was irreversible:

once intermediates had fallen to zero the model did not recover when light was restored.

To determine whether this collapse is due to a poor choice of parameter values, or
whether the collapse is inevitable regardless of parameter values, is extremely difficult
using a kinetic model alone. Use of the evolution strategy algorithm strategy (chapter
3) to search for appropriate parameters values would be possible, but this would not
conclusively reveal the absence of a suitable parameter set, should this be the case.
However it is problem ideally suited to the technique of elementary modes analysis
(described in chapter 1), which depends on knowledge of system topology alone. This
revealed that no route exists through the Calvin cycle from starch to TP that does
not also involve the phosphorylating reactions, and is thus dependent on light reaction
activity, and hence no set of parameter values can exist that will allow the Calvin cycle as
previously described to support a carbon flux under dark conditions. It is therefore clear
that additional reactions must be involved in vivo to allow photosynthetic organisms to

survive exposure to dark.

The irreversible nature of the collapse of the model is due to the activity of starch
phosphorylase, which under dark conditions causes all free P; to be sequestered in the
form of hexose phosphate. When light conditions are restored there is thus no P; avail-
able for the regeneration of ATP and the cycle cannot restart. The situation is not

improved in vivo if it is assumed (reasonably) that TPT is reversible. It will still not

140



be possible to “kick start” the Calvin cycle from cytosolic TP because there will be no

stromal P; available for exchange.

Inclusion of the oxidative pentose phosphate path.

The problem is overcome when it is recalled that in the dark the thioredoxin system
not only inhibits the Calvin cycle enzymes previously described, but activates glucose-6-
phosphate dehydrogenase (G6Pdh) and transaldolase, both components of the oxidative
pentose phosphate pathway (OPPP), known to be present [124] in chloroplast stroma.
This branched, acyclic pathway is considered to have G6P as its initial substrate, PGA
as its final product [114,85], and has two limbs: the first three enzymes catalyse the
overall reaction

G6P — R5P + CO, (6.3)

and are termed the oxidative limb, whilst the remainder, which are the regenerative
Calvin cycle enzymes TKL, X5Pepi, X5Piso plus transaldolase, are the reversible limb.
It was conjectured that the inclusion of the oxidative limb of the OPPP in the
Calvin cycle model might be sufficient to maintain the concentrations of intermediates
under dark conditions, thus making light-dark transitions recoverable. When the overall
reaction for the oxidative limb? was included in the model it was found that not only
could the model recover from periods of darkness but a small (~ 10~* of light value)
TPT flux was maintained. While it is unlikely that such a flux could make a useful
contribution to cytosolic metabolism, it is sufficient to maintain an adequate concentra-
tion of stromal P; to restart ATP synthesis when light is restored. If the transaldolase
reaction is also added, then not only can the model recover from the dark, but it is able
to sustain a TPT flux of the same order of magnitude as that in the light, with a calcu-
lated rate of starch degradation of 10 umol.h~!.(mg Chl)~! resulting in TP export of 5
pmol.h~1.(mg Chl)~!. The starch degradation figure compares with an experimentally
measured value of 12 ymol.h~!.(mg Chl)~!reported by Stitt and Heldt [128].
Elementary modes analysis of this new system revealed a quite complex cycle, with
starch as the initial carbon source, and G6P being regenerated such that for each turn
of the cycle one molecule of G6P enters the oxidative limb from starch and two enter

from the regenerative limb (see figure 6.5), half a molecule of G6P is lost as CO2, and

2stoichiometry as equation 6.3, Michaelis-Menten kinetics, inactivated by light, V., = 40
pmol.h~!.(mg Chl)~!(= StPase V,,), Km= 1 mM

141



Starch COq

2.5

R5P

G6P
2 g 0.5 925
B )
1.5 TP 2

0.5
TPewt

Figure 6.5: Simplified net stoichiometry of carbon flow around OPPP/Calvin cycle
under dark conditions, as determined by elementary modes analysis. Figures indicate
relative carbon flux under steady state conditions. P; omitted for clarity.

half exported as TP.
Although this cyclic behaviour in the dark is attractive, there is an additional prob-
lem to be solved before it can be proposed as a hypothesis. The oxidative limb of the

OPPP reduces NADP to NADPH, so equation 6.3 is more completely represented as:
2NADP + G6P — 2NADPH + R5P + CO» (6.4)

resulting in the net reduction of two molecules of NADP for ever one of TP exported to
the cytosol.

Although in the model the reduction of NADP by the oxidative limb of the OPPP
is not a problem, because NADP(H) is fixed as a parameter, if the cycle as described
by Figure 6.5 is feasible in vivo then a substantial oxidative consumer of NADPH must
exist; there are several possible candidates.

Firstly it seems reasonable to suppose that such sinks do exist. Whether or not
the cycle operates as outlined above, the oxidation of G6P to R5P does take place and
many anabolic processes depend on the redox potential thus afforded, including nitrogen
assimilation, nucleotide and isoprenoid synthesis. The latter is an attractive possibility
as this includes synthesis of light harvesting pigments, known to be damaged by light.

A second possibility is that the reducing potential is exported to the cytosol via one

or more shuttle mechanisms. Both the oxaloacetate-aspartate (OA) and oxaloacetate-
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malate (OM) shuttles are reasonable contenders. Anderson [9] reports that aspartate
transaminase is inactivated in the light by the thioredoxin system, thus the OA shuttle
may be more promising than OM, as malate dehydrogenase (Mal-dh) is reported to
be inactivated in the dark. However, a recent estimate of the (maximal) capacity of
the OM as 260 ymol.h~!.(mg Chl)~! [40], compares with the maximal rate of NADPH
production by the mechanism proposed here of 240 ymol.h~!.(mg Chl)~! (assuming
V. for StPase and OPPP of 40 pmol.h—!.(mg Chl)~!). Furthermore, Anderson also
reports that the it is possible for the enzyme to be activated in the dark, at least under

anaerobic conditions in maize.

There would appear to be a more radical alternative as it is possible for thioredoxin
to be reduced by NADPH [126]. If this is the case then many events will occur. Firstly
(in order of relevance, not time), the oxidative limb of the OPPP will become inhibited,
forming a simple negative feed-back, reducing the rate of production of NADPH. Sec-
ondly, G3Pdh would become active, permitting the operation of the GAP-PGA shuttle
to carry redox potential out of the stroma. Thirdly if the other thioredoxin activated
Calvin cycle enzymes become active, then a certain amount of CO- fixation in the dark
will take place. Given that thioredoxin may be reduced by NADPH, it also seems rea-
sonable to propose that the role of the thioredoxin system is not co-ordinating response
to light per se, but is part of a mechanism maintaining redox poise, which is, of course,

greatly affected by light.

The effects of the thioredoxin system upon target enzyme activity do not appear to
be absolute, but modulate enzyme activity over a range from a minimum of perhaps
20% of maximal activity [28]. If this is the case, then the scheme for dark metabolism
proposed here, and the standard model of the Calvin cycle represent two extremes
of a continuum, with cyclic OPPP representing metabolism operating under oxidising
conditions (when NADPH:NADP ratio will be low), and Calvin cycle under reducing

conditions, with both overlapping under non extreme conditions.

It follows from the foregoing discussion that it is to be expected that abnormal
redox poise in the cell will lead to abnormal light assimilation responses. When Elrifi
et al [29] exposed nitrogen starved Chlorella to NHJ , the resulting assimilation-light
response data much more closely resemble the discontinuous curves shown in chapter 4

than the smooth curve imposed by the authors.
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6.3.3 Response to environmental factors - 2 - P

iext

There is general consensus [27, 59, 38] that the major, if not the sole route for the
export of Calvin cycle and chloroplastic starch metabolism intermediates is via the TPT.
The TPT can therefore be considered to be the interface connecting the Calvin cycle
to general cytosolic metabolism, thus coupling cytosolic carbon demand with stromal
carbon supply, and a considerable body of evidence exists to suggest that this step plays
a major rdle in controlling the behaviour of the Calvin cycle in response to changes in

concentration of external P; and TP.

There is also agreement that the export of neutral sugars, arising from the activity
of amylase upon chloroplastic starch, is also a significant route by which carbon is
exported to the cytosol [12,128,133], particularly at night. However, as long as the
“concentration” of starch can be regarded as fixed, the two routes are independent from
one another. Thus, although the second route is likely to be of physiological importance
in the context of overall cellular metabolism, it need not be considered in the following

discussion.

The TPT exports TP in strict counter-exchange for P; [38] and thus effectively

catalyses the reversible reaction:

TPT
TPstroma + Pi ~ Pi stroma T TPext (6'5)

ext

Thus in vivo carbon demand is signalled by increased P;_,, and/or decreased TPey;. In

lext

addition to varying P;_, and TPy the experimentalist working with isolated chloro-

lext

plasts can also vary TPT activity by the use of specific inhibitors. The further possibility

exists of using GM techniques to alter levels of expression of TPT; this is discussed later.

Fliigge et al [37], Heldt et al [59] and Portis [93] have all investigated the effects
of external P; , TP, and TPT inhibitors upon photosynthesis in isolated chloroplasts.
Qualitatively these results are in good agreement with each other, with the Petterssons’
model results [91,92], and with the results described in chapter 4. All these results may

be summarised as follows :

Except at very low concentrations of P (<~ 0.2 mM) the rate of carbon as-

iext’
similation is either unaffected, or decreases in response to increased external demand.
Rather, the Calvin cycle responds by altering the partitioning of carbon flux between

starch synthesis and TP export. If levels of demand are very high, and in the absence of
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lext

(the ability to degrade) starch, the cycle is prone to collapse. At low levels of P;_,, the

lext?

response to increasing P;_, is an increase in assimilation, with concomitant increases

both in starch synthesis and TP export.

Although the equation describing the activity of TPT in the model of chapter 4
does not include terms for external metabolites other than P;, a parameter, 0pga, was
introduced that modulated the sensitivity of TPT toward PGA, thus mimicking, albeit
crudely, the effect of external PGA (low values of fpgabeing equivalent to high values
of external PGA). Portis [93] investigated the effect of external PGA on the response of

photosynthesis to P;__, in isolated chloroplasts. The effect of high external concentrations

lext

of PGA in the model is to to cause the assimilation flux to become less sensitive to P;j__,
This effect can be reproduced in the model of chapter 4, as shown in figure 6.6.
However, it should be pointed out that the effect reported by Portis was considerably

more pronounced.

Isolated chloroplast suspensions are more similar to the model of chapter 4 than any
other experimentally available system. Comparison of model data with the experimental

data suggests that the model is sufficient to account for observed responses to changes
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in concentrations of external metabolites.

6.3.4 Determination of flux control coefficients by GM

Although interpretation of flux control coefficients determined by GM techniques should
be undertaken with a degree of caution (chapter 1), several of the the slow enzymes of
the Calvin cycle have been investigated in this fashion, and the results are now briefly

described.

Rubisco

Stitt and co-workers [35,104,129] investigated the properties of tobacco plants trans-
formed with the antisense gene for the rubisco small sub unit (rbeS). The resulting
transformants exhibited a rubisco activities ranging from ~ 20%-100% of wild type
activity.

Under ambient growth conditions very little impact on photosynthetic flux was ob-

served until rubisco activity fell to ~ 40% wild type (wt). Using the plot of rubisco

JAssim.

activity versus assimilation flux Stitt et al calculated an approximate value for C; s>

of 0.1. This compares with the value of 2x 1073 in the model of chapter 4, and the range
0.4-0.8 in the evolved population of chapter 5.

At levels of expression much below 40% wt assimilation flux became linearly de-
pendent on rubisco activity, consistent with a value of Cg:gfis‘;‘(; ~ 1. However at these
lower levels of rubisco activity, a number of other effects were observed, including a re-
ductions of: stromal FBPase activity, chlorophyll content, ATP synthase activity, and a
disproportionate decrease in total leaf protein. Thus, although it is reasonable to argue
that at high levels of expression rbcS antisense mRNA exhibits a high level of control
over the photosynthetic activity, it is not possible to be certain that these effects are
mediated solely by the changes in rubisco activity.

Photosynthetic assimilation was also recorded in these plants under a range of non-
ambient conditions, including high light levels, and saturating CO,. The latter is par-
ticular relevant here, as the levels of CO, were high enough to abolish photorespiration.
As photorespiration is not included in the model of previous chapters, the structure of
the model more closely resembles these plants than those under ambient CO» concen-
trations.

By varying these environmental parameters Stitt et al [129] were able to demonstrate
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that CJlAsim. can vary considerably. At high light levels, and ambient COy CJAsim. wag

rubisco rubisco
estimated as ~ 0.7, increasing to ~ 1.0 at ~ 20% wt. At high CO, and ambient light

CJAssim.

rcsim. remains low (< 0.2), again until rubisco has declined to ~ 30% wt at which

point Ci‘l‘g;;‘é‘(‘) increases abruptly to a value close to unity. Unfortunately the behaviour

of the plants at high light and high CO3, to which the model would be a still better

representation, were not reported.

Ru5P kinase

Gray et ol [48] used antisense technology to generate tobacco plants with Ru5Pk ac-
tivities ranging from between 5-100% of wt. No reduction in CO assimilation rates
occurred until Ru5Pk activity was reduced to ~ 15% of wt, at which point chlorophyll
concentrations also dropped. The authors also recorded concentrations of ATP, ADP,
R5P, Ru5P, RuBP, and PGA. Changes in these concentrations were negligible for Ru5Pk
activity > 50% wt.

In previous chapters CJRuSPk has been calculated under a range of model conditions,
and has always been small if not negligible. The largest absolute value for CJRu5Pk was
-0.2, over the starch synthesis flux, but other determinations have been much smaller.

On the basis of experimental and modelling evidence it seems reasonable to conclude
that, at least under ambient conditions, the modulation of RubPk activity has little role

in the control of photosynthetic metabolism.

The triose phosphate translocator

Riesmeier et al [107] report the behaviour of potato plants in which TPT activity was
reduced to between 70 and 100% wt, again by antisense transformation. Plants showed
marked growth retardation at four weeks, but there was little difference in the gross
phenotypes of mature plants. In particular there was no reduction in tuber yield.

The effect of the transformation upon photosynthetic metabolism was examined in
extracted chloroplasts. In contrast to the model studies in earlier chapters, reduction
of TPT activity resulted in a decrease in the maximum assimilation rate, suggesting an
approximate value for CJT‘}ffrim”"” of >~ 0.5, although the wide confidence limits on the
data in [107) mean that ClA==mes could be much greater, and that these particular

data should be interpreted with some caution. None the less, this result contrasts quite

strongly with the very low values for CJTA;;?“' determined in the model.
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At ambient conditions Riesmeier’s experimental observations become more consis-
tent with the model. Decreased TPT expression resulted in a small (statistically insignif-
icant) increase in COy assimilation, and a large decrease in the rate of starch synthesis,

from which a value for Ci552™" of ~ -2.0 can be calculated. This compares with values

between C%Sf,;}y“”‘ < —1.0 for positive starch flux in the non evolved model, and a range
of -0.6 —-1.2 in the evolved population. Riesmeier et al did not report TP export flux,
however if C%‘}“Ti"‘- is zero, and CJTSF‘,;}Y““‘ is negative, then it follows from the summation
theorem (see chapter 1) that CJTET must have been positive and of the same absolute
value, also consistent with the model results.

It is interesting to note that although the reduced TPT transformants produced
considerably more starch during the day in comparison to their wild type counterparts,
they were also able to degrade much more rapidly at night. This, coupled with the fact
that tuber size was unaffected, is strong evidence that at least one more mechanism, in
addition to that proposed in section 6.3.2 must be operative.

Gray et al [48] used both sense and antisense transformation on tobacco plants to
obtain plants with TPT activity ranging between 20 and 300% wt. Quantitatively the
results were much less dramatic than those of Riesmeier. Qualitatively their results
are consistent with Riesmeier et al and the model in this thesis: Ci4si™ is negligible,

o Jst.oyn .
Crier positive and Cifis™" negative.

Sedoheptulose-1,7-bisphosphatase

One of the more unexpected results from the initial modelling work described in chapter
4 was the very high control of assimilation flux exerted by SBPase. Other than acknowl-
edging it as a component of the Calvin cycle , it is an enzyme rarely mentioned in the
research literature, and so the domination of assimilation by such an obscure enzyme
would appear, at least potentially, to be anomalous.

Recent work by Raines et al ( [55] and personal communication) provides strong
evidence that SBPase does indeed have a high flux control coefficient over COy assim-
ilation. The SBPase gene was antisensed, and introduced into Nicotiana to produce
plants with levels of SBPase activity ranging from as low as 7%, to 100% of wild type.
In common with the antisense work described above, plants with very low levels (in
this case <~ 40% wt) of activity had rather severe phenotypes, typified by low lev-

els of chlorophyll and stunted growth. Much more unusual is the fact that there were
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detectable reductions in COs assimilation in plants with a only a modest reduction in

SBPase activity.

If, as the model predicts, ngsf,g‘s‘é really is equal to one, then the plot of assimi-
lation: SBPase will yield a curve of the form y = m.z + ¢,m = 3 (from stoichiometric
considerations Jagsim. = 3-JsBpase), ¢ = 0. In fact estimates of m and ¢ resulting from
fitting a straight line to Raines’ data (figure 6.7) appear to differ on both counts, yield-
ing m = 2.88 £ 1.55 ( 95% confidence limits), ¢ = 20.2 = 12.7. Although the difference
in slopes between the model and experimental data is not significant the value of c¢ is

clearly significantly greater than zero (p < 0.05).

Metabolic control analysis orthodoxy (e.g. [32]) predicts that, in general, the re-
sponse curve of flux to enzyme activity will approximate a rectangular hyperbola. Fit-
ting such a function to the data in figure 6.7 results in a sum of squared residuals five
times greater than the linear case. Adding an offset to the hyperbolic function (i.e.
f(z) = ¢+ m.z/(k + z)) made no improvement to the situation (results not shown). It
therefore seems reasonable to accept that, in this case, the linear function provides the

better description of the experimental data.

Determination of the slope of In(Jassim.)v In(SBPase) yields Cgism. = 0.55 + 0.23.
This compares with the value 1.0 obtained from the initial model and the range of

—8x1073 — —0.28 with the evolved parameter set.

The significant offset seen in figure 6.7 is surprising because it implies that, were
the organism otherwise viable, an assimilation flux could be sustained with no SBPase
activity. The conventional topology of the Calvin cycle as illustrated in chapter 4 (figure
4.1) is such that no assimilation flux can be sustained in the absence of SBPase, and
hence Raines’ experimental evidence suggests that at least one other reaction is present

that acts to “bypass” SBPase.

A good candidate for this extra reaction would appear to be transaldolase as it can
utilise E4P as a substrate and produces S7P, which otherwise depend upon SBPase for
their consumption and production respectively. Subsequent elementary modes analysis
revealed that an assimilation route through the Calvin cycle does indeed exist in the
absence of SBPase, if transaldolase is present. Furthermore, although transaldolase,
under the influence of the thioredoxin mechanism, is down-regulated in the light [9], its

activity is only reduced to ~ 50% of dark activity [8].

Transaldolase was therefore incorporated into the Calvin cycle model with the as-
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sumed rate equation:
Vmax-(E4P.F6P — S7TP.GAP)

K + (E4P.F6P — STP.GAP)

(6.6)

Although equation 6.6 is undeniably crude, qualitatively it describes the behaviour of
a two substrate, two product, catalysed reaction: at equilibrium (in this case assumed
to be 1.0) there is no net conversion, the reaction saturates at Vmayx, and Kyindicates
the concentrations of metabolites required to bring about 50% saturation. A more rig-
orous approach to the derivation of a rate equation for this reaction, as demonstrated
by Cornish-Bowden [22, 23], leaves the user with a choice either, one of two equiva-
lent equations one of which has nine parameters and eighteen terms, and the other
twelve parameters and thirteen terms, or, an eqution of eight parameters and ten terms,
depending on the assumed mechanism. As niether the mechanism nor the relavent pa-
rameters were known, and the object of the study was to investigate the qualative (or
at best semi-quantitative) effect of including the enzyme, it is not thought that use of
equation 6.6 will have a particularly detrimental effect on the relavent results.

In addition to the extra burden of complexity, the parameters required are the
rate constants for individual substrate and product binding and dissociation, which in
themselves do not have the direct physiological interpretation of K,in equation 6.6.

Figure 6.9 shows the effect of the presence of transaldolase (as described by equation
6.6 (Vmax= 7.5 pmol.h—!.(mg Chl)~!, K;;= 0.6 mM) on the original model, and the
relationship to experimental data. No existing parameters in the model were altered.
The version of the model with transaldolase provides a reasonable fit to the experimental
data, and is clearly superior to the model without it. In the former case Clagim: = 0.52
(comparing with the experimentally determined value of 0.55).

There is a further point of comparison, although less precisely defined, between the
model and work of Raines et al that transaldolase plays a role in CO- assimilation.
The authors report that total starch at the end of the light period, and hence the flux
thereto, underwent a detectable decrease at 71% wt activity, and declined monotonically
with reducing SBPase. However, although sucrose concentration also decreased slightly
between 71 and 100% wt activity, the relationship between the two was much less clear:
at 23% wt SBPase activity sucrose concentration was actually higher than wt, while
starch had declined to ~ 50% wt. It was not until SBPase activity was at 15% wt that

there was an unequivocal reduction in sucrose concentration.

If the assumption is made that most of the TP exported from the chloroplast is used
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in sucrose synthesis, then sucrose concentration is, albeit indirectly, a measure of TPT
flux. If this is the case then the responses of starch and sucrose to SBPase activity would
appear to be another manifestation of that already observed and commented on several
times in this thesis: that the Calvin cycle acts to preserve TPT flux, and thus fulfil the
immediate demand of the plant, at the expense of starch synthesis. Figure 6.10 shows
that, when SBPase activity is reduced in the model, starch synthesis flux falls more or
less in parallel with the assimilation flux, leaving the TPT flux relatively unchanged.
However this response is only obtained with the transaldolase step present in the model;

in its absence TPT and starch fluxes decline equally (data not shown).

6.3.5 Relationship between rubisco and SBPase activity

It is possible to extend the explanation for the metabolic control analysis results obtained
from the work of Raines et al which, is attractive because it also explains the results
of Stitt et al and those of both the initial and evolved model. Furthermore this can
be developed (in the next chapter) to provide the possible basis of an explanation that
accounts not only for the control analysis behaviour, but also the dynamic and switching
behaviour described previously.

Figure 6.11 shows the response of Cg{;ﬁf;@(—) and Cisr in the (non-evolved)
model, with transaldolase as described above, as rubisco activity is varied. There is
a clear exchange of control between the two at a value of rubisco activity of about 120
pmol.h~!.(mg Chl)~! three times the SBPase activity. The transition is sharp, and
hence small changes in either enzyme in the region of the transition can lead to large
changes in CJAsim., An equivalent pair of curves can be generated by varying SBPase
activity (not shown), the curves are substantially the same in the absence of transal-
dolase, the only difference being that the maximum value of C2&wm, is 1.0, rather than
~ 0.9 seen in figure 6.11.

Mark Stitt’s results are consistent with wild type rubisco activity being slightly above
this point under ambient conditions, but potentially able to gain control under altered
environmental conditions. It is interesting to note that rubisco increased control under
high light conditions, when it might be predicted that SBPase is more highly activated
as a result of the thioredoxin system. As noted previously, Stitt [129] reports an abrupt
transition in the curve of C2A=i= v rubisco activity, and furthermore shows that the

rubisco

level at which this occurs coincides with the point at which the potential capacity to
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consume RuBP diverges from the rate at which RuBP is actually consumed, consistent

with a transfer of control from rubisco to the regenerative limb of the cycle.

Raines’ results are also consistent with rubisco activity lying slightly above the
transition point. Here SBPase is close to the limiting value of its control coefficient,
and therefore flux declines linearly with decreasing SBPase. Both Raines and Stitt used
N. tabacum as their experimental subject, and so consistency between the two is to be

expected.

In the original, unevolved model, rubisco activity was well above the transition (340
pmol.h~!.(mg Chl)~!) hence its negligible value of C74s= and the dominant value for

SBPase (in the absence of transaldolase).

In the evolved model rubisco declined and SBPase increased in activity to median
values of 158 and 57.1 umol.h—!.(mg Chl) !respectively, giving a rubisco:SBPase activ-

ity of 2.8:1, below the transition point, leaving rubisco with most of the control.
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6.4 Summary

The main points established in this chapter are:

1. The general behaviour of the detailed Calvin cycle model of previous chapters
arises from the gross structure (topology + qualitative kinetics) of the system, and
not from some fortuitous but unidentifiable combination of factors in a complex

model.

2. Although the behaviour of the model differs from that of those previously pub-
lished, such differences are mainly attributed to differences between the structures

of those models and that described here.

3. Consideration of the behaviour of the model under conditions of darkness, in
conjunction with the experimental evidence concerning the thioredoxin system,
suggests that the Calvin cycle and OPPP can be considered to be complementary

components of a single system.

4. Not only are the model results consistent with experimental observation, but the

model can be usefully employed in the analysis of such results.

The more general implications and explanations of these points will be considered

in the next chapter.
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Chapter 7

Conclusions

7.1 Relevance and implications of the Calvin cycle
model

Chapters 4-6 demonstrate that one of the original goals of this project has been achieved:
it is possible to construct computer models of biochemical systems, of (or at least ap-
proaching) realistic complexity, and, by treating such models as experimental entities,
gain new insight as to the possible in vivo behaviour of the system under investigation.

In terms of both money and effort, the modelling approach used in this project has
been shown to yield high returns. The total effort required to generate the experimental
data to which the model was compared in chapter 6 is not known, but must have
required, at least, decades of researcher-years and millions of pounds. In contrast, this
project has involved no capital outlay, beyond the purchase of one computer, and has
taken one worker less than four years. Furthermore, although investigating the Calvin
cycle model was probably the single most time consuming component of the project,
this certainly amounted to less than half of the total time, the balance being taken up
with software development, devising strategies for extracting and analysing data from a
large model, and other such activities. This ancillary work should be readily applicable
to other large models, and it is thought that the time required to undertake a similar
study would be less than a year.

The success, such as has been achieved, is attributed to two main factors:
e The model was constructed with a bare minimum of simplifying assumptions, and
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is therefore a more realistic representation of the system than previously published

work.

e The possibility created by Scampi of placing the model in the context of a pro-
gramming language, allowed the model to be the subject of algorithms, which then
allows the user to rapidly and conveniently investigate a model, with unconstrained

flexibility?.

7.1.1 Comparison of model behaviour with experimental evi-

dence

The model, as described in chapter 6 has been compared with a wide range of experimen-
tal data and found to be in good qualitative agreement with such data, and for most of
the variables examined, quantitative results lie within the range of experimental obser-
vation. The model appears to be able to simultaneously account for observed dynamic
(oscillatory) behaviour, response to external (or cytosolic) phosphate concentration, and
responses to changes in enzyme levels, as investigated by traditional physiological tech-
niques, and genetic manipulation.

The comparison of model with experimental data is not complete, and in particular
the work of [67] and [103] , (who have antisensed FBPase and G3Pdh respectively), has
not been addressed. However this lack is the due to time constraints: no effort has been
made to simply select those experimental studies reporting results similar to those of
the model, whilst ignoring those that are not.

Furthermore, no effort was made to “tune” the model to bring it into line with ex-
perimental observation. It would therefore appear that the Petterssons’ original choice
of parameter values, despite originating from disparate biological sources, was reason-
able. It was also striking that when the model was subject to the ES algorithm (itself a
simulation of a natural process to which all biological systems are subject) to make the
biologically useful improvement of increasing assimilation flux:protein ratio, that the
dynamic behaviour, which played no part in the optimisation, became quantitatively
more realistic.

The most unexpected aspect of the modelling results was, without doubt, the ability

of the model to switch between two steady states. This was first seen as a response

!Other than the numerical tolerance limits imposed by the hardware
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to changing light levels, but can also be induced by reducing P;_, to very low (and

fext
probably unphysiological) concentrations, and by increasing SBPase activity. Although
such discontinuous responses might be regarded with some skepticism by biochemists
and physiologists long accustomed to seeing responses as smoothly saturating curves,
similar behaviour has been observed in other models , in cell free extracts [121], and in
suspension cultures [131]. These studies all related to glycolysis, and this behaviour has
not been previously seen in a Calvin cycle model, although Laisk et al cite a Russian
language paper [90] which claims that the response of assimilation to light in lilac leaves
more closely resembled a discontinuous line than a rectangular hyperbola.

On the basis of these comparisons it is possible to suggest that a number of char-

acteristics, which, when taken together, serve to describe the general behaviour of the

stromal components of the photosynthetic apparatus.

e The system is opportunistic. Carbon is assimilated at the maximum possible rate,
and that which is not required for immediate use in cytosolic metabolism is stored

as starch.

e The fact that the input flux branches into two main output fluxes (TPT and
starch), has a major influence on the nature of control within the system, as
knowledge of C? over one external flux gives no information as to C’ over the

other two.

e Control over assimilation flux lies almost exclusively with rubisco and SBPase,
the proportion each has is variable, and is likely to range between 0 and 100%.
Control of export flux lies predominantly with the TPT, although other enzymes
of the regenerative limb of the cycle may also exert some control. Most of the
control of starch synthesis flux lies not with the traditional rate limiting step of

starch synthase, but with the rest of the system.

e It is clearly possible that the source of experimentally observed photosynthetic
oscillations does lie within the Calvin cycle The investigations of skeleton models
in the previous chapter suggests that this is a general property of potentially
autocatalytic cyclic systems, and not due to the special properties of any one

enzyme.

e The Calvin cycle has the potential to exist in two steady states, and to switch be-

tween them, although, on balance it appears that such behaviour is the exception,
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and not the rule. Some experimental evidence exists that supports this, but to
this author’s knowledge, no work has been conducted with the specific intent of

inducing and observing such behaviour.

e The Calvin cycle and the OPPP are intimately related, and both can be regarded
as components of the same overall system. They are not, as seems to be commonly
thought, two independent pathways that, by coincidence, share the same sub-

cellular compartment.

e A major role of the thioredoxin system is to balance the activities of the Calvin
cycle and OPPP. Furthermore it is possible that the real signal to which the thiore-
doxin system responds may be chloroplast redox status, and not light, although

light is obviously likely to be the major factor influencing this.

7.1.2 An explanation of observed behaviour

In the light of the foregoing observations it is possible to propose an explanation relating
these to structure of the Calvin cycle The explanation depends upon two uncontentious
facts: the system is cyclic, and the regenerative limb contains components that are
saturable.

Autocatalytic cyclic systems (biochemical or otherwise) exhibit positive feed-back,
and if rate equations are linear, individual variables increase exponentially with time.
The true rate equations for real world systems always contain some non-linearity, that,

however small, will eventually serve to constrain exponential growth [132].

Calvin cycle behaviour is limited by one of two possible constraints

Examination of skeleton models C;__3 in figure 6.1 reveals that even if individual rate
equations are linear, that the behaviour of the whole model is constrained (i.e. concen-
trations and fluxes cannot grow to infinity) because total P; is constrained. It will be
recalled that in model Cy (which does not have this constraint) few steady states were
found, and that the majority of these were unstable (Chapter 6, Table 6.1).

In addition to P; limitation, a second constraint exists if the rate equations are
saturable. If P; is in plentiful supply then one can expect flux in the system to increase

exponentially until one step saturates, and this will represent a new set of limiting?

2The meaning of the phrases “limiting” or “limiting reaction” etc. in this discussion are
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conditions.
Much of the previously described behaviour of the Calvin cycle model can be ex-
plained if it is considered that the switching behaviour represents the system moving

between these two limiting states.

Behaviour in the fast steady state

If either rubisco or the regenerative limb of the cycle are saturated, then assimilation
flux cannot vary. Clearly, changing a parameter (other than those affecting Vyax of the
saturated enzyme) cannot increase the assimilation flux, and because the tendency of
the system in this state is to exponential increase, limited only by the saturated step,
changes that would otherwise reduce assimilation flux can only do so temporarily, as
the system will rapidly return to its limited state.

This saturated state is the fast steady state described in chapter 4, in which assim-
ilation flux was affected only negligibly by parameters other than V., of SBPase (see
for example figures 4.6 and 4.10), and is effectively clamped at a rate three times greater
than this value. Using the original parameter set it is SBPase that is saturated (SBP
concentration is 2 orders of magnitude above the K, value of SBPase). The stoichiom-
etry of the regenerative limb is such that the steady state assimilation flux is exactly
three times the flux carried by SBPase. It follows that if rubisco Vmax falls to less three
times that of SBPase then SBPase cannot be saturated, and it is rubisco that becomes
the limiting reaction. This was demonstrated in the previous chapter (see Figure 6.11).
In the evolved parameter set it is rubisco that becomes saturated and thus gains control;
Table 6.3 in the previous chapter reveals that in the model with the evolved parameter
set, SBP was less than the K, of SBPase, but RuBP is ~ 2 orders of magnitude greater
than the K, of rubisco. Examination of experimentally reported metabolite concentra-
tions in the same table suggests that it is more likely that it is rubisco that is saturated
toward RuBP, than SBPase toward SBP, although it may be expected that this might
change with environmental conditions.

Now, the kinetics of the TPT respond positively to P;__,, but if the assimilation flux

lext?

is clamped to a constant rate, then increased flux through the TPT is only possible at

subtly different to traditional definitions of “rate limiting steps”. Here “limiting” denotes the
component of the system that prevents unconstrained behaviour. Quantitative changes to
parameters of such reactions may be expected to have a disproportionate effect on the system,
and in some respect their behaviour may be similar to traditional “rate limiting steps”.
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the expense of starch flux. If starch phosphorylase is present, then this not only allows
a smooth transition from net starch synthesis to degradation at high TP demand, but
also appears to enhance the clamping of assimilation flux, even when there is net starch
synthesis. This is then the reason for the shape of the flux response curves to P;_, in

chapter 4 (figure 4.6), and for the fact that TPT and Starch synthase have negative C’

over each other’s fluxes (assuming flux to starch is positive).

The slow steady state

In order to sustain the cycle in the fast steady state, an adequate supply of free phosphate
is required. In skeleton models c¢y_o P; is assumed to react directly with Calvin cycle
intermediates; in model c3 and in the complete version it is carried by ATP, in turn
regenerated by the light reactions. Comparison of the results from models c2 and and
cg suggest that the additional substrate cycle introduced by the inclusion of ATP/ADP
does not have any great effect on the overall behaviour. However, in the case of the
complete model it means that limitation of P; assimilation can occur for two (albeit
rather closely related) reasons: either the activity of the light reactions is reduced, or

P; concentration becomes low.

Regardless of its source, if the maximum rate at which P; can be assimilated is not
sufficient to drive some part of the cycle to saturation, then different behaviour will
apply. The kinetics of the TPT still ensure that TPT flux responds positively to P;_,,
but this can now be accommodated by increasing assimilation flux. Increasing internal

P; results in increased flux in the reductive and regenerative limbs (unless the light

reactions are saturated with respect to P; ) and thus assimilation flux does increase.
Furthermore, starch synthase is able to compete for the extra carbon, now drawn

into the cycle, from the increased assimilation, and hence in the slow steady state the

response of starch synthesis flux to P;_, is positive. As the effect of increasing TPT

lext

activity is also to bring more P; into the cycle Cistareh, CeT, Clsie® are all positive.

Breakdown in the absence of starch phosphorylase

The foregoing discussion has assumed that starch phosphorylase is present. In the
absence of this reaction the discussion remains valid, but an extra factor must be taken

into account. As well as P; in order to maintain a flux the cycle must maintain a supply
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of carbon in the form of PGA® , and in contrast to P;, total carbon is not fixed. Thus
the possibility exists for all carbon to be lost* , resulting in a possible third steady
state in which all fluxes are equal to zero. As seen in chapter 4 this state is entered

in the absence of starch phosphorylase and high values of P;__,, and has been described

lext?

experimentally in isolated chloroplasts [37,93]. This dead state is approached relatively

smoothly (Figures 4.2 and 4.3) and thus at higher values of P;__,, the responses of both

lext?

assimilation and TPT flux toward P;_, become negative.

lext

In the presence of starch phosphorylase this dead state is no longer possible because
F6P can now be fed into the cycle. As described in chapter 6 (section 6.3.2) there
is no route between F6P and exported TP other than via the assimilation reaction.
However, TP is a co-substrate with F6P for three mass-action driven reactions (the
E4P aldolase and both the transketolase reactions), and, regardless of demand for TP,
F6P appears to be able to reach sufficient concentration to force these in the forward
direction, eliminating the possibility of the dead steady-state. As the dead state does
not exist, the system cannot approach it, and hence in the fast state response to P;_,

is asymptotic and C’4sm values remain constant.

Relevance to dynamic behaviour

This hypothesis of two limiting conditions can also explain some of the dynamic be-
haviour in the model. In general damped oscillation in a system represents the sym-
metrical variation around an asymptotically approached steady state. However, in the
fast steady state at least one reaction is carrying a flux at, or at least very close to, the
absolute maximum, and thus if oscillation is to be symmetric, it must necessarily be of
low amplitude. As it is proposed that the fast steady state is approached exponentially,
any oscillations in this state will be extremely heavily damped, as seen in Chapter 4
(Figures 4.13 and 4.14).

In the slow steady state such constraints are removed, and hence both amplitude
and damping time are greater. At present it is not possible to offer an explanation as to
why increased light or P; should increase the damping time, although from the previous

discussion it is to be expected that both should have the same qualitative effect. It is

3As cycles have no beginning or end, the following argument holds equally well for any of
the other sugar phosphate intermediates

“In fact some, mainly hexose phosphate remains. As long as the co substrates of remaining
intermediates are zero the cycle cannot proceed
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possible to speculate that as light, and/or Pj increase that the system is more strongly

attracted to the fast steady state, and thus takes longer in returning to the slow.

7.1.3 Physiological implications

The traditional view of metabolic systems has been that their control and regulation
could be understood by consideration of the kinetics of a single key step. The Calvin
cycle and related reactions described in this thesis was no exception, with rubisco com-
monly being identified as the rate limiting step for photosynthetic carbon assimilation
(e.g. [82,139]).

In a substantial review article (~ 50 pages), Woodrow and Berry [139] devote little
more than one page to the section entitled “Other enzymes”, while the remainder con-
centrates on a detailed discussion of rubisco kinetics. Despite adopting some Metabolic
Control Analysis terminology, the authors view of control of the Calvin cycle is domi-
nated by rubisco, and state “All of the enzymes of Calvin cycle .. .have the potential to
affect rubisco activity and therefore the rate of CO, fixation”.

Similarly, in discussing plant starch metabolism, Beck and Ziegler [12] assert that
“regulation of starch synthesis is centered almost exclusively on ADPG-pyrophosphorylase”.
Later in the same review the authors discuss likely “rate limiting” reactions in the degra-
dation of starch, without noticing the paradox brought about by the fact that the net
in vivo rate of starch accumulation is the sum of synthesis and degradation® .

Even those workers who accept that more than one enzyme may be important almost
invariably focus their attention on the detail of individual kinetics, and particularly the
role played by various effectors, but give little or no consideration to the contribution
made by the structure of the system under investigation.

The work in this thesis suggests that although it is possible for enzymes within the
Calvin cycle to appear to have the properties of traditional “rate limiting steps”, the
degree of control they posses, and the much of behaviour of the system, stems not from
their kinetic properties, but from the system’s topology.

Another notable instance of behaviour arising from topology and not kinetics is
that of switching. The traditional view is that sharp transitions in response curves

occur as the result of enzymes with strongly sigmoidal kinetics, which are, or become,

®In fairness to the authors it should be pointed out that their main interest was in storage
starch metabolism, where the processes of synthesis and degradation are likely to be widely
separated in time
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rate limiting in the low activity state. Neither the full model, nor the skeleton models,
contained reactions with such kinetics, and the kinetic equations of the full model were
far more complex than those of the skeleton, and yet both switch.

It seems clear that a proper understanding of metabolic systems will not be attained
unless at least equal weight is given to the properties of the whole system, and not just
those of its components in isolation.

Although it is reasonable to suppose that the complex kinetics exhibited by many
enzymes, and conserved across many species, do offer some evolutionary advantage, it
appears possible that this has relatively little to do with the control of flux, at least
under normal circumstances.

An example of how the consideration of topology can give insight as to the advan-
tage conferred by kinetic features enzymes, is the effective coupling of rubisco, FBPase,
SBPase, and G3Pdh activities, via the thioredoxin mechanism. As described in the pre-
vious chapter, and for reasons outlined above, it is possible to propose that one of the
functions of the thioredoxin mechanism is to prevent the transition to the slow steady
state at low light levels, thereby maximising carbon assimilation under such conditions
(And not as one anonymous researcher once informed this author “to prevent carbon

fixation at night (1)”).

7.1.4 Scope for “improving” the Calvin cycle

The goal of improving crop productivity presumably dates back to the first farmers.
In recent years much interest has been shown in the potential of genetic manipulation
techniques for increasing plant productivity [135]. Most frequently the target for such
manipulation has been rubisco (e.g. [11]), but in any case tends to center around the
activity of identifying a rate limiting step, and over-expressing the gene for the enzyme
catalysing that step.

Material presented in this thesis provides little basis for confidence in this strategy:

at least four lines of reasoning can be proposed that suggest that it is unlikely to succeed.

1. It has been shown that a probable effect of increasing one of the rate limiting
steps over assimilation is simply to transfer control with little or no net increase

in assimilation.

2. If other steps in the Calvin cycle have enough head-room to allow an increase in

the limiting step to be translated into a potential increase in CO2 assimilation, but
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there is no matching increase in the rate of the light reactions, the Calvin cycle

will switch to the low steady state, resulting in a decrease in assimilation.

3. The thioredoxin system is also likely to act to frustrate such efforts. Increasing the
rate of assimilation causes the stromal redox potential to become more oxidising,
thus causing the thioredoxin system to down-modulate the activities of several

enzymes, opposing the increase that might otherwise have been brought about.

4. Even if an increase in assimilation could be brought about, it has been seen that
those enzymes which have high C74sim also tend to have high C7sterer and low,
even negative, C?T*T. Thus the consequence of increasing assimilation flux might
simply be increased levels of leaf starch. This point has also been raised by Geiger

and Servaites [41], although on the basis of entirely different reasoning.

Furthermore, these points, and the material in this thesis, relate only to metabolic
and enzymatic mechanisms, and neglect the possibility of regulation of gene expression.
Evidence exists [68,120] to suggest that such mechanisms do indeed exist, and that
their effect is also likely to oppose any increase that might otherwise be brought about

in photosynthetic carbon flux.

Assume that none of these criticisms are valid, that the genetic mechanisms are
sophisticated enough to readjust the expression of other enzymes in order to realise
the potential increase brought about by some genetic manipulation, and consider the
consequences: To fulfil the increased capacity of the Calvin cycle requires increased light
reaction activity, which, given that quantum efficiency is high [135] must be achieved
by increasing total leaf area. This in turn implies increased rates of transpiration,
and must therefore be supported by a larger root and transport system. In short,
increased assimilation demands larger plants, and plant size is not under the control of

photosynthetic reactions, but plant hormones (e.g. [143]).

There is experimental evidence for this chain of reasoning. Quite small flux reduc-
tions (brought about in this case by increased branch-point competition) in reactions
involved in plant hormone synthesis led to plants of drastically reduced stature [39] and

hence total CO, assimilation, although this was not those authors’ original intent.

164



7.2 The methodology used

The general strategy used to investigate the Calvin cycle model, which has met with
at least some success, and can hopefully be applied to other models in the future, may
be summarised as follows: Firstly, construct the model in as much detail as knowledge
of the system allows, placing the resulting burden of complexity upon the computer.
Secondly observe the behaviour of as many the model variables as possible, over as wide
a range of parameters as possible. The power of modern computers makes the task of
browsing the resulting large data sets, in order to separate genuinely novel behaviour
from that which is but a variation on previously observed behaviour, relatively light.
Having characterised the possible ranges of behaviour, it then becomes possible to search
for simplified models of the system that exhibit similar behaviour, and may thus be used

as a basis for an explanation.

Use of linearising assumptions

One result of this approach has been to reveal a potential problem arising from the use of
linearising assumptions. It is generally accepted (e.g. [132,89] that in the (infinitesimally
small) region of a steady-state a system of non-linear ODEs may be treated as linear,
and that the steady state behaviour may then be investigated by linearising the algebraic
solution to the non-linear system. However, if the approach is then extended by first
linearising the individual ODEs, and then determining an analytic steady-state solution,
the possibility of obtaining a qualitatively incomplete solution arises.

For example, in the case of the skeleton model c3 in the previous chapter (see
section 6.1), the existence of two steady states in the non-linear version of the model was
suggested by the bi-modal distribution of C5:5™" and confirmed by further numerical
modelling. However the linearised version of the model showed no evidence of such
behaviour, and subsequent algebraic analysis (appendix C) proved that only one solution
involving only positive concentrations can exist. Thus the presence of non-linear terms

in rate equations can alter the qualitative, as well as quantitative, characteristics of a

system.

Use of randomised models

The use of large numbers of randomised parameter sets to characterise the behaviour

of model systems (as applied to the skeleton models of the previous chapter) has not,
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to this author’s knowledge, been described before, although models in which ODEs are
combined with a source of random numbers are not uncommon [15]. The approach has
proved to be very useful: the four non-linear skeleton models, and two of their linearised
counterparts, were all characterised in a matter of hours: in contrast even the linearised
version of the most complex model appears to analytically intractable, unless further
drastic simplifying measures taken.

In addition to the specific use of these results, further consideration suggests a more
general possible conclusion, of concern to experimentalists, and those analysing their
results. It will be recalled that the parameter sets supplied to these models were drawn
from uniformly distributed sets of random numbers. However, none of the resulting
samples of model variables bore any resemblance to a uniform distribution. This in
itself is not surprising: non-linear responses tend to be the rule and not the exception.
If this is the case then it follows that if, in nature, a measured enzyme activity (for
example) is normally distributed, as implied by the almost universal reporting of results
as T £ o (or some other measure of spread derived from o), then system variables such
as concentration cannot be. It hardly needs stating that these variables too, are almost
invariably reported in the same fashion.

This will be less of a problem if the major source of variation in such measurements
arrises from the experimental technique, and this is normally distributed. It is also
possible for the impact of the problem to be lessened, if such small samples are taken that
their distribution is not distinguishable from normal, although this would presumably
result in unnecessarily wide confidence limits. None the less, it would be interesting to

see such matters established, and not assumed.

Use of Evolution Strategy algorithms

Use of the ES algorithm has proved to be extremely encouraging, and has certainly shown
much better performance (in terms of the likelihood of convergence) than the Marquadt-
Levenberg algorithm, as implemented in the Gnufit and Dynafit programs [65,74], and
generally regarded as the standard non-linear fitting algorithm [99]. Since chapter 3 was
written the approach used to fit the lactate dehydrogenase progress curve (section 3.4.3)
has been used to the same end for the E. coli threonine synthesis pathway, in a cell free
system. This system consisted of seven reactions, twelve metabolites and some forty

parameters. Good fits were obtained to the progress curve, achieving a smaller mean
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relative squared residual than the lactate dehydrogenase fitting, although examination
of the residuals revealed a small but definite systematic error. It is not known if this
represents premature convergence by the ES algorithm, or an inaccurate or incomplete
model.

There are however several areas in the understanding and use of this algorithm
with that have scope for improvement. Experience with the use of ES suggests (not
surprisingly) that the rate at which convergence is achieved, in terms of number of
organisms evaluated, depends upon population size, the proportion of survivors in the
next generation, mutation size, and the complexity of the model under investigation. It
would clearly be useful to have a method to determine, or at least approximate, a priori
optimal strategy parameters for a given problem.

Even if rate of convergence is not optimal, to be properly useful a fitting algorithm
must be able to supply confidence limits for the fitted parameters. As noted in chapter
3, despite the fact that the algorithm maintains a population (in the evolutionary sense)
of solutions, it is not obvious as to how this might be used, as the individuals are
not independent, and their distribution not normal. Cornish-Bowden [20] and Press
et al [102] pay considerable attention to such problems, and there are doubtless many
strategies waiting to be pursued.

Although resistant, ES has shown itself not to be immune from the twin problems of
failing to converge, and converging on sub-optimal solutions, that appear to be universal
to all fitting/optimisation algorithms. There would seem to be two or three possible

causes for this, and it appears promising that they can be tackled in a piecemeal fashion.

Use of elementary modes analysis

The development and implementation of this form of analysis was not a part of this
project, but has shown itself to be extremely useful. It has been of particular benefit
in circumstances in which there is no flux at all in a large kinetic model, to be able to
prove that there is no possibility of a flux, regardless of parameter values.

A particular example of this was the ability to show that, in the Calvin cycle model,
no route exists between starch and TPT export, that does not involve rubisco. Not
only is this fact far from obvious by inspection, it is quite counter-intuitive, given the
knowledge that starch degradation can allow the export flux to exceed the assimilation

flux.
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At present the elementary modes in a model are determined by the “Empath” [140]
program written in the “Smalltalk” language by a previous colleague, and not readily
compatible with Scampi.

However, as the only input to the algorithm is the stoichiometry matrix, which is
readily available to Scampi, and a ‘C’ implementation of the algorithm is also available
(by kind donation of Stefan Schuster), this form of analysis will be incorporated into

Scampi in the near future.

7.3 Scampi

Overall, Scampi has fulfilled its design remit of providing a flexible, portable, extensible,
and reliable system that allows biochemical models to be made the subject of algorithms.

The same source code has been compiled and tested on three different platforms
(Amiga, Sun/Sparc, and PC/Win95) with two compilers (gcc and MS-C/C++) without
the need for any changes or platform dependent compiler directives. It is reasonable to
hope that porting to other platforms in the future will not raise major problems.

Wise programmers should be extremely cautious in asserting that their code is “bug
free”; however it is possible to report that none are known at the present time. Over the
last two years only two are known to have escaped the testing stage of development (they
are now eliminated), and no behaviour has been observed in programs using Scampi to

suggest any remain.

7.3.1 Problems with Scampi

Those advantages conferred by Scampi all stem from embedding biochemical models
within a general purpose programming language. Unfortunately this inevitably brings
two major disadvantages that together comprise a formidable barrier to Scampi becom-
ing a regular tool of the biochemist/biotechnologist.

The first disadvantage is that Scampi demands of the user the ability to construct
computer programs. This is a skill that requires more than a text-book, a computer,
and enthusiasm to acquire. It requires formal training and no small measure of time and
dedication. It is entirely understandable that workers will be reluctant to make a major
investment in a technique that, despite having antecedents in the dawn of the computer

age, has made but the most mild of impacts upon their chosen field.
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The second disadvantage, closely related to the first, is the fact that Scampi possesses
no graphical user interface (GUI). Although, as described in chapter 2, this is the result
of a deliberate design decision, the fact remains that modern computer users, especially
those whose introduction to the subject has been via games or word-processing, tend to

regard software without a GUI as being without merit.

7.3.2 A Successor to Scampi

Deplorable though this state of affairs may be, there is little prospect of remedying it.
Hence it is hoped to produce a successor to Scampi (using Scampi as a low-level founda-
tion), that includes a simple high level language, encompassing the relavent functionality
currently supplied by SCAMP, Scampi and C, and a GUI with sufficient functionality
to allow the neophyte user to perform simple modelling tasks without recourse to the
language. Since the original Scampi project was started the Java programming lan-
guage [47,88], has received much acclaim. Initial impressions are that it does not suffer
from the problems of other systems for writing portable GUI programs (described in

chapter 2), and would be ideally suited to such a project.

7.4 Directions for future work

7.4.1 Further development of the Calvin cycle model

No piece of academic inquiry can be regarded as complete, any answers obtained in-
evitably contain within them the seeds of further questions. Furthermore, the compari-
son of experimental and modelling work in this thesis provides good evidence that the
model can account for many experimental observations, and is therefore worth develop-
ing. At present there is no funding to continue the Calvin cycle work, and so the points

outlined below represent proposals that would be pursued were resources available.

Removal of remaining kinetic assumptions

A common theme in this thesis is that in constructing a computer model of a real and
complex system, all simplifying assumptions should be viewed with suspicion. A major
assumption remaining is that the reversible reactions can be described by mass action

kinetics. This is in contradiction of known facts: all enzyme catalysed reactions are
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saturable, and the effect on the model that the resulting non-linearity causes cannot be

predicted without removing the assumption.

Furthermore there is experimental evidence that some of the enzymes that in the
model maintain disequilibrium ratios (p) very close to unity, do not do so in wvivo.
Kruckeberg et al [72] predict a value of p for PGI in the chloroplast of ~ 0.5, and were
able to directly measure ppgr as 0.7 in the cytosol, where the isozyme is about twice as

active as in the chloroplast.

Lines of reasoning developed over this and the previous chapter, to explain the
behaviour of the Calvin cycle model in terms of topology, strongly suggest that no
qualitative change in behaviour will result from such a change; but the cost of introducing
it is low, and a model of similar complexity, but known to be more realistic, is always
to be be preferred to that which is less so. This is especially pertinent as the model
has, under certain circumstances, been observed to behave in a fashion almost certainly

absent in nature (as described in the next section).

As has been mentioned, the kinetic equations for StPase, G6Pdh, and transaldolase
were developed in an extremely ad hoc fashion. An effort should be made to replace

them with more rigorously derived versions.

Characterisation of the evolved population

The characterisation of the evolved population described in chapter 5 has only been
carried out for fixed parameter values. The responses of the population to changes in

environmental parameters such as light and P;__, should be determined as they were for

lext

the single model in chapter 4.

Attention should also be turned to the unstable oscillations exhibited by the pop-
ulation. They are of interest because oscillations of this type have not, to the author’s
knowledge, been previously described in a model of the Calvin cycle Similar behaviour
in the glycolitic pathway has, however, been widely reported and discussed by (for ex-
ample) Goldbeter [45,46]. Apart from their novelty, these oscillations represent some
cause for concern, as nothing like them has appeared in the experimental literature.

They should therefore be regarded as an artefact of the model, and eliminated.
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Extending the Calvin cycle model

The previous points in this section are essentially “mopping up” operations, and would
have been attended to as part of this project, had time allowed. Despite these points,
it is thought that characterisation of this model of the Calvin cycle is substantially
complete, and attention should be turned to include more of the metabolic processes
with which it is known, or suspected, to interact.

The single most important modification that can be made to this model is to make
the representation of the light reactions more realistic, by allowing NADP/H to become
free variables. In addition to making the model more complete, there are several reasons

for doing this:

1. The behaviour of G3Pdh is anomalous amongst the reversible enzymes in the
model: It is the only one to maintain a value of p substantially displaced from 1.0,
and the only one to maintain non negligible C’ values. NADPH, and NADP are

substrate and product respectively for this enzyme.

2. The possible influences of stromal redox status have already been discussed. By
having NADP/H free it will become possible to investigate this properly. This
would also be a first requirement in the implementation of the OPPP and thiore-

doxin system.

3. It is possible to continuously and non-invasively measure NADPH levels in intact
chloroplasts, by spectrophotometric means. It would be extremely interesting to
fit such data sets to the Calvin cycle model as was described in chapter 3 for a

single enzyme system.

The extensions to the model described above still leave the model restricted to events
in the chloroplast. The real reason for investigating the system, by modelling or any
other means, is to understand the behaviour of the whole organism, and not just a part.
Therefore it would appear logical that the next extension to the model should embrace
cytosolic metabolism.

Historically, most effort has, understandably, been directed to the carbon sink-source
relationship that exists between cytosol and chloroplast. All of the modelling studies
cited in the previous chapter that included cytosolic components, included some repre-

sentation of this, but not of other possible interactions.
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Figure 7.1: Carbon metabolism at the chloroplast/cytoplasm interface

Despite this, there would probably be some merit in investigating a more detailed
model of source-sink interaction, as when reactions involving TP in the cytosol are
included in the model, quite a complex network is formed, involving reactions on both
sides of the chloroplast envelope, as shown in Figure 7.1. Furthermore, these reactions
include cytosolic FBPase, which is known to be strongly inhibited by the cytosolic
metabolite F-2,6-BP, a metabolite thought to play a pivotal réle in partioning carbon
flux between sucrose synthesis and respiration, but whose function in the context of
overall carbon metabolism is still poorly understood [73,127].

A second, and less thoroughly investigated aspect of chloroplast-cytosol interaction,
is that mediated by redox transfer. At least two mechanisms exist to transfer redox po-
tential across the chloroplast envelope, the malate-oxaloacetate (Mal-OAA) shuttle, and
the TP-PGA shuttle [56]. Bearing the latter in mind, it can be seen that figure 7.1 can
contain hitherto unseen complexity, and can simultaneously support three independent
fluxes: TP export as a starting point for sucrose synthesis, PGA flux feeding the lower
part of glycolysis and mitochondrial respiration, and a cycle between cytosolic and stro-

mal PGA and GAP, resulting in no net carbon flux, but mediating a redox flux. All of
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the stromal enzymes involved in these shuttles are under the influence of the thioredoxin
system [8] so as to be activated as the stroma becomes increasingly reduced. Fridyland
et al [40] have published a model study of the Mal-OA A shuttle, including rate equations
and parameters of the enzymes involved, making the addition of this component to the

existing Calvin cycle model a straightforward task.

Furthermore, the Mal-OAA is known to exist in plant mitochondria [38,141], thus
allowing the possibility of a network of redox flux, also with a role in the control of carbon
flux, extending from the mitochondria, through the cytosol, and into the chloroplast,
and involving several stromal enzymes under the influence of the thioredoxin mechanism.
Ideas similar to this have already been expressed in the published literature: Hanning
and Heldt [54] have proposed a network of redox communication involving chloroplast,
cytosol, mitochondria and peroxisome; Schiebe [122] suggests a far more dynamic role
for the thioredoxin system than a simple on/off switch responding to light levels. The
complexity of the system suggested makes it unlikely that its potential behaviour could
be determined, let alone understood, by intuition unaided. A detailed model, built by
extending the Calvin cycle model described in this thesis would certainly be feasible, and

would appear to offer the possibility of making reasonable return on any such investment.

Finally no section discussing the extensions to a metabolic model can be complete
if the possible influence of deoxyribonucleic acid is entirely ignored. There is ample
evidence that co-ordinated changes in levels of photosynthetic gene expression do oc-
cur in response to a variety of stimuli. For example all of the antisense investigations,
described in the previous chapter, reported that at very low levels of expression of the
target gene, chlorophyll content was reduced in addition to the activity of at least one
other Calvin cycle enzyme. For most of these studies this coincided with the level reduc-
tion in target enzyme activity that was sufficient to bring about a detectable decrease
in CO5 assimilation. Increasing the carbohydrate, by several experimental approaches,
to which photosynthetic tissue is exposed, [69,68,120] has consistently led to loss of
chlorophyll, rubisco, and other Calvin cycle enzymes. At least some of these losses are
associated with a reduction in mRNA transcript levels and de novo protein synthesis.
The mechanisms responsible for such coordinated changes do not appear to known, a

fact which will not make modelling them any easier.

Incorporating genetic components into the model may well cause the potential prob-

lem of stiffness to become realised. Genetically mediated changes are reported to occur
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over a time-scale of days, rather than the minutes and seconds reported here. Whether
this will really pose a major problem is not known at present, but it is certainly possible
that new additions will have to be made to the software described, if models of this level

of completeness are ever to be contemplated.
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Appendix A

SCAMP /Scampi
implementation of the Calvin

cycle model

This appendix first presents the SCAMP command file representing the Petterrsons’
original description of the Calvin cycle model, and illustrates the development of a “C”

program using this with Scampi to determine model response to changes in a parameter.

A.1 Model definition

A.1.1 Naming conventions
Names of reactions and metabolites are as given in Tables and 4.1 and 4.2, with the
following differences:

143 13

e All species have either the suffix “_ch” to indicate chloroplastic, or “_cyt”, cyto-

plasmic, species.

o Identifiers relating to the triose phosphate translocator a prefixed “TP_Piap”

(triose phosphate - P; antiporter).
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The rate constant for the rapid equilibrium reactions K, in equation 4.1 has the
identifier “EQMult” and the PGA export modulating constant described in section 4.3,
“PGA_xpMult”.

A.1.2 The command file

Title Calvinl - Petterssons original + Starch pase;

options auto_conserve ;
# auto detect conserved cycles

options integrator = lsoda ; # needed for SCAMP, ignored by Scampi ;
Simulate ; # ditto ;

# declare fixed and variable metabolites ;

dec ATP_ch, ADP_ch, RuBP_ch, PGA_ch, BPGA_ch, $NADPH_ch,
GAP_ch, DHAP_ch, FBP_ch, F6P_ch, E4P_ch, SBP_ch, S7P_ch,
G6P_ch,R5P_ch, RubP_ch, X5P_ch, G1P_ch, Pi_ch, $NADP_ch,
$C02, $Pi_cyt, $PGA_cyt, $DHAP_cyt, $GAP_cyt, $Starch_ch,
$Proton_ch ;

reactions

[Rubisco]

$C02 + RuBP_ch = 2PGA_ch ;

Rbco_vm * RuBP_ch/(RuBP_ch + Rbco_km*(1 +
PGA_ch/Rbco_KiPGA +
FBP_ch/Rbco_KiFBP +
SBP_ch/Rbco_KiSBP +
Pi_ch /Rbco_KiPi +
NADPH_ch/Rbco_KiNADPH )) ;

[PhosphoglycerateKinase]
PGA_ch + ATP_ch = BPGA_ch + ADP_ch ;
EQMult *(PGA_ch * ATP_ch - (BPGA_ch * ADP_ch / q2)) ;

[G3P_dehydrogenasel
BPGA_ch + $NADPH_ch + $Proton_ch = $NADP_ch + GAP_ch + Pi_ch ;
EQMult * (BPGA_ch * NADPH_ch * Proton_ch -
NADP_ch * GAP_ch * Pi_ch/q3) ;

[TPI]
GAP_ch = DHAP_ch ;
EQMult *(GAP_ch - DHAP_ch/q4) ;

[Aldolase]
DHAP_ch + GAP_ch = FBP_ch ;
EQMult *(DHAP_ch * GAP_ch - FBP_ch/qg5) ;

[FBPase]
FBP_ch = F6P_ch + Pi_ch ;
FBPase_ch_vm * FBP_ch /(FBP_ch + FBPase_ch_km*( 1 +
F6P_ch/FBPase_ch_KiF6P +
Pi_ch/FBPase_ch_KiPi )) ;
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[PGI_ch]
F6P_ch = G6P_ch ;
EQMult *(F6P_ch - G6P_ch /q14) ;

[PGM_ch]
G6P_ch = G1P_ch ;
EQMult x( G6P_ch - G1P_ch/q15) ;

[St_synthase]

# starch synthesis branch ;

G1P_ch + ATP_ch = ADP_ch + 2Pi_ch + $Starch_ch ;

Vstsyn_ch * G1P_ch * ATP_ch /
(C GIP_ch + stsyn_ch_kml) *
(1 + ADP_ch / stsyn_ch_Ki) *
(ATP_ch + stsyn_ch_km2) +
stsyn_ch_km2 * Pi_ch /
(stsyn_ch_kal * PGA_ch) +
(stsyn_ch_ka2 *x F6P_ch) +
(stsyn_ch_ka3 * FBP_ch) ) ;

# Starch Pase ;
[StPase]
$Starch_ch + Pi_ch = G1P_ch ;

StPase_Vm * Pi_ch /(Pi_ch + StPase_km * ( 1 + G1P_ch/StPase_kiG1P)) ;

[transketolase]
F6P_ch + GAP_ch = E4P_ch + X5P_ch ;

# end of starch metabolism ;

EQMult *( F6P_ch * GAP_ch - E4P_ch * X5P_ch / q7 ) ;

[Aldolase2]
E4P_ch + DHAP_ch = SBP_ch ;

EQMult *(E4P_ch * DHAP_ch - SBP_ch/qg8) ;

[seduheptuloseBPase]
SBP_ch = S7P_ch + Pi_ch ;

SBPase_ch_vm * SBP_ch/(SBP_ch + SBPase_ch_km*(1 +

Pi_ch/SBPase_ch_KiPi)) ;

[transketolase?2]
GAP_ch + S7P_ch = X5P_ch + R56P_ch

EQMult *(GAP_ch * S7P_ch - X5P_ch * R5P_ch /q10) ;

[R5Pisomerase]
RBP_ch = RubP_ch ;
EQMult * (R5P_ch - RubP_ch /qi11);

[X5Pisomerase]
X5P_ch = RubP_ch ;
EQMult *(X5P_ch - RubP_ch/ql2);

[RubPkinase]
RubP_ch + ATP_ch = RuBP_ch + ADP_ch ;
RubPk_ch_vm * RubP_ch * ATP_ch/( (
RubSP_ch + RubPk_ch_kml * (1 +
PGA_ch / RubPk_ch_KiPGA +
RuBP_ch / RubPk_ch_KiRuBP +
Pi_ch / RubPk_ch_KiPi ) )
* (
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ATP_ch *( 1 + ADP_ch / RubPk_ch_KiADP1) +
RubPk_ch_km2 * ( 1 + ADP_ch / RubPk_ch_KiADP2))) ;

#TP/Pi antiport 1 PGA ;
[TP_Pi_apPGA]
PGA_ch + $Pi_cyt = Pi_ch + $PGA_cyt ;
PGA_xpMult * TP_Piap_vm * PGA_ch / (TP_Piap_kPGA_ch * ( 1 +
(1 + TP_Piap_kPi_cyt / Pi_cyt) *
( Pi_ch / TP_Piap_kPi_ch +
PGA_ch / TP_Piap_kPGA_ch +
DHAP_ch / TP_Piap_kDHAP_ch +
GAP_ch / TP_Piap_kGAP_ch ))) ;

# 2 GAP ;

[TP_Pi_apGAP]
GAP_ch + $Pi_cyt = Pi_ch + $GAP_cyt ;

TP_Piap_vm * GAP_ch / (TP_Piap_kGAP_ch * ( 1 +

(1 + TP_Piap_kPi_cyt / Pi_cyt) *

( Pi_ch / TP_Piap_kPi_ch +

PGA_ch / TP_Piap_kPGA_ch +

DHAP_ch / TP_Piap_kDHAP_ch +

GAP_ch / TP_Piap_kGAP_ch))) ;

# 3 DHAP H

[TP_Pi_apDHAP]
DHAP_ch + $Pi_cyt = Pi_ch + $DHAP_cyt ;

TP_Piap_vm * DHAP_ch / (TP_Piap_kDHAP_ch * ( 1 +

(1 + TP_Piap_kPi_cyt / Pi_cyt) *

( Pi_ch / TP_Piap_kPi_ch +

PGA_ch / TP_Piap_kPGA_ch +

DHAP_ch / TP_Piap_kDHAP_ch +

GAP_ch / TP_Piap_kGAP_ch))) ;

[Light_react] # Light reactions ;
ADP_ch + Pi_ch = ATP_ch ;
LR_vm * ADP_ch * Pi_ch/((ADP_ch + LR_kmADP)*(Pi_ch + LR_kmPi)) ;

EOR ;

##sdHHH# A4S Initialise ###4#HHHEHEHHE

initialise

# kinetic parameters ;

# rubisco ;
Rbco_vm = 340 ; Rbco_km = 0.02 ; Rbco_KiFBP = 0.04 ; Rbco_KiPGA = 0.84 ;
Rbco_KiSBP = 0.075 ; Rbco_KiPi = 0.9 ; Rbco_KiNADPH = 0.07 ;

# FBPase ;
FBPase_ch_vm = 200 ; FBPase_ch_km = 0.03 ; FBPase_ch_KiF6P = 0.7 ;
FBPase_ch_KiPi = 12 ;

# SBPase ;
SBPase_ch_vm = 40 ; SBPase_ch_km = 0.013 ; SBPase_ch_KiPi = 12 ;

# RubPkinase ;

RubPk_ch_vm = 10000 ; RubPk_ch_kml = 0.05 ; RubPk_ch_km2 = 0.05 ;
RubPk_ch_KiPGA = 2 ; RubPk_ch_KiRuBP = 0.7 ; RubPk_ch_KiPi = 4 ;
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RubPk_ch_KiADP1 = 2.5 ; RubPk_ch_KiADP2 = 0.4 ;

# TP/Pi ap ;
TP_Piap_vm = 250 ; TP_Piap_kPGA_ch = 0.25 ;
TP_Piap_kGAP_ch = 0.075 ; TP_Piap_kDHAP_ch = 0.077 ;
TP_Piap_kPi_ch = 0.63 ; TP_Piap_kPi_cyt = 0.74 ;

# "starch synthase" ;

Vstsyn_ch = 40 ; stsyn_ch_kml = 0.08 ; stsyn_ch_km2 = 0.08 ; stsyn_ch_Ki =

10 ;

H

H

stsyn_ch_kal = 0.1 ; stsyn_ch_ka2 = 0.02 ; stsyn_ch_ka3 = 0.02 ;
# StPase ;
StPase_Vm = 40 ; StPase_km = 0.1 ; StPase_kiG1P = 0.05 ;
# Light Reactiomns ;
LR_vm = 3500 ; LR_kmADP = 0.014 ; LR_kmPi = 0.3 ;
# equil reactiomns ;
q2 = 3.1E-4 ; q3 = 1.6E7 ; g4 = 22 ; gb = 7.1; q7 = 0.084 ;
q8 = 13 ; q10 = 0.85 ; q11 = 0.4 ; q12 = 0.67 ; q14 = 2.3 ; ql5 = 0.0580 ;
# control variables ;
EQMult = 5e8 ; PGA_xpMult = 0.75 ;
# initial metaolite values ;
PGA_ch = 3.35479 ; BPGA_ch = 0.14825 ; GAP_ch = 0.01334 ; DHAP_ch = 0.29345 ;
G1P_ch = 0.18206 ; G6P_ch = 3.1396 ; FBP_ch = 0.02776 ; F6P_ch = 1.36481
SBP_ch = 1.56486 ; S7TP_ch = 0.00541 ; E4P_ch = 0.41021 ; X5P_ch = 0.00363 ;
R5P_ch = 0.00599 ; RubP_ch = 0.00235 ; RuBP_ch = 0.33644; Pi_ch = 1.5662 ;

# initial parameters values ;
Pi_cyt = 0.5 ; DHAP_cyt = 1 ; GAP_.cyt = 1 ; PGA_cyt =1 ; C02 = 1.0 ;

Proton_ch = 2.512E-5 ; Starch_ch = 1 ; ATP_ch = 0.49806 ; ADP_ch = 0.00149 ;

NADPH_ch = 0.21 ; NADP_ch = 0.29 ;
ei ;

timeend = 2 ; # remainder needed by SCAMP, ignored by Scampi ;
sim_points = 200 ;

print_sim TIME, [TP_Pi_apDHAP] ;

end ;

A.2 Use of Scampi to determine effect of parameter

change on P; . overload point

iext
A.2.1 Problem definition / program specification

In chapter 4 it was shown that the Calvin cycle model, in the absence of starch phos-

phorlyase, was subject to irrevocable breakdown at high levels of P and that this

lext

level was itself appeared to dependent on various parameters. In order to investigate

the effect that such parameters may have, it is first neccessary to define a function

193

’



to determine the breakdown point. Given an initial pair of bracketing values (Lo and
Hi), this may be readily achieved using a recursive bisection search, as sketched out in

Pseudo-code fragment A.1:

Code Fragment A.1 Recursive bisection search for mazimimum sustainable pa-

rameter value (Pseudo-code)

1 MidPoint = (Lo + Hi)/2

2 IF (Lo and Hi are nearly equal) THEN

3 breakdown point = MidPoint
ELSE

4 determine steady state at MidPoint
ENDIF

5 IF( steady state is viable)

6 search between MidPoint and Hi
ELSE

7 revive the model

8 search between Lo and MidPoint
ENDIF

In order to write this as a function in a programming language, the user will need

to supply some additional information:

The model under consideration.

The name of the parameter

An indication of how close Lo and Hi must be to be “nearly equal” in step 2

A set of initial viable concentrations with which to revive the model in step 6

A.2.2 TImplementation

Taking these points into consideration, and assuming the Scampi tools described in
chapter 2 are available, it is possible to specify a “C” function FindMax ():

double FindMax( ScampiModel_t md, char *PName, double Pmax, double Pmin,
double Pequiv, double *RestoreConcs) ;
/* pre: md has a parameter called PName,

Pmin and Pmax bracket the maximum sustainable value of PName,
0 < Pequiv < 1,
RestoreConcs = GetMDVec(md, Conc, ) with viable md

post: Maximum sustainable value of PName is returned with
relative error +/- (1-Pequiv)/(1+Pequiv) *x*/
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With this specification, and using Scampi tools for steady state determinations etc.

the pseudo code of A.1 may be translated to “C” without further refinement:

double Pmid, /* mid parameter value */
rv, /* return value */
duration ; /* initial sim duration */
int sim_points ;/* initial sim points  */
enum SPI_err err ; /* scampi error return */

duration = 3.0 ; sim_points = 300 ;

Pmid = (Pmin+Pmax)/2.0 ; /* calc mid point
if ((Pmin/Pmax) >Pequiv) /* have we reached requested resolution 7

rv = Pmid ; /* yes, we will return Pmid
else{

/* no, we have to search again
PutMDval (md, Param, PName, Pmid) ; /* set parameter to Pmid
Sim_to_SS(calvin0, &duration, &sim_points, le-6, 20, 3, &err) ;
/* and try for SS
if (err == 0K) /* Good steady state 7
/* yes, search between Pmid and Pmax
rv = FindMax(md, PName, Pmax, Pmid, Pequiv, RestoreConcs) ;
elseq
/* no, limit is between Pmin and Pmid
PutMDvec(md, Conc, RestoreConcs) ;
/* so restore known good concs
rv = FindMax(md, PName, Pmid, Pmin, Pequiv, RestoreConcs) ;
/* and search there
}
}

return (rv) ; /*** Single entry, single exit !, :-) *xk [

*/

*/
*/

*/
*/

*/
*/
*/
*/
*/
*/

With this function defined, it becomes a trivial matter to write a main() function

to using FindMax () to determine the breakdown point, and take care of necessary i/o

and related matters, as shown overleaf:
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int main(int argc, char *argv[]){

char fname[80] ; /* file name */

FILE *fp ; /* file for output */

double PGA_xpMult, /* modulate Vmax of TP-Pi antiport to PGA x/
Pi, /* externmal Pi, */
MaxPi, /* and max sustainable external, Pi */
duration ; /* treat as magic - or ask the author */

int  simul_points ; /* ditto */

const double
Xp_hi = 1.25, Xp_lo = 0.1,/* hi and lo limits for PGA_xpMult x/
Pi_hi = 5, Pi_lo = 0.1, /* and for external Pi */

discrim = 0.99 ; /* tol. for Pi (a/b > dicrim => a ==b ) x/
double Xp_inc, /* increment for PGA_xpMult */
*RescueConcs ; /* known viable starting concentrations */
const int n_res = 20 ; /* number of results we will record */
int n ; /* gp counter */
enum SPI_err err ; /* hold error returns from Scampi */
strcpy(fname, argv([0]) ; /* sort out a file for output */
strcat (fname, ".out")

fp = fopen(fname, "w") ;
fprintf(fp, "PGA_xpMult\tMaxPi\n") ;

duration = 2.0 ; simul_points = 200 ; /* initial external Pi */
PutMDval(calvinO, Param, "Pi_cyt", Pi_lo) ;
Sim_to_SS(calvinO, &duration, &simul_points, le-6, 20, 3, &err) ;
/* get initial SS */
RescueConcs = GetMDvec(calvinO, Conc, &err) ;
/* get our own copy of concentration vals */
Xp_inc = (Xp_hi - Xp_lo)/(double) n_res ; /* calc increment size */

PGA_xpMult = Xp_lo ;
for(n = 0 ; n <= n_res ; n++, PGA_xpMult += Xp_inc){
/* loop through vals of PGA_xpMult */
PutMDval(calvinO, Param, "PGA_xpMult", PGA_xpMult) ;
/* update model with new PGA_xpMult */
PutMDval(calvinO, Param, "Pi_cyt", Pi_hi) ;/* set ext Pi to max */

duration = 2.0 ; simul_points = 200 ; /* try for new SS */
Sim_to_SS(calvin0O, &duration, &simul_points, le-6, 20, 3, &err) ;
if (err == 0OK) /* if model with MaxPi is sustainable */
MaxPi = Pi_hi ; /* don’t search */
elseq /* if not x/

PutMDvec(calvinQ, Conc, RescueConcs) ;
/* ressurect the Calvin cycle */
MaxPi = FindMax(calvinQO, "Pi_cyt", Pi_hi, Pi_lo,
discrim, RescueConcs) ;

} /* and search for the max sustainable */
fprintf (fp, "%e\tle\n", PGA_xpMult, MaxPi) ;
} /* record results for posterity */
free(RescueConcs) ; /* collect our own garbage */
exit(0) ; /* thats all, folks ! x/
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A.2.3 Compilation

As with other programs using Scampi described in this thesis, the process of maintaining
up to date executables may be conveniently automated using the standard Unix “make”
utility (also availble for other platforms). A typical makefile as used in this project is

as follows:

MODEL = calvinl
# "MODEL" is the name of we wish to investigate
# calvinl is the Calvin cycle model with starch degradation

CC = gcc
CC_Flags = -m68020 -m68881 -02
# "go faster" flags for 68020 architectures e.g. Amiga  ***x

LD_FLAGS = -lscampi -llists -levol -lmath2
# All Scampi progs _MUST_ link with the scampi, lists, evol, and math2 libs

$(TOP) : $(TOP) .o $(MODEL) .o
$(CC) -o $(TOP) $(TOP).o $(MODEL) .o $(LD_FLAGS)
# "TOP" is the name of the target executable, passed at the command line

$(MODEL) .o: $(MODEL) .c $(MODEL).h
$(CC) $(CC_Flags) -c $(MODEL).c
# compile the C representation of the model

$(MODEL) .c: $(MODEL) .1st
spicg $(MODEL).1lst
# generate the C representation from the .lst file

$(MODEL) .1st: $(MODEL) .cmd
scamp $(MODEL) .cmd
# generate the .lst file from the .cmd file

$(TOP) .o: $(TOP).c $(MODEL).h
$(CC) $(CC_Flags) -c $(TOP).c
# compile the TOP source code

As with the rest of Scampi, this makefile is readily portable, the only machine
dependent line is that marked “x**x* relating to different processor-specific optimisation
flags for the compiler. Assuming that the source code file containing the main () function
definition of section A.2.2 resides in the file MaxPi.c, the corresponding executable,

MaxPi is updated by the command make TOP=MaxPi.
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Appendix B

Interface to the Evolve library

/ *%x

Evolve.h - interface to ES structures and funtions
*okok /

#ifndef EVOLVE_H
#define EVOLVE_H

typedef enum {FitnessHigh, FitnessLow} Fitness_t ;
typedef enum {FixMute, VarMute } StratSet_t ;

typedef struct OrgStruct {
double *Genome ;
double *MuteSize ;
int LenGenome,
n_mute ;
StratSet_t Strat ;
Fitness_t FitHiOrLo ;
double FitnessVal ;
void *user ;
} OrganismStruct, *0rganism_t;

typedef void (*#FitnessEval_ft) (Organism_t) ;
/* fitness evaluation function type */
extern Organism_t NewOrg(int LenGen, Fitness_t ft) ;
/* pre : TRUE
post : returns valid Organism_t with genome of length LenGen
(and undefined contents) and fitness type ft
(returns NULL if fail) */

extern Organism_t NewOrg2(int LenGen, double *Adam, double MuteSize,
Fitness_t ft) ;
/* pre : Adam[LenGen]
post : as NewOrg but Genome is copy of Adam and
return->DeltaSigmal[n] = Adam[n] * MuteSize ;

*/

extern Organism_t NewOrg3(int LenGen, double *Adam, double MuteSize,
Fitness_t ft, StratSet_t strat) ;
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/* pre : Adam[LenGen]
P
post : as NewOrg2 + return->Strat = strat ; */

extern Organism_t CloneOrg(Organism_t Orig) ;
/* pre : Orig is valid
post : returns exact copy of Orig else NULL if fail */

extern void CopyOrg(Organism_t src, Organism_t dst) ;
/* pre : src and dst valid and have equal length genome
post dst is a copy of src */

extern void RefreshOrg(Organism_t Org, double DeltaSigma) ;
/* pre : Org = NewOrgk, DeltaSigma > 0.0 ;
post : Mutation vector reinitialised, Mutation counter = 0 */

extern void KillOrg(Organism_t Victim) ;
/* pre : Victim valid
post : Victim’s fitness val set to dead val according to fitness type */

extern int /* bool */IsDeadOrg(Organism_t org) ;
/* pre : org valid
post : TRUE => org’s fitness value == dead value
FALSE => org’s fitness value != dead value */

extern void DestroyOrg(Organism_t Victim) ;
/* pre : Victim is valid
post : Victim is not valid, associated memory freed */

extern void DestroyPop(Organism_t *Pop, int n_org) ;
/* pre : Pop[0..n_org-1] valid
post : DestroyOrg(Pop[0..n_org-1]) */

extern Organism_t *Evolve(Organism_t Adam, int PopSize, int n_Survivors,
int n_gens, FitnessEval_ft FitEval,
double MuteSize, double MuteRate) ;
/* pre : Adam is valid, O < n_Survivors <= PopSize, MuteSize > 0.0,
0 < MuteRate <= 1.0
post : returns pointer to fitest Organism
found using the (mu + lambda)ES algorithm */

extern Organism_t *EvolveQ(Organism_t *Seeds, int n_Seeds, int PopSize,
int n_Survivors, int n_gens,
FitnessEval_ft FitEval, double MuteSize,
double MuteRate) ;

/* pre : seeds is valid Organism_t[n_Seeds], 0 < n_Seeds < PopSize,
0 < n_Survivors <= PopSize ;
post : returns n_Survivors fittest organisms found using
(mu + lambda)ES algorithm */

extern Organism_t *Evolve3(Organism_t *Seeds, int n_Seeds, int PopSize,
int n_Survivors, int n_gens,
FitnessEval_ft FitEval, double DeltaSigma,
double MuteRate) ;
/* pre : seeds is valid Organism_t[n_Seeds], 0 < n_Seeds < PopSize,
0 < n_Survivors <= PopSize ;
0.0 < MuteRate <= 1.0, DeltaSigma > 0.0 ;
post : returns n_Survivors fittest organisms found using
(mu + lambda)ES algorithm */
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void EvolveSStatic(Organism_t *Population, int PopSize, int n_Survivors,
int Initialise, int n_gens, FitnessEval_ft FitEval,
double DeltaSigma, double MuteRate) ;
/* pre : Population[0..PopSize-1] = NewOrg(), n_Survivors < PopSize,
0.0 < MuteRate <= 1.0, DeltaSigma > 0.0 ;
post : performs n_gens of mu+lamda ES to Population,
(Initialise == TRUE) => Population[1..PopSize-1] initialised
from Population[0] (which will count as a generation) */

void EvolveToTarg(Organism_t *Population, int PopSize, int n_Survivors,
int n_gens, FitnessEval_ft FitEval, double DeltaSigma,
double MuteRate, double F_Targ) ;
/* pre : Population[0..PopSize-1] = NewOrg(),
n_Survivors < PopSize, 0.0 < MuteRate <= 1.0, DeltaSigma > 0.0
post : performs <= n_gens of mu+lamda ES to Population,
stops as soon as organism as fit or fitter than F_Targ is found,
which will be Population[0] ;*/
#endif
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Appendix C

Analysis of skeleton model C»

Denoting the metabolites RuBP, TP, and P; as A, B, and C respectively, and disregard-

ing external metabolites, skeleton model Cy of chapter 6 can be represented as shown

in Figure C.1.

Taking into account the stoichiometries of the Calvin cycle , assuming that all re-

actions have first order kinetics with respected to any individual metabolite, and that

with the exception of the starch phosphorylase reaction Vj, reactions are irreversible,

the model of Figure C.1 are represented:

A—2B V1 =K;A

5B+C — 34 Vo, =K,BC

B— (C V3=K3B

B=C Vi=Ki(B-{)
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Va2 CQ Vi
\C — B
)

Figure C.1: Metabolites and reactions of the skeleton model C, as considered here.

Denoting Oz /0t as z' a set of differential equations is obtained:

A'=3V,-W (C.5)
B' =2V; -5V, —V3 -V} (C.6)
C'=Vs+Vyi—V, (C.7)

but eqn C.6 = 2x eqn C.5 - eqn C.7, therefore to make the system soluble, the

conservation relationship is required:

2A+B+C=S

where S is the conserved sum. Thus

S-B-C
A=—"5—

(C.8)
At steady state eqns C.5...C.7 equate to zero. By substituting eqns C.1, C.2 and C.8
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into C.5:

3K,BC = M
From which C' may be obtained:
s
S _q
C= (B IZ (C.9)
6K, + 5
By Substituting eqns C.2...C.4 into eqn C.7 we obtain:
c
KsB+ K, (B — “ = KyBC (C.10)
4

Substituting for C' from eqn C.9 into eqn C.10 :

K (£-1 K,BK,; (£ —
KB+ K, (B 5L K) =2 I(BK
a1 (6K, + £1) 6K, + 5+

D)

Which, after expanding brackets, multiplying out denominators, and simplyfying yields:

(6K» (K3 + K4) + K1 K»)B? + (Kl(KB + Ky) + K1K4) B-K;S (E + K2) =0
44 44 (©.11)
All parameters are positive, hence terms in B? and B! are positive and B° negative,
thus only one positive solution can exist.

Unfortunately, the increase in complexity brought about by the introduction of non-
linear terms into equations C.1...C.4 is quite spectacular. Even the simplest non-linear
assumption, replacing equation C.1 with Michaelis-Menten kinetics, results in a set of
equations from which, beyond observing that the solution is at least third order, it has

not yet been possible to extract useful information.
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