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Abstract

Following the completion of the genomic sequencing of the model plant Arabidopsis

thaliana there has been an increased focus on understanding the characteristics of the in-
teraction between plant metabolism sequestered in various intracellular compartments.
A system of such complexity can only be fully encapsulated and understood through the
construction of computer models and the use of such models to analyse and interpret
experimental data pertaining to the system. This thesis describes the use of steady-state
stoichiometric models to study the interaction between the metabolism in chloroplast,
cytosol and mitochondria and the application of the characteristics of these models to
analyse gene expression data obtained from microarray experiments.

To begin with, independent models of light reactions, glycolysis and the TCA cycle
were constructed and a previous model of the Calvin cycle was adapted to suit the
purpose of this study. Characteristics of these models with respect to carbon flux were
investigated using stoichiometric model analysis techniques such as enzyme subset (ES)
analysis, reaction correlation coefficients (RCC) and elementary mode (EM) analysis.
The latter identified routes corresponding to the classical metabolic pathways in these
compartments and in addition some potential variants.

The independent models were then integrated using relevant transport reactions to
study the interactions between chloroplast, cytosol and mitochondria. EM analysis
of the integrated model in the absence of net carbon flux revealed a number of
routes involved in the exchange of ATP and reducing equivalents generated during
light reactions between the three compartments. Previous studies on this topic
have demonstrated the role of the triosephosphate-3-phosphoglycerate and the malate-
oxaloacetate shuttle mechanisms of the chloroplast membrane in this exchange. The
current study exemplifies the existence of other shuttle mechanisms involving glucose-
6-phosphate and phosphoenolpyruvate transporters that were not considered earlier.
Furthermore, biologically significant modes such as those that may be involved in
controlling the over-reduction of chloroplasts were identified.

The subsequent study describes a framework to derive additional information from
gene transcript data by structuring it with measures of correlation between reactions
derived from metabolic models. The RCCs generated from the integrated model were
used as a means to cluster the correlation profiles of genes coding for reactions in the
model. The resulting heatmap revealed within- and cross-pathway correlation patterns
that may be useful in identifying novel genes and for genome annotation. The heatmap
was able to distinguish the compartments in which a particular gene is more highly
expressed. This observation was later refined to predict the localisation of enzymes in
the model. Furthermore, the heatmap was capable of distinguishing isoforms of genes
coding for individual reactions in the model.
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The overall objective of this thesis is to construct and analyse a steady-state
stoichiometric model of plant central metabolism. The thesis consists of six chapters. In
the first chapter, I have given a general introduction to metabolic modelling and model
analysis techniques, and a survey of the recent scientific results. The second chapter
provides a general foundation to the aspects of plant metabolism investigated in this
thesis. In chapters 3 and 4, I describe the modelling and analysis performed during
my study to investigate plant metabolism. In chapter 5, I have presented a framework
for integrating metabolic models with gene expression data. The final chapter provides
a general discussion on the important outcomes of this thesis and some directions for
future work.
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Introduction



CHAPTER 1

Metabolic modelling

1.1 Introduction

Traditional molecular biology research has identified and characterised many of the
individual components that make up a living cell and maintain its function. The advent
of modern high-throughput molecular biology techniques such as genome sequencing,
gene expression profiling, etc. has further accelerated this process. Nonetheless, it is
increasingly evident that functions of a biological system can rarely be attributed to an
individual component. Instead, it is the interaction amongst the cell’s constituents such
as proteins, DNA, RNA and small molecules that determine the phenomena observed
at higher levels of organisation. A principal objective of modern biology is to describe
the structure and dynamics of these intracellular networks of interactions that contribute
to the structure and function of a living cell. This perspective and dynamic approach
towards understanding the behaviour and properties of biological entities is considered
to be in the area of research referred to as Systems Biology. Here, the word system
is being defined as a set of objects with relations among them, e.g. metabolites and
reactions in a metabolic system.

System-level understanding requires a set of principles and methodologies that
link the behaviour of individual components to characteristics and functions of the
system [1]. In most cases, real-world systems are too complex and understanding
them involves identifying the most relevant variables that represent the system and using
specific assumptions to represent them. Such an abstract representation of the structure
or function of a system that uses mathematical language to describe its behaviour is
referred to as a mathematical model. A mathematical model uses a set of variables that
represent the properties of individual components and a set of equations that establish
the relationship between these variables. Mathematical models can thus be used to
provide a framework for applying logic and mathematics and for reasoning in a range
of situations.

The metabolism in living cells contains a large number of reactions, most of which
are capable of converting more than one substrate into more than one product which
inturn is the substrate of one or more reactions. Therefore, a graphical representation
in which each substrate is a node and each reaction is an edge will form a metabolic
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Chapter 1 1.1. Introduction

Figure 1.1 – Typical work flow during a modelling investigation. Biologically relevant
observations are made during the interpretation/hypothesis generation phase. Adapted
from [2].

network. The representation of such a metabolic network in a mathematical form is
called a metabolic model, where metabolites are the variables and reactions and their
kinetics establish the relationship between these variables. One purpose of metabolic
modelling is to support experimental design by identifying the variables to measure
and the underlying reason for measuring them. Metabolic models can be used for
generating hypotheses through prediction and testing these hypotheses. It also tests
current knowledge and understanding of the system, i.e. can the known components
and their interactions account for observed behaviour. Construction and analysis of
metabolic models is, hence, of great scientific, medical and economic importance.

The process of building mathematical models of metabolism is an iterative one.
The starting point is an initial hypothesis: that the behaviour of the system under
investigation can be explained as a function of the collection of reactions in the
model [2]. Models are constructed based on the data collected from literature sources
and on-line databases such as KEGG† [3], MetaCyc† [4] and BRENDA† [5] (note that
† superscript will be used throughout this thesis to direct the reader to the List of URLs
section). Once the model is defined, it is interrogated to extract valuable information.
This stage of model building can be divided into two distinct phases: constructive and
analytic. Due to reasons that range from a trivial mistyping of some reaction information
to something more serious such as the omission of an essential reaction, the initial
versions of the model usually have very low interpretive and predictive capabilities.
During constructive interrogation such errors in the model are identified and rectified
and the process is repeated iteratively, until a sufficient level of accuracy is achieved. In
the next step, analytic interrogation, the model is used to study the underlying biological
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Chapter 1 1.1. Introduction

properties and behaviour of the system. The results of such an interrogation may either
lead to further refinement of the model or generate further hypotheses [2] (Figure 1.1).

A number of different formalisms are employed in constructing metabolic models,
the most common being kinetic and structural models. A kinetic model represents
a quantitative approach to metabolic modelling and contains kinetic information that
defines the temporal behaviour of a system, starting from a given initial state. For this
reason, it can be used to describe the time-dependent changes of the variables of a
system (e.g. metabolite concentrations, reaction rates) when the experimental system is
perturbed [6]. Kinetic modelling has been successfully applied to small models in which
kinetic parameters are already available or are possible to quantify. However, large
kinetic models are too complex to design and implement because of the huge volume
of quantitative information required (which is often not available) and the limitations
in the currently available theoretical and computational capabilities [7, 8]. For similar
reasons, the results obtained from such an analysis would be difficult to interpret and
may not reflect the original characteristics of the system under study.

Structural models on the other hand leave aside the many kinetic information and
consider some basic constraints arising from the network structure and thermodynamic
principles. These models are described purely in terms of the stoichiometries1 of
reactions in the system, which are often readily available. The exclusion of kinetic
data restricts structural models in terms of the level of predictions that can be made for
a given system. Nevertheless, this is in some ways compensated by the ability to build
larger structural models and determine a variety of model properties that could not be
found by any other means.

Models are either hand-built or automatically generated. Hand-built models are
a closer reflection of the system under study as the size of the system permits
clear and precise constructive and analytic interrogation of the entities involved
in the model. They are very useful for studying small structural networks (e.g.
glycolysis) or for kinetic investigations where the reaction parameters are already
known. An advantage with stoichiometric models is that they are based on well-
known stoichiometric coefficients and that they do not require determination of kinetic
parameters. With the increasing amount of genome-sequencing and annotation efforts
being undertaken, it is therefore relatively straightforward to automatically construct
organism-specific stoichiometric models of metabolism. In recent years such large-
scale models, also called genome-scale models, primarily based on genome sequence
information have been developed. The modeled organisms include many prokaryotes
such as Haemophilus influenzae [9], Escherichia coli [10] and Helicobactor pylori [11],
and eukaryotes such as Saccharomyces cerevisiae [12] and most recently the model

1 The stoichiometry of a reaction expresses the quantitative relationship between reactants and products
in a chemical reaction in mole numbers. See Section 1.3.1 for an example.
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Chapter 1 1.2. Structure of a metabolic model

plant Arabidopsis thaliana [13]. They have been used for computational studies and for
predicting the network properties and cellular behaviour under different physiological
conditions. However, when building models of this size (i.e. typically in excess of 250
reactions) the precision attributed to small hand-built models is diminished.

For all these reasons, the modelling and analysis described in this thesis solely
employ structural modelling techniques. In subsequent sections of this chapter I de-
scribe the mathematical foundations of structural modelling, various methods involved
in analysing structural models and the software employed in modelling metabolism.

1.2 Structure of a metabolic model

A structural metabolic model typically consists of a selected list of metabolic reactions
and the metabolites they are associated with, along with a description of the environment
within which the system resides. In order to construct a sufficiently realistic model that
reflects the in vivo characteristics of the system under interrogation, certain frameworks
apply when defining these entities in a metabolic model.

1.2.1 Metabolites

The set of metabolites in a metabolic model is subdivided to two subsets: internal and
external metabolites, depending on their relation to the model’s boundary. Internal
metabolites are defined within the model as those that are likely to be produced and
consumed as part of the intracellular metabolism of the system under consideration.

On the other hand, external metabolites are assumed to have concentrations that are
maintained by the environment or large enough that the changes caused by the reaction
system become negligible. Characteristics that determine the externality of a metabolite
are as follows:

• Source or sink metabolites that are consumed (e.g. glucose) and/or produced (e.g.
ethanol) by the system. Their amount is usually assumed to be constant, due to
availability in large excess or well-tuned biological regulation.

• Metabolites that are in constant exchange with the extracellular environment,
such as water and carbon dioxide, whose concentrations are not affected by the
reactions in the model.

• Any polymeric metabolite, such as proteins (e.g. myoglobin and albumin),
nucleotides (e.g. DNA and RNA) and polysaccharides (e.g. starch and glycogen),
whose stoichiometry does not imply the number of monomers incorporated into it.
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• Metabolites that are highly connected (i.e. participate in many reactions) within
the model (e.g. protons, ATP/ADP and NAD+/NADH). They may be made ex-
ternal to reduce the connectivity within the model and to increase the interpretive
and predictive capabilities of the model.

In some cases, externality of a particular metabolite is determined by the expected
outcome of the modelling investigation. For example, by changing the source or sink
metabolites the behaviour of the system under different environmental conditions can
be studied.

1.2.2 Reactions

A reaction is the conversion of one set of metabolites, called substrates, into another
set, called products (Figure 1.2(a)), in amounts specified by the reaction stoichiometry.
Most reactions are catalysed by enzymes, while the others are ‘spontaneous’. The set
of reactions in a metabolic model can be subdivided into subsets of reversible (bi-
directional) and irreversible (uni-directional) reactions. In principle, all biochemical
reactions are reversible. However, some reactions can be considered irreversible in vivo

if they exclusively proceed in one direction. In a metabolic model, reactions are defined
as irreversible in order to maintain the metabolic flux and to determine the directionality
of the overall process. Reversibility of a reaction is an important aspect to be considered
while defining a metabolic model [14].

An exception to normal reactions are transport reactions, which do not necessarily
involve any enzymatic conversions where the substrate and the product are the
same chemical substance. Transport reactions are mediated by a set of molecules
called transporters, which account for the movement of metabolites between cellular
compartments. In structural models, such reactions are represented as interconversions
of metabolites which refer to the same chemical species. For example, import of glucose
into the cell can be represented as x glucose→ glucose, where the substrate and product
represent the external and internal ‘versions’ of glucose, respectively. Those reactions
that consume or produce external metabolites are referred to as ‘exchange reactions’.

1.3 The mathematical basis of metabolic modelling

There exist a number of fundamental concepts and principles based on which metabolic
models can be successfully defined and analysed. The following sections will aim to
describe some of these concepts with appropriate examples, to a level that is required
for understanding the approaches taken in this thesis.
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X1 EC2BA X2

D

t1 r1 r2 r6 t2

r3 r4 r5

(a)

t1 : X1 −→ A
r1 : A−→ B
r2 : 2B−→ C
r3 : 2B←→ D
r4 : C−→ D
r5 : D−→ E
r6 : C−→ E
t2 : E−→ X2

(b)

r1 r2 r3 r4 r5 r6 t1 t2
A
B
C
D
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0
0
0
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0
−1

0
1

1
0
0
0
0

0
0
0
0
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
(c)

Figure 1.2 – Formalisms in representing metabolic models. (a) A simple metabolic
model. X1 and X2 are external metabolites whose concentrations are fixed. t1 and t2
represent the exchange reactions that consume and produce external metabolites,
respectively. A, B, C, D and E are internal metabolites whose rates of formation equal
their rates of utilisation. r1, r2, r3, r4, r5 and r6 are reactions. Arrows show the direction
of flow of matter. (b) A symbolic list of reactions representing our simple metabolic
model. (c) Stoichiometry matrix N representing the reaction pathway specified in
Figure 1.2(a). Columns and rows correspond to reactions and metabolites involved in the
reaction, respectively. The elements of the matrix represent stoichiometric coefficients
of the metabolites in the corresponding reaction and their symbol denotes whether they
are consumed (-) or produced (+).

1.3.1 Representation of metabolic models

The interconnectivity of metabolites within a network of biochemical reactions is
represented by reaction equations defining the stoichiometric conversion of substrates
into products for every reaction. A number of distinct formalisms exist for the
representation of such biochemical reaction networks. Figure 1.2(a) illustrates the
representation of a metabolic model as seen in basic chemistry textbooks and the
symbolic list of reactions shown in Figure 1.2(b) is widely used as input in modelling
software and for storage in databases. However, all methods of analysis require a
mathematical representation of the metabolic model, the starting point for which is
provided by the stoichiometry matrix (Figure 1.2(c)) [15]. The stoichiometry matrix
contains all the information about how substances are linked through reactions within
the network. It indicates the topological structure and architecture of the network, and a
knowledge of its properties is prerequisite for any mathematical analyses of biological
reaction networks [16, 17].
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si

v1

v2

v3

Figure 1.3 – An illustration to demonstrate the steady-state approximation.

Coefficients of all reactions in a system can be used to create a stoichiometry
matrix N of dimension m×n, whose rows m and columns n correspond to the internal
metabolites and reactions, respectively. Note that the stoichiometry matrix representing
our simple metabolic model (Figure 1.2(c)) only contains rows representing the internal
metabolites and columns representing the internal reactions (including exchange reac-
tions). Such a matrix is called the internal stoichiometry matrix2. Each element ni j in
this matrix represents the stoichiometric coefficient of metabolite i in reaction j. ‘-’ and
‘+’ signs are used to denote whether a particular metabolite is consumed or produced.
‘0’ represents a metabolite that is neither consumed nor produced. Construction of an
internal stoichiometry matrix is the extent of the system definition required for many
modes of model interrogation. Analytical methods based on the direct interrogation of
N can be employed to study a number of properties of the metabolic network and are
described further in Section 1.4.1.

In cases where the production and consumption of the external metabolites are
to be computed, an external stoichiometry matrix, with additional rows representing
the involvement of externals in the reaction, has to be constructed [15]. The external
stoichiometry matrix is particularly useful in analysing mass flow through the system.

1.3.2 The steady-state approximation

One characteristic feature of biological systems is that they are open, that is, they
interact with their environment through the exchange of matter and energy. This
means that there is a constant flux of source and sink metabolites into and out of
the system, respectively. However, in case of a non-growing system, the total mass
remains conserved as the net import of mass into the system per unit time is equal to
the net export per unit time. This situation of the system is referred to as the steady

state [18, 19].
2 Unless stated otherwise N represents the internal stoichiometry matrix in this thesis.
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v1

v2

v3

v2

(a)

v1

v2

v3

v2

(b)

Figure 1.4 – Graphical representation of the subspace. (a) A three dimensional space
where the axes represent fluxes through all individual reactions in the metabolic network.
(b) The steady-state constraint imposed on the stoichiometry matrix limits the fluxes to
a subspace. Adapted from [8].

The steady-state approximation is extensively used in metabolic modelling to study
complex biochemical systems as it allows the modeller to define the concentrations of
all pathway substrates and products as constant. This implies that the rates of formation
of all internal metabolites must always be equal to their rates of utilisation and that their
total concentration is time invariant [19]. Consider the simple metabolic system shown
in Figure 1.3: if S is the concentration of internal metabolites then total input into the
system must equal the net output from the system in order to keep S constant. Under the
steady-state approximation, the rate of change of concentration of a single metabolite si

is given by:

dsi

dt
= v1 + v2− v3 = 0. (1.1)

In general, the rate of change of the concentration of a metabolite is the sum of
the reaction rates, each weighted by the corresponding stoichiometric coefficient of the
metabolite. If v and s represent vectors whose elements correspond to the reaction rates
and the concentration of metabolites, respectively, in a metabolic system, then the rate
of change of the concentration of all metabolites in the system can concisely be written
as:

ds
dt

= N ·v. (1.2)

At steady state, these concentrations are constant:

N ·v = 0. (1.3)
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As an example, our steady-state model shown in Figure 1.3 gives the equation

ds
dt

=
[
1 1 −1

]
·

v1

v2

v3

 = 0. (1.4)

Both kinetic and structural modelling are based on the stoichiometric or mass
balance constraint imposed on the system by Equation 1.3. The equation lends itself
to further analysis centred around the concepts of linear algebra and allows us to
employ mathematical techniques and concepts to solve biological problems. In kinetic
modelling v are functions of s that are solved to determine the concentrations of the
substrates at steady state.

1.3.3 The null-space matrix

In structural modelling, fluxes (v) in the homogeneous system3 of linear equations
represented by Equation 1.3 are considered as variables and hence, the equation is
usually underdetermined as there are infinitely many flux solutions. The trivial solution
v = 0 always fulfils Equation 1.3. However, this would mean that all reactions in
the system do not carry flux. Non-trivial and biologically meaningful solutions for
Equation 1.3 can be obtained using linear algebraic methods by calculating the subspace
of all possible solutions. This subspace is called the null space and it can be derived
from the stoichiometry matrix N either by applying Gaussian elimination [20, 21] or
Singular Value Decomposition (SVD) [22, 23] to it. Figure 1.4(b) shows a graphical
representation of all solutions of the null space obtained from the stoichiometry matrix,
where every point within the subspace represent a solution (flux distribution) that obeys
the steady-state assumption.

A null space can be described mathematically by a kernel matrix K4, whose
columns are linearly independent5 vectors that together form a basis spanning the vector
space [21, 24]. For example, if the set of vectors B = {v1,v2,v3, ...,vn} are linearly
independent and span the vector space K, then the set B is called the basis of the vector
space K. The null space of the stoichiometry matrix N is the set of all vectors in K such
that:

N.K = 0. (1.5)

It is often easiest to describe the null space of a matrix by finding a basis for the null
space. The number of vectors in the basis is called the dimension of the null space. In a

3 A linear equation f (x) = C is called homogeneous if C = 0.
4 Unless stated otherwise, K will represent the (right) null-space of N henceforth in the thesis.
5 A vector b is called a linear combination of the vectors v1,v2,v3, ...,vn if it can be expressed in the form

b = x1v1 + x2v2 + x3v3 + ...+ xnvn, where x1,x2,x3, ...,xn are scalars. None of the vectors in K can be
written as a linear combination of finitely many other vectors in the collection.
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EC2BA

D

(a)

EC2BA

D

(b)

EC2BA

D

(c)

Figure 1.5 – Flux distributions (black arrows) representing the null-space vectors
(Equation 1.6) of the simple metabolic model in Figure 1.2(a). The external metabolites
are not shown.

metabolic model, the dimension of the null-space is the difference between the number
of reactions in the model and the rank of the stoichiometry matrix N (rank(N)). The null
space contains all of the possible solutions and hence flux distribution vectors (v) that
satisfy Equation 1.3.

However, certain limitations exist in the representation and analysis of the null
space represented by the kernel matrix. As an example, consider our simple metabolic
network in Figure 1.2(a). A possible basis for the null space of the stoichiometry matrix
(Figure 1.2(c)) is:

K =



−2 0 0
−2 0 0
−1 0 1

0 0 −1
−1 1 1
−1 1 0

0 −1 0
−1 0 0


, (1.6)

where the three vectors correspond to the flux solutions a, b and c shown in Figure 1.5.
In biochemical terms, negative values for irreversible reaction rates are impossible
and therefore vectors with negative values have no biochemically meaningful infor-
mation [16]. The basis vectors in Equation 1.6 and its representation in Figure 1.5
indicate that the kernel matrix, in general, is not unique. For example, one of the
columns of K can be substituted with another feasible flux distribution vector (e.g.
v = (1,1,1,0,0,0,1,1)T ). Hence, the real number of the feasible metabolic fluxes in
the model can only roughly be estimated from the dimensions of K [25]. Note also
that the kernel matrix does not take into consideration either the reversibility or the
capacity restrictions of the reactions in the model [25]. Some of these shortcomings of
the null space are overcome by constraint-based approaches described in Section 1.4.
Nevertheless, some very important steady-state properties of metabolic models can be
derived from the null space.
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Figure 1.6 – Methodologies and approaches employed in analysing structural metabolic
models. Adapted in part from [27].

1.4 Analysing structural models

A variety of approaches are employed in analysing structural metabolic models. The
majority of the approaches depend on certain constraints that restrict the behaviour of
the model, such as the steady-state mass balance of metabolites or the irreversibility of
reactions due to thermodynamic limitations (Table 1.1). These constraints can be both
invariant (i.e. non-adjustable) or adjustable [8]. The former can be used to analyse the
general solution space that encompasses all possible steady-state behaviours (e.g. flux
distributions) of the system and the latter to identify particular behaviours within the
allowable solution space, such as behaviours that produce the highest possible growth
rate or production of a particular metabolite [26].

Approaches to analysing structural models can, hence, be rationally classified based
on the constraints employed as those that focus on the properties of the entire space

Table 1.1 – Physiochemical constraints used for analysing structural metabolic models.
Adapted from [8] and [27].

Constraint Type Mathematical formulation
Systemic stoichiometry Invariant N.v = 0 (defines the solution space)
Irreversibility of reactions Invariant v > 0
Enzyme/transporters capacities Invariant v < vmax
Measured fluxes Adjustable v = vm or vm,min < v < vm,max
Regulatory constraints Adjustable Example: v1 = 0 if (v2 6= 0)
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Figure 1.7 – Orphan and dead-end metabolites. (a) The simple metabolic model
in Figure 1.2(a) is slightly modified to indicate an orphan (F) and a dead-end (D)
metabolite. Reaction r3 or r4 can be made reversible to make D live. (b) Presence
of these metabolites in a model can be identified from its stoichiometry. Notice the
stoichiometry of the metabolites D and E.

of possible flux distributions, and those for determining particular flux solutions in
it. Another very useful approach to identify the underlying properties of a metabolic
network is the direct investigation of its stoichiometry matrix. An illustration of the
major approaches involved in analysing metabolic models can be seen in Figure 1.6.
The rest of this section has been organised with the objective of a convenient exposition
of the major approaches, rather than as a full-blown review. Wherever possible, readers
are directed to detailed reviews on selected topics.

1.4.1 Stoichiometry matrix analysis

Stoichiometry defines the relationship between reactants and products in a balanced
chemical reaction. The stoichiometry matrix forms the most basic feature of a
biochemical reaction network. Direct analysis of the stoichiometry matrix enables us to
draw useful conclusions regarding the inherent network structure and the organisation
of the metabolites and reactions in the network.

1.4.1.1 Orphan and dead-end metabolites

Despite the care and effort with which a structural model may be constructed, the
resulting network can fall short of biological expectation, the most likely problem being
the existence of a large number of orphan or dead-end metabolites. The former are
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those metabolites in the model that are either produced and consumed by a single
reaction. Metabolites of this type clearly cannot be balanced, and hence reactions
involved with them, and quite possibly additional reactions, must be dead6 [28]. Dead-
end metabolites, on the other hand, are involved in more than one reaction, but are
neither produced nor consumed by another reaction. Like orphan metabolites they will
also result in dead reactions, but this problem can be resolved by making one of the
reactions involved with them reversible.

The presence of any of these metabolites will indicate the existence of disconnected
subnetworks within the model. In models that are generated directly from databases,
both kind of metabolites can originate either from inaccuracies or inconsistencies in the
database, or from incorrect interpretation of the data contained therein [28]; in other
cases the situation simply reflects a lack of knowledge.

Orphan and dead-end metabolites in a metabolic model can be identified from its
stoichiometry matrix. While rows with only one negative or positive coefficient indicate
orphan metabolites, rows with only negative or positive coefficients represent dead-end
metabolites. Identification and effective handling of these metabolites is a major step in
model definition and constructive interrogation.

1.4.1.2 Conservation relations and conserved moieties

A characteristic feature of biological networks is the conservation of certain molecular
subgroups, termed moieties [16, 29]. A typical example of a conserved group is the
conservation of the adenine nucleotide moiety, i.e. the total amount of ATP, ADP and
AMP is constant during the evolution of the system. Other common examples include
the conservation of pyridine nucleotides between NAD+ and NADH, proteins between
phosphorylated and unphosphorylated states, and so on. When one of these cosubstrates
is consumed, the other is produced, keeping the sum of both concentrations constant.
Figure 1.8(a) illustrates a simple network that displays a conserved moiety, in this case
the total mass, M1 + M2 remains constant during the evolution of the network.

A general property of any conservation relation τ between moieties in a metabolic
model is that it represents a combination of rows in its stoichiometry matrix that are
linearly dependent7 [16]. Linear combination of the rows of the stoichiometry matrix N
can be represented by NT .τ, where NT is the transpose of N. To find linearly dependent
rows τ must fulfil:

NT .τ = 0, (1.7)

where 0 is a zero column (m× 1) vector. This means that τ must lie in the null space
of the transpose of N (also called the left null space of N [22]). The dimension of the

6 Reactions that cannot carry flux at steady-state (Section 1.4.2.1).
7 See footnote on page 10 for more on linear dependency in a matrix.
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Figure 1.8 – A simple conservation relationship model (a) and its stoichiometry matrix
(b). Notice the two rows representing the stoichiometry of M1 and M2 ([-1,1] and [1,-1]
respectively). Since either row can be derived from the other by multiplication by -1,
they are linearly dependent.

left null space represent the number of linearly independent conservation relations in a
model and can be obtained by subtracting the number of rows of N (m) with the rank
of N (rank(N)) [29]. Identifying conservation relations is useful in detecting conserved
moieties in metabolic models.

Interested readers are referred to Sauro and Ingalls [29] for a complete description
of several methods and corresponding algorithms for the determination of conservation
relationships in a metabolic model.

1.4.1.3 Graph-based methods

The biochemical interactions in biological networks can be conveniently represented
as mathematical graphs, in which the nodes (also called vertices) represent the
constituent building blocks (e.g., genes, proteins, metabolites, etc.), and the edges
(links connecting pairs of vertices) represent the interactions between them [30, 31].
Depending on the nature of these interactions, edges can be directed or non-directed. In
graphs with directed edges, the interaction between any two nodes has a well-defined
direction, which represents, for example, the flux from a substrate to a product in a
metabolic reaction, whereas graphs with non-directed edges are used to represent mutual
interactions as their edges do not have an assigned direction [31].

The mathematical notation for a graph composed of N nodes and E edges is G(N,E).
The structure of this graph can be represented by means of an adjacency matrix A(n,m)
whose element ai j is 0 if the nodes are not connected and 1 otherwise. Graphs
representing metabolic networks can be constructed from the stoichiometry matrix by
converting it to an appropriate adjacency matrix [32].

A number of formalisms exist for the representation of metabolic networks as
graphs (Figure 1.9). In substrate graphs, the metabolites are represented as nodes
and connected by edges, if they occur in the same reaction. Whereas in reaction
graphs, reactions are represented as nodes and are interconnected if they use at least
one common metabolite. A bipartite graph is characterised by two separate classes of
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3-phosphoglycerate (3PGA) + ATP PGK−→
(a)

1,3 bisphosphoglycerate (1,3BPGA) + ADP

3PGA 1,3BPGA

ATP ADP

(b)

PGK

(c)

3PGA 1,3BPGA

ATP ADP

PGK

(d)

3PGA 1,3BPGA

ATP ADP

(e)

Figure 1.9 – A simple reaction catalysed by the enzyme phosphoglycerate kinase (PGK)
(a) is represented using the four formalisms in representing metabolic graphs, namely,
substrate graphs (b), reaction graphs (c), bipartite graphs (d) and hypergraphs (e).

nodes representing reactions and metabolites, the edges connecting the reactions to the
metabolites that they interconvert. In this type of graph edges are used to represent
additional data (called edge weights) such as stoichiometric coefficients, confidence
levels, strengths, or reaction speeds. Examples for the bipartite graph representation
of metabolic models can be found in the KEGG database. Another familiar method
for representing metabolic graphs is called hypergraphs, where an edge relates a set of
substrates to a set of products. This type of graph is found in MetaCyc.

The representation of complex biochemical networks as graphs has made it possible
to systematically investigate the topology and function of these networks using well-
defined graph theoretical concepts. Numerous measures have been defined for this
purpose; they include:

• Degree

The nodes of a graph can be characterised by the number of edges that they have
or the number of other nodes to which they are adjacent [31]. This property is
called the node degree or connectivity, k. In directed graphs, there is an incoming
degree (in-degree) which denotes the number of edges that point to a node, and
an outgoing degree (out-degree) which denotes the number of edges that originate
from it.

• Degree distribution

While node degrees characterise individual nodes, the degree distribution can be
used to quantify the diversity of the whole graph. The degree distribution P(k) can
be calculated by counting the number of nodes N(k) that have k = 1, 2, 3... edges
and dividing it by the total number of nodes N [30]. The degree distributions of
metabolic networks have been claimed to follow a well-defined functional form
P(k)∼ Akγ, called the power law, where γ is the degree exponent and ∼ indicates
‘proportional to’ [33, 34]. The value of γ determines the role of highly connected
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nodes8 in the graph and is usually in the range 2 < γ < 3 [35]. The absence of a
typical degree is why these networks are called scale free [31].

• Shortest path and mean path lengths

The number of edges that exist between two nodes on a graph is called the path
and the shortest path connecting these two nodes is called the path length. In most
graphs, there is a relatively short path between any two nodes, and its length is
in the order of the logarithm of the network size [35]. This small-world property
is claimed by some to characterise most complex networks, including metabolic
networks [34].

Measures like these can be used to predict the structural and dynamic properties of
the underlying network. Such predictions can suggest new biological hypotheses and
drive subsequent experimentation. Furthermore, novel graph analysis techniques em-
ploying these measures may provide powerful tools to address fundamental biological
questions at the system level. One such technique referred to as damage analysis, is
used to investigate the extent of loss induced in a metabolic graph by the removal of
a single enzyme [36]. The analysis is initiated by the removal of all those reactions
that are exclusively associated with an enzyme of interest to determine the number of
metabolites whose production the absence of the enzyme prevents. Damage analysis
carried out by Lemke et al. on a graph representing E. coli metabolism showed that the
extent of the damage relates to the importance of the enzyme [36]. They found that
the loss of 91% of enzymes (one at a time) caused little damage to the network whilst
9% caused serious damage. Experimental results confirmed that this group contains the
majority of enzymes that are essential to the viability of E. coli.

1.4.2 Null-space analysis

As described in Section 1.3.3, the null space of the stoichiometry matrix defines the
metabolic capabilities of the system. It is therefore essential to define and analyse the
kernel matrix to answer biological questions pertaining to the system under study. A
number of analytical procedures exist, which are described in the rest of this section.

1.4.2.1 Dead reactions

Dead reactions [28] or strictly detailed balanced reactions [16] are those reactions in a
metabolic model that can only have a zero rate at steady state. This applies whenever
an orphan metabolite participates in that reaction. An example of a dead reaction is
the reaction r7 leading to the orphan metabolite F in Figure 1.7(a). Dead reactions can

8 Also referred to as hubs, these are essential for the integrity of the network.
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Figure 1.10 – Matrix representing a zero row indicating the dead reaction r7 in the null
space of the stoichiometry matrix in Figure 1.7(b).

easily be identified from the kernel of the null space if their corresponding row is a zero
row (Figure 1.10), indicating that they are incapable of carrying flux at steady state.

Identifying dead reactions in a reconstructed metabolic model is a vital step in de-
tecting potential errors in the model definition, such as incorrect reaction stoichiometries
and incomplete or inaccurate data (i.e. missing reactions due to incorrect annotation).

1.4.2.2 Enzyme subset analysis

Enzyme subsets (ES), or reaction subsets9, are groups of enzymes in a metabolic model
that operate together in fixed flux proportions at steady state [37]. Enzymes participating
in an ES must fulfil the following two conditions: the ratio of any random pair of flux
vectors satisfying the steady-state approximation has to be the same non-zero value, and
the orientations of the irreversible reactions involved must not contradict each other.
Typical examples include reactions in a linear system, where the flux through each of
the reactions is equal in any steady-state flux distribution. An illustrative example of an
ES in a slightly more complex system, represented by the simple metabolic model in
Figure 1.2(a), is shown in Figure 1.11. If any reaction in this ES is removed from the
model, then the other reactions in the subset cannot work properly and they will have a
zero flux in steady state.

ESs can be identified from the null space of the stoichiometry matrix by finding the
rows that only differ by a (scalar) factor. For example, the null space of the simple
metabolic model in Figure 1.2(a) indicates the presence of six ESs, one containing three
reactions and the other five containing one reaction each. Rows corresponding to the
reactions r1, t1 and t2, forming the larger ES, differ by a factor of two (Figure 1.11(b)).
The other five ESs are formed by uncoupled rows in the kernel matrix. The algorithm
for detecting enzyme subsets as outlined in [37] is given below:

9 It is preferable to use the term reaction subset rather than enzyme subset as it is reactions, not enzymes
that carry flux. Moreover, an enzyme may catalyse more than one reaction, all of which may not be
part of the same subset.
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Figure 1.11 – Enzyme subsets (a) and its null-space matrix (b).

• Detect all row vectors of K that are null vectors (i.e. imply dead reactions that
eventually end up in a single subset).

• Normalise each of the remaining row vectors of K by dividing by its greatest
common divisor.

• Compare any normalised row vector with any other. If they are the same
and there are no contradictions in the directionalities of irreversible reactions,
the corresponding reactions belong to the same subset. The quotient of the
normalisation factors gives the flux ratio.

ESs can be used to transform a complex metabolic model into a simplified model
with equivalent topological properties by replacing the reactions involved in a subset
by a single overall reaction [38]. This not only aids in the interrogation of the
model but also simplifies it for more computationally intensive analysis methods
(Section 1.4.3.1) [38]. Another important aspect is that enzymes belonging to the same
subset can be assumed to share similar patters of genetic regulation. Schuster et al. used
a model of the central metabolism of the yeast S. cerevisiae to study the correlation
between enzyme subsets and microarray10 expression data [38]. They showed that
variation in the relative change of expression within the enzyme subsets is significantly
lower when compared to the enzymes grouped randomly. Reed and Palsson [39]
obtained similar results from a study performed on a model of E. coli. This property
of enzyme subsets may suggest the regulatory structure of the metabolism [40, 11]
and can aid genome annotation by suggesting missing enzymes from ‘broken’ subsets.
ESs have been extensively used within our group to study their relationship with gene
10 More on microarray data analysis can be found in Section 1.5.
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expression [41]. It was observed that genes coding for reactions in a subset showed
correlated changes in expression and that many subsets belong to known operons or
regulons. In a later study ESs were used to simplify large metabolic models [42].

1.4.2.3 Reaction correlation coefficients and metabolic trees

The reaction correlation coefficient (RCC) describes the correlation between the fluxes
carried by reactions at all possible steady states of the system [43]. It can be regarded
as a quantitative extension of the qualitative concept of reaction subsets described in the
previous section.

RCCs can be calculated from the null space K of the stoichiometry matrix. As
discussed earlier in Section 1.3.3, the null space is spanned by the column of the
n× d kernel matrix, where n is the number of reactions and d is the dimension of
the null space. Each reaction is therefore associated with a d dimensional row vector
(Equation 1.6). One apparent drawback of this approach is that K is non-unique and
depends upon both the algorithm used for its calculation and the initial row and column
order of N. However, the angles between the row vectors of any K for a given N
are unique, provided K is orthogonal11 [43]. Hence, RCCs are calculated from the
orthogonal K matrix. Other modifications of K prior to the calculation of RCCs include
the removal of zero row vectors (dead reactions), as no angle can be meaningfully
assigned between a zero vector and any other. Moreover, isostoichiometric reactions
are removed from the model, as they do not add any new information to the structural
model and distort the results obtained from it [43].

The correlation between fluxes carried by reactions in the K matrix is measured by
the cosine of the angle (cos(θK

i j)) between the row vectors Ki and K j, i.e.

cos(θK
i j) =

KiKT
j√

KiKT
i

√
K jKT

j

(1.8)

cos(θK
i j), denoted with the symbol φ, is called the reaction correlation coefficient.

Statistically it relates to the Pearson’s (population) correlation coefficient12, ri j, between
the fluxes carried by the pair of reactions i and j for all possible steady states of the
system. Values of φ fall within the range−1≤ φ≤ 1. When φ is equal to±1, the rows Ki

and K j are parallel, which implies that they carry steady-state flux in a fixed ratio. This
is equivalent to stating that these reactions are members of the same subset. Whereas

11 That is, KKT = I, in which case column vectors are orthogonal, and K represents an orthogonal basis
of the null space of N.

12 Pearson’s correlation coefficient (r) [44] is a measure of the correlation (linear dependence) between
two variables X and Y, giving a value between +1 and 1 inclusive. It is widely used in the sciences as
a measure of the strength of linear dependence between two variables. Please see Section 1.5 for more
on Pearson’s correlation coefficients and correlation analysis.
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Figure 1.12 – Schematic representation of a hierarchical agglomerative clustering
algorithm for five object A-E. See text for detailed description. Adapted from [45].

when φ is equal to 0, vectors Ki and K j are orthogonal, stating that the reactions i and j

are stoichiometrically disconnected subsystems [43].
Absolute values of RCCs can be used as a similarity measure for clustering reactions

based on the correlation between fluxes carried by them. Clustering is one of the unsu-
pervised approaches to classify data into groups with similar patterns that are character-
istic to the group. There are many methods of clustering and discussing each one of them
is beyond the scope of this thesis. Interested readers are referred to [45] for a detailed de-
scription of the various clustering methods. Nevertheless, it must be noted that through-
out this thesis hierarchical agglomerative clustering method is used for classifying data.
This method involves grouping objects into clusters and specifying relationships among
objects in a cluster, resembling a phylogenetic tree. The first step in the procedure for
hierarchical agglomerative clustering is the calculation of pairwise distance or similarity
measures (in this thesis either Pearson’s correlation coefficient or reaction correlation
coefficient is used as the pairwise similarity measure) for the objects to be clustered.
Based on the pairwise distance between them, objects that are similar to each other are
grouped into clusters. Once this is done, pairwise distance between the clusters are re-
calculated, and clusters that are similar are grouped together in an iterative manner until
all the objects are included into a single cluster [45]. See Figure 1.12 for a schematic
representation of a hierarchical clustering algorithm. Several methods exist by which the
distance between the clusters — or between clusters and objects — can be measured. In
this study, however, the weighted (where the size of the cluster is accounted for) average
distance between every point in a cluster and every point in the other cluster is taken as
the distance between clusters. The clustering algorithm used here to achieve this is
called the WPGMA (Weighted Pair Group Method using Arithmetic Averaging) algo-
rithm [46]. The result of such clustering algorithms are dendrograms representing the
various clusters in the data. Dendrograms are usually obtained in Newick format13 and
can be visualised using phylogenetic tree viewing programs such as NJPlot† [47] and

13 Standard representation of a graph theoretical tree in text format using parentheses and commas.
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Figure 1.13 – Dendrogram representing the correlation between fluxes carried by
reactions in the simple model described in Figure 1.2(a).

MEGA† [48] (software of choice). Other popular multipurpose phylogenetic software
packages include freely-available PHYLIP† and SplitsTree† and commercial PAUP†.

A dendrogram generated by clustering RCCs of the simple metabolic model in
Figure 1.2(a) using the WPGMA algorithm is shown in Figure 1.13. Note that
the reactions that carry similar flux are clustered together. Poolman et al. used
RCCs and metabolic trees to decompose large metabolic models into small functional
modules [43]. In addition to their application in the construction of metabolic trees
and modular decomposition, RCCs can be used as a convenient means of identifying
disconnected subnetworks in metabolic models. RCCs are used later in this thesis to
investigate a model of plant carbon metabolism and to integrate metabolic models with
gene expression data.

1.4.3 Pathway analysis

Pathway analysis deals with the discovery and analysis of biologically meaningful
routes (or pathways) in metabolic networks that define the capabilities of the system [14,
17, 49]. Reaction routes are represented by a set of basis vectors in the null space of
the stoichiometry matrix. However, as discussed earlier, these vectors are not unique,
as there may be many sets of vectors that can be used to span the null space that are
both theoretically and biochemically feasible. For this reason, the reaction routes as
determined by these vectors cannot be an invariant property of the network. Moreover,
they do not take into consideration the irreversibility of some reactions in the network.
Information about irreversibility defines the thermodynamic properties of the network.

To overcome this obstacle of the consideration of irreversibility constraints, the
vector of fluxes, v, is decomposed into two subvectors, vrev and virr , which include
the fluxes of the reversible and irreversible reactions, respectively. Provided that the
directions of irreversible reactions are appropriately defined, their flux rates are always
positive:

virr ≥ 0 (1.9)
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Figure 1.14 – Representation of the convex flux cone. The generating vectors represent
fluxes and the polyhedron is to visualise the three-dimensional structure of the cone.

Any particular inequality, specified in the above relation (Equation 1.9) together
with Equation 1.3, shrinks the region of admissible steady-state flux vectors to a subset
of the null space in the positive orthant, referred to as the half-space of the null space of
N. The intersection of all these half-spaces takes the shape of a convex polyhedral cone,
called the flux cone, with a finite number of edges (Figure 1.14). Within this flux cone
lie all the possible steady-state solutions and hence the flux distributions under which
the system can operate. By virtue of the cone being convex, any vector within the cone
can be represented as a non-negative linear combination of the generating vectors of the
cone, which corresponds to its edges. Moreover, the edges of the cone are unique except
for arbitrary scaling and correspond to biochemically feasible pathways [17].

To analyse the properties of flux cones for the discovery and analysis of pathways
within metabolic networks, linear algebraic methods have been replaced with the
mathematics behind the study of convex spaces14 [17, 50]. Convex analysis is a branch
of mathematics that can be used to analyse systems of linear inequalities - it can be
used to overcome the shortcomings associated with reaction directionality and non-
uniqueness [51]. A detailed description of two popular approaches that use algorithms
developed using convex analysis to detect routes within metabolic networks forms the
rest of this section.

1.4.3.1 Elementary modes analysis

The mathematics of convex analysis has been used in the development of algorithms for
computing unique sets of generating vectors of convex polyhedral cones. These vectors
are called flux modes (Figure 1.14). A flux mode can be described as a steady-state flux
distribution in which the proportions of fluxes are fixed while their absolute magnitudes

14 A convex space is one that satisfies the following condition: given any two points in the space, the line
segment in between the points is completely contained in the space.
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are indeterminate [50]. It is called an ‘elementary (flux) mode’ (EM) if, and only if, it
satisfies the conditions [49, 50, 52]:

c1. Steady state: There is no net consumption or production of any internal metabo-
lites, so that it satisfies the steady-state approximation (Equation 1.3).

c2. Feasibility: All fluxes in the mode are thermodynamically feasible, i.e. all irre-
versible reactions in the mode proceed in the appropriate direction (Equation 1.9).

c2. Non-decomposability: This means that the mode cannot be represented as a
positive linear combination of other flux modes that satisfy the conditions c1 and
c2 and are not zero vectors. In other words, a flux mode cannot be decomposed
into further modes. Therefore, these modes represent minimal functional units
within the network. Here, ‘minimal’ means that if only the reactions belonging
to this set were operating, removal of one of these would lead to the cessation of
any steady-state flux in the rest of the mode.

Thus, an elementary mode (EM) can be defined as a minimal set of reactions that
could operate at steady state with all irreversible reactions proceeding in the appropriate
direction [14, 49]. With this definition, the set of EMs in a metabolic network can have
the following three properties [50, 53]:

i. There is a unique set of EMs for a given network. Therefore, this set is an invariant
systemic property of the metabolic network being investigated.

ii. Each EM is genetically independent15 or non-decomposable. That is, it consists of
the minimum number of reactions that it needs to exist as a functional unit. If any
reaction in an elementary mode were removed, the whole elementary mode could
not operate as a functional unit.

iii. The elementary modes are the set of all routes through a metabolic network
consistent with property ii.

Consider the metabolic network shown in Figure 1.2(a). The three EMs that occur
in this network are shown in Figure 1.15 (EMs 1, 2 and 3). The pathway represented by
EM 1 is built up by the reactions t1, r1, r2, r6 and t2. It describes the uptake of external
metabolite X1 and the subsequent synthesis and excretion of X2 via metabolites A, B,
C and E. EM 1 fulfils the steady-state approximation as none of the internal metabolites
has unbalanced production and consumption. It is thermodynamically feasible as all
the irreversible reactions proceed in the appropriate direction. Finally, EM 1 is non-
decomposable, as it cannot be decomposed into further modes. Similar properties
characterise the other two EMs 2 and 3.
15 Metabolic routes that are linearly dependent but defined as independent genotypes.
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Figure 1.15 – Various modes in the metabolic network shown in Figure 1.2(a). EM1,
EM2 and EM3 represent the three EMs, while routes M1 - M4 represent modes that are
non-elementary.

On the other hand, consider the other possible routes through the metabolic network
as shown by the remaining modes M 1 - M 4 (Figures (d)-(g)) in Figure 1.15. Here,
mode M 1 is formed by complete balancing of only internal metabolites. Such modes
are called futile (or substate) cycles. They are not generally considered as EMs (even
though they satisfy conditions c1, c2 and c3) as they are thought to be biologically
wasteful [14, 54]. However, if they are ‘driven’ i.e. there are other external metabolites
being consumed then they are considered as genuine EMs. If no other substances are
involved in these modes then there is no thermodynamic driving force and hence no net
flux. Modes M 2 and M 3 are not elementary as they can be decomposed into further
modes. For example, mode M 2 can be decomposed into EMs 1 and 3. Finally, mode
M 4 is not an EM since it is a futile cycle and is not thermodynamically feasible (the
irreversible reaction r6 proceeding in an inappropriate direction).

Several algorithms have been proposed for the enumeration of EMs such as
the canonical basis approach [49], the null-space approach [55] and the binary
approach [56]. Despite these algorithmic advances, the computation of EMs for larger
metabolic models meets the problem of combinatorial explosion in the requirement for
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computational memory and processing power. The number of EMs was found to grow
exponentially with increasing network size [57]. Because of this limitation, EM analysis
has mainly been applied to networks of small or moderate size. However, the explosion
of the number of EMs can be controlled by carefully managing the irreversible reactions,
enzyme subsets and highly connected metabolites in the model. While the former reduce
the number of EMs by imposing additional thermodynamic constraints to limit the size
of the solution space, enzyme subsets help to reduce the load on the computer by making
it possible to replace a set of reactions with a single reaction (see Section 1.4.2.2).
Highly connected metabolites can be defined as external to split the network into sub-
networks, which are easier and possibly more convenient to analyse [58].

EM analysis has proven useful in the interrogation of the properties of numerous
metabolic models and has become an important theoretical tool for biotechnology and
metabolic engineering to generate and test novel hypotheses [51, 56]. The number of
EMs is an important measure that characterises the network’s flexibility (redundancy16,
robustness) to perform a certain function. Meanwhile, the frequency of participation of
a particular reaction in the set of EMs indicate the importance of that reaction for system
performance under different growth regimes [59]. For example, if a reaction is involved
in all the growth-related EMs its deletion can be predicted to be lethal, since all those
EMs would disappear. A similar method is employed to infer the viability of mutants
in silico.

An increasing number of metabolic networks have been studied, including that
of the human red blood cell [60], E. coli [59], H. influenzae [61], H. pylori [11]
and S. cerevisiae [62], to elucidate their topological properties and to identify novel
pathways within them. Recently, EM analysis was applied to a model of Calvin cycle
to study light/dark metabolism in plants [63]. A similar work analysed a model of
plant mitochondrial TCA cycle to describe its structural properties [64]. In many
of these studies, EM analysis was successfully employed to identify futile cycles
operating within the network. It was also used to analyse the structural couplings
between reactions, which might give hints for underlying regulatory circuits, such as
the enzyme/reaction subsets [58].

In addition to the application of EM analysis to elucidate the properties of
biochemical networks, it has been used in the field of metabolic engineering for
more practical purposes. EM analysis was used to analyse a model of the central
metabolic reactions of E. coli to predict optimal and sub-optimal yields of aromatic
amino acids from carbohydrate substrates. A strain of E. coli was then engineered
which achieved the predicted yield values [65]. Recently, EM analysis applied to a
model of S. cerevisiae intermediary metabolism was then used in a recombinant strain
to study the effect of gene additions and deletions on the yield values of the production

16 The number of independent pathways in the system that have equivalent input and output fluxes.
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of poly-β-hydroxybutyrate [62]. A similar work on S. cerevisiae describes the use of
EM analysis to assign function to orphan genes [12]. For more on the applications of
EM analysis, interested readers are directed to [51] and [56].

1.4.3.2 Extreme pathway analysis

While EM analysis enumerate all distinct routes within a metabolic network, extreme
pathway analysis focuses on enumerating the unique and minimal set of convex
basis vectors needed to describe all the possible steady-state flux distributions in the
network [66]. Thus, extreme pathways (EPs) define the edges of the convex cone
(generating vectors) that represent all the possible flux distributions in the metabolic
network and are a subset of EMs [51]. Although EPs share properties 1 and 2 in
Section 1.4.3.1 with EMs, they differ from EMs as they have to satisfy an additional
property of systemic independence [66]. A set of EPs {p1, ..., p2} is said to be
systemically independent if no EP can be written as a non-trivial non-negative linear
combination of any other EP. Note that the difference between this definition and linear
independence is that the coefficient of linear combination cannot be negative [66].
Therefore, the set of EPs does not include all genetically independent routes, as it is
the case with EMs, instead contains a subset still capable of spanning the convex cone.

The algorithms for the calculation of EPs and EMs differ in terms of the treatment
of reversible and irreversible reactions in the model. EP analysis decouples all
internal reversible reactions into two separate reactions for the forward and reverse
directions, and subsequently calculates the pathways. Since EPs are a subset of EMs,
considering EPs instead of EMs reduces not only the number of routes (particularly
important in case of large metabolic networks) but also the computational power
required [67, 53]. However, the use of EP analysis to study system properties demands
careful consideration as it does not produce the complete set of genetically independent
routes within the metabolic network under consideration. For the same reason, structural
robustness and the relative importance of reactions cannot be assessed properly [67].

Nevertheless, EP analysis has been used in the analysis of a broad range of metabolic
models. It was used to demonstrate that the EP structure in a model of H. influenzae

shows significant network redundancy when compared to that of H. pylori [68]. A
similar work on H. pylori studied amino acid production to analyse the emergent
properties of the system [69]. Recently, Wiback and Palsson (2002) applied EP
analysis to a model of human red blood cell metabolism to study its physiology and
to demonstrate that EPs can be used to interpret the steady-state solution space with
respect to network capabilities [70].
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Figure 1.16 – Flux analysis (a) In metabolic flux analysis measured fluxes are combined
with the stoichiometric constraints and are used to shrink the solution space. A possible
ideal solution representing the actual flux distribution is indicated by the arrow. (b)
Physiochemical constrains along with possible maximum and minimum fluxes through
any particular reaction is used to constrain the solution space in flux balance analysis.
Multiple optimal solutions in some systems are indicated by red dots on the edge.

1.4.4 Metabolic flux analysis

In several methodologies within the stoichiometric modelling framework, steady-
state metabolic models are coupled with available experimentally measured fluxes to
completely determine the current flux distributions in the system (Figure 1.16(a)). This
approach is called metabolic flux analysis (MFA). Here, constraints imposed by a set of
measured fluxes are used to shrink the possible solution space defined by Equation 1.3
to determine those fluxes that have not been measured (Figure 1.16(a)) [71]. This is
attained by partitioning the steady-state rate equation to accommodate the measured
(index m) and unknown fluxes (u):

0 = Nv = Nuvu +Nmvm (1.10)

Nuvu =−Nmvm (1.11)

An ideal solution to this equation is a unique point in the null space of N representing
the actual flux distribution. This happens only when Nu is a square matrix (number
of unknown reactions is equal to the number of unknown metabolites) and invertible
because then all unknown rates in vu can be determined. On the contrary, the system is
underdetermined when at least one unmeasured flux, and probably most of the fluxes,
are not calculable [72, 25], which is often the case in reality. An algorithm for the
calculation of all the possible fluxes in an underdetermined system was developed by
Klamt et al., the application of which was illustrated using a model of the central
metabolism in purple nonsulphur bacteria [72]. Interested readers are directed to [71]
and [72] for more extensive description of the basic techniques of MFA.
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MFA along with C13 labelling has been used widely to characterise canonical and
physiological states of cells in batch and continuous cultures [73]. Animal [74] and
plant cell cultures [75] have been extensively studied using MFA techniques. It has also
been applied to study transient processes in microorganisms [76].

1.4.5 Flux balance analysis

Flux balance analysis (FBA) [77, 10] seeks to identify physiologically meaningful
and optimal flux distributions in underdetermined metabolic networks. Here, the
solution space defined by the mass balance constraints (Equations 1.1 and 1.3) is further
restricted by imposing the invariant and adjustable physiochemical constrains given
in Table 1.1 [78] and by specifying the maximum and minimum fluxes through any
particular reaction (Figure 1.16(b)) [79]. The addition of these constraints results in the
definition of a bounded solution space wherein every possible flux distribution, or every
possible metabolic phenotype of the cell must lie. In order to determine the actual flux
distribution within the resulting constraint-defined space of feasible distributions, it is
assumed that cells have evolved to achieve an optimal behaviour owing to evolutionary
pressure. This allows the underdetermined system to be formulated as an optimisation
problem17. If the objective function18 is linear19, the optimisation problem is a linear
programming (LP) problem [79].

Solution to the LP problem is a single flux distribution through the bounded flux
cone that can be used to investigate the metabolic capabilities of the system. However,
this flux distribution is highly dependent on the constraints specified in the objective
function and may not correspond to the actual flux distribution. By calculating and
examining optimal flux distributions under various conditions, it is possible to generate
quantitative hypotheses in silico that may be tested experimentally.

Predictions by FBA have been shown to be consistent with experimental data in 86%
of instances for E. coli [80] and in 60% instances for H. pylori [11]. FBA was applied
to a model of H. influenzae to show that alternate optimal solutions can be used to find
redundancies in the metabolic network [68]. A number of FBA studies involve E. coli

as the organism of choice as it is one of the few organisms for which there is a genome-
scale model and a large body of experimental evidence. Once such study employed
a quadratic objective function to improve the prediction efficiency of FBA [81]. This
approach is called minimisation of metabolic adjustment (MOMA) and it aims to find
a point in the solution space that is closest to an optimal point in the wild-type solution
space. MOMA was used to demonstrate that genetically engineered knockout undergo a

17 For example, the maximisation of biomass production or the minimisation of ATP utilisation.
18 A function to be maximised or minimised in optimisation theory.
19 A function f of variables x1,...,xn is called a linear form if it can be written as c1x1 + ...+ cnxn, where

the coefficients ci are constant real numbers.
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minimal re-distribution with respect to the flux configuration of the wild-type cell [81].
Recently, attempts were made to use FBA on whole-plant models. Unfortunately, it was
found that the characteristics of plant metabolism such as the compartmentation, make
this task very difficult [82].

1.5 Integration of gene expression data into stoichio-
metric models

In the previous sections describing the basic principles and techniques involved in the
construction and analysis of stoichiometric models, it was shown that the information
contained in a stoichiometric model itself results in an underdetermined linear equation
system (Section 1.3.3). This information is not sufficient either to calculate a unique flux
distribution or to understand the genetic and metabolic regulations within the system.
Such models can, therefore, be combined with additional experimental data to provide
a deeper insight. One set of data that can be readily incorporated with stoichiometric
models is the experimentally measured flux values. Two of the most popular techniques
that involve combining flux values with stoichiometric models to completely determine
the current flux distributions in a system were described in Sections 1.4.4 and 1.4.5.

Another set of experimental data that may be effectively integrated with stoichio-
metric models is the expression levels of genes coding for reactions in the model.
This information can be used to understand the important features of genetic and
metabolic regulation with the system. Expression levels of all genes in an organism
can be measured using a high-throughput functional genomic technology called DNA
microarrays. Microarrays may be used to measure gene expression in many ways, a
complete description of which is outside the scope of this thesis. However, the general
procedures involved in a typical microarray experiment are shown in Figure 1.17. One
of the most popular applications of microarrays is to monitor the expression level
of genes at a genome-scale. Patterns could be derived from analysing the change
in expression of the genes, and new insights could be gained into the underlying
biology [84]. The first step here is to process the data obtained from the image generated
at the end of the microarray experiment (Figure 1.17). Numerous statistical methods are
available to do this, some of which are described in [83]. The final processed data can be
represented in the form of a matrix, referred to as the gene expression matrix (Table 1.2).
Each row in the matrix corresponds to a particular gene and each column corresponds
to an experimental condition. Expression levels of a gene across different experimental
conditions are called the gene expression profile, and the expression levels of all
genes under an experimental condition are called the sample expression profile [84].
An example of such a database that stores the expression profiles of all genes in an
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Each spot contains 
oligonucleotide sequence 
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represents a gene

Cell
Genomic DNA

Figure 1.17 – (a) A microarray may contain thousands of ‘spots. Each spot contains
many copies of the same DNA sequence that uniquely represents a gene from an
organism. Spots are arranged in an orderly fashion into Pen-groups. (b) Schematic
of the experimental protocol to study differential expression of genes using the two
dye comparative methodology. The organism is grown in two different conditions
(a reference condition and a test condition). RNA is extracted from the two cells,
and is labelled with different dyes (red and green) during the synthesis of cDNA by
reverse transcriptase. Following this step, cDNA is hybridised onto the microarray slide,
where each cDNA molecule representing a gene will bind to the spot containing its
complementary DNA sequence. The microarray slide is then excited with a laser at
suitable wavelengths to detect the red and green dyes. The final image is stored as a file.
Interested readers are referred to [83] for a complete description of the methods involved
in the extraction of data from these image files. Reproduced from [84].

organism under different experimental conditions is the Nottingham Arabidopsis Stock
Centre’s (NASC) microarray database - NASCArrays† [85]. It contains more than
3000 hybridisations, each with expression level measurements for over 22,500 genes
represented on the A. thaliana ATH1 arrays20. These arrays are derived from varied
experiments, tissues, conditions, treatments and genetic backgrounds.

Analysis of data in the gene expression matrix is based on the comparison of gene
expression or sample expression profiles. A variety of distance measures are used to
calculate the similarity in expression profiles, one of the most commonly used among
which is Pearson’s correlation coefficient (denoted by the symbol r). Values of r range
from +1 to -1. In general, the correlation expresses the degree that, on an average, two

20 The GeneChip® Arabidopsis ATH1 Genome Array contains more than 22,500 probes synthesised
in situ and designed to measure temporal and spatial gene expression in approximately 24,000 gene
sequences
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Table 1.2 – A gene expression matrix.

Condition A Condition B Condition C Condition D Condition ...
Gene 1 2521.14 264.23 456.5 456.34 ...
Gene 2 156.5 2164.45 2456.56 567.56 ...
Gene 4 1567.12 2634.63 234.51 12.55 ...
Gene 15 1483.64 324.67 678.65 423.77 ...
Gene 61 56.15 264.89 23.34 556.7 ...
Gene 34 8.5 64.21 56.67 43.13 ...
Gene ... ... ... ... ... ...

variables change in concert. An r value closer to +1 indicates a positive correlation
where the expression level of a gene increases when the expression level of another
gene increases. On the contrary, a value closer to -1 indicates a negative correlation
where the genes have opposite expression profiles. Meanwhile, 0 means that no
relationship can be inferred between the the expression profiles of genes. An example of
a correlation matrix is shown in Table 1.3. The confidence in the correlation is quantified
by the p value; it is the probability that the observed value of r could have been
obtained by chance under the null hypothesis that the two variables being compared
vary independently. If this p value is lower than the conventional 5% chance of the null
hypothesis being true (i.e. p<0.05) then the correlation coefficient is considered to be
statistically significant, which means that the null hypothesis is wrong and that there
exists a real correlation between the expression profiles.

In order to combine metabolic models with gene expression profiles, however, it is
necessary to identify the genes coding for the entire set of reactions in the model. This is
a very difficult task as intricate associations exist between genes, proteins, enzymes and
reactions. Each enzyme has a relatively high specificity in terms of the metabolites
on which it can act. Most enzymes usually catalyse only a single reaction so that
the products of the reaction are strictly determined. As with all proteins, enzymes are
encoded by genes that make up an organism’s DNA. In the trivial case, one gene encodes
one enzyme that catalyses a single reaction. In most cases, however, the relationships
between genes, proteins, enzymes and reactions are much more complex. Many
enzymes can accept several different substrates thus relating one or more genes coding
for this enzyme to several reactions. For reactions catalysed by enzyme complexes, the
opposite situation applies where several genes are related to one reaction. Similarly,
there are enzymes that differ in amino acid sequence but catalyse the same chemical
reaction. Such enzymes, called isozymes, often have different kinetic parameters
and regulatory properties associated with them. Under such a scenario, mapping the
associations between genes, proteins, enzymes and reactions is often achieved with the
help of public genome/pathway databases. An example of such a database that contains
information about both predicted and experimentally determined pathways, reactions,
compounds, genes and enzymes and the associations between them is the BioCyc
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Table 1.3 – Correlation matrix representing the correlation between the expression
profiles of genes shown in Table 1.2.

Gene 1 Gene 2 Gene 4 Gene 15 Gene 61 Gene 34 Gene ...
Gene 1 1.0 -0.70 0.16 0.97 -0.45 -0.95 ...
Gene 2 -0.70 1.0 0.13 -0.5 -0.29 0.86 ...
Gene 4 0.16 0.13 1.0 0.055 -0.22 0.04 ...
Gene 15 0.97 -0.58 0.05 1.0 -0.60 -0.90 ...
Gene 61 -0.45 -0.29 -0.22 -0.60 1.0 0.21 ...
Gene 34 -0.95 0.86 0.049 -0.90 0.21 1.0 ...
Gene ... ... ... ... ... ... ... 1.0

database†. It is a collection of 505 pathway/genome databases. Each database in the
BioCyc collection describes the genome and metabolic pathways and their associated
enzymes of a single organism. An independent genome/pathway database that has
similar structure and organisation as the BioCyc database is the AraCyc† [86] database
for the model plant A. thaliana.

A number of studies have attempted to integrate the properties of microarray gene
expression profiles with those of the steady state stoichiometric models. Correlation
between ESs and gene expression profiles were investigated by Schuster et al. [38]
using a steady state model of the central metabolism of S. cerevisiae. They showed that
variation in the relative change of gene expression within an ES is lower when compared
to enzymes that were grouped randomly [38]. From these results it was evident that
ESs in metabolic models can provide insight into regulatory strategies as the genes that
encode the corresponding enzymes in an ES are likely candidates for co-regulation.
Reed and Palsson [39] obtained similar results from a study performed on a genome-
scale model of E. coli. A recent study demonstrated correlated changes in the expression
of genes coding for enzymes in an ES [41].

1.6 Software for analysing structural models

Construction and analysis of metabolic models is a tedious and error-prone task that
needs to be repeated whenever the model is altered (Section 1.1). This process becomes
increasingly complex and time-consuming with increase in the size of the model to
be investigated. The use of high-throughput techniques and the holistic approach in
systems biology means that most biochemical models may typically contain in excess
of 50 reactions. Therefore, with the exception of the most trivial of cases, the use of
software tools in metabolic modelling is highly indispensable.

Over the past decade, a number of software packages have been developed for the
construction and analysis of metabolic models. One apparent criterion based on which
these tools can be classified is their mode of interaction with the modeller [87]. While
tools like COPASI† [88] (formerly GEPASI† [89]), YANA† [90] and FluxAnalyzer† [91]
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employ a graphical user interface (GUI); METATOOL† [37], JARNAC† [92] (a post
genomic version of SCAMP† [93]), PySCeS† [94] and ScrumPy† [95, 63, 96] use a
command line interface (CLI). Though GUI based packages are easier for the novice
user to learn and get accustomed to, CLI applications provide more user interaction,
flexibility and extensibility21. Nevertheless, the distinction between these divisions
are breaking down as most of these tools can now interact through a common model
definition language - the Systems Biology Markup Language† (SBML) [97].

Many of the modelling tools discussed earlier, including COPASI and JARNAC,
are designed for simulating metabolic networks on the basis of kinetic descriptions.
Analysis of the underlying stoichiometry of a metabolic network has been considered
only to a minor extent. METATOOL was one of the very first tools dedicated
solely to stoichiometric analysis. It is a CLI based, reliable and high-performance
implementation of the EM analysis algorithm coded in the C† programming language.
METATOOL was later succeeded by a GUI based Java† application called YANA† [90],
that has additional capabilities such as predicting a valid EM activity pattern from a
given flux distribution.

Other popular structural modelling tools include CellNetAnalyzer† [98] (successor
of FluxAnalyzer), PySCeS and ScrumPy. The former incorporates metabolic mod-
elling capabilities to the commercially available numerical computing environment
MATLAB† by facilitating structural and functional analysis of metabolic networks.
PySCeS and ScrumPy are CLI based applications written in the Python† [99, 100]
programming language (Section 1.6.1.1). Though both these tools have the added
advantage of the capabilities inherited from Python, PySCeS provides little support for
structural modelling (EMs are calculated by way of an interface to METATOOL) [94].
ScrumPy, on the other hand, has equal support for both kinetic and structural modelling.
Built in our lab, it has been upgraded over the years with numerous functionalities for
structural modelling. ScrumPy is open source22 and is currently available for various
Linux platforms. A brief description of some of the properties of ScrumPy along with
intructions for basic usage follow.

1.6.1 Metabolic modelling with Python and ScrumPy

1.6.1.1 The Python programming language

Python is a remarkably powerful dynamic programming language that is used in a
wide variety of applications. Though Python is a relatively modern programming
language, it is often compared to C†, C++† or Java†. It is an open source and platform

21 Ability to add new capabilities to existing software without major changes in its implementation.
22 An open-source license makes a software freely usable and distributable, even for commercial use.

34



Chapter 1 1.6. Software for analysing structural models

Figure 1.18 – Syntax of the ScrumPy ’.spy’ input file representing the simple metabolic
model in Figure 1.2(a).

independent23 language that is easy to learn, due to its very clear, readable syntax and
console based interactive development environment. Python comes with an extensive
library of statistical, numerical and scientific tools, such as SciPy† and NumPy†, that
contain mathematical algorithms required for scientific and engineering applications.
Python scripts can easily communicate with other parts of an application with a variety
of integration mechanisms. Such integrations allow Python to be used as a product
customisation and extension tool. Python code can invoke C and C++ libraries, can be
called from C and C++ programs and can integrate with Java components [99, 100].

Python has deep support for software reuse mechanisms such as object-oriented
programming (OOP). It is a programming paradigm that uses ‘objects’ to design
computer programs. An object may contain data and/or instructions that operate on
the data. In OOP, an object is an instance of a ‘class’. The class object contains a
combination of data and the instructions that operate on these data, making the object
capable of receiving messages, processing data, and sending messages to other objects.
Object functionality is defined by creating ‘methods’ within the class structure. Once
the class has been instantiated (e.g. instance()) methods can be called using the
‘dot’ notation (e.g. instance.method(argument); where argument is a variable or
value passed into the method). With Python it is easy to write complex object-oriented
programs that can be reused.

23 Runs on all major operating systems: Windows, Linux/Unix, OS/2, Mac, among others.
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Type Description Syntax Example
str An immutablea sequence of characters ‘This is a string’
int Integer 12
float Floating point 3.141592
bool Boolean True or False (1 or 0)
tuple Immutable, can contain mixed types (‘string’, 2.3, True)
list Mutable, can contain mixed types [‘string’, 4.5, True]
dict Group of key and value pairs {‘key1’: ‘a’, ‘key2’:[‘no’, 3.2]}

a an object whose state cannot be modified after it is created.

Table 1.4 – Python built-in data structures with examples [99].

Python boosts developer productivity many times beyond compiled or statically-
typed languages such as C, C++ and Java. Python code is typically 1/3 to 1/5 the size of
equivalent C++ or Java code and it runs immediately without the lengthy compile and
link steps required in these tools [99, 101]. Unlike the other programming languages,
Python automatically allocates and reclaims (‘garbage collects’) objects when not in
use. This property relieves the programmer from keeping track of the low-level memory
details of data structures24. Data structures provided by Python as an intrinsic part of
the language are string, integer, float, boolean, lists, tuples and dictionaries (Table 1.4).
They are both flexible and easy to use.

For a more detailed description of the features and capabilities of Python as a
programming language and to actually learn programming in Python, readers are
referred to any recent edition of [99].

1.6.1.2 The ScrumPy metabolic modelling tool

It is possible to build and analyse metabolic models directly using only Python and
SciPy [102]. Although flexible, this approach does require considerable skill in both
numerical analysis and computer programming [94]. ScrumPy has been developed
to provide a high-level modelling interface that utilises and extends the low-level
capabilities provided by Python and SciPy, making it unnecessary for the modeller to
work with advanced programming techniques or low-level numerical algorithms.

The ScrumPy package and detailed instructions for installing it in popular linux
based operating systems is available for download from the main ScrumPy website
(http://mudshark.brookes.ac.uk/index.php/Software/ScrumPy). Although a
complete documentation detailing the usage of ScrumPy is available as part of the
distribution, a very basic demonstration of its usage in constructing and analysing
structural models is provided below.

24 A data structure is a particular way of storing and organising data in a computer so that it can be used
efficiently.
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Figure 1.19 – The ScrumPy CLI.

Using ScrumPy

The first step in the modelling process is to create a model object from an input file.
As a common practise within our lab, ScrumPy input files are denoted with a ‘.spy’
file extention (e.g. simple_model.spy). Further information regarding the syntax of
the input file, which describes a model in terms of its stoichiometry, can be found in
Figure 1.18. The input file is loaded into ScrumPy by typing into the CLI (Figure 1.19):

>>> model = ScrumPy.Model("simple_model.spy")

The stoichiometry matrix and null space of the model can be displayed by using the
commands:

>>> model.sm

and

>>> model.sm.NullSpace()

respectively. Errors in the input file are displayed in an error message window and
highlighted in the model editor window. If the model description is changed in any way,
it can be recompiled by:

>>> model.Reload()

Once the model object is instantiated, its structural properties (such as the stoichiom-
etry matrix and the kernel matrix) are available as model attributes that can be used in
further calculations. Such attributes of the model can be obtained by typing in:
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r1 r2 r3 r4 r5 r6 t1 t2
ElMo 0
ElMo 1
ElMo 2
ElMo 3


1
1
1
0

1
1
0
1

0
0
1
−1

0
1
0
1

0
1
1
0

1
0
0
0

1
1
1
0

1
1
1
0


(a)

X1 X2
ElMo 0
ElMo 1
ElMo 2
ElMo 3


−1
−1
−1

0

1
1
1
0


(b)

Figure 1.20 – (a) Elementary modes reaction matrix (EM) and (b) Elementary modes
stoichiometry matrix (ES). Elements of the matrices indicate fluxes and their direction
through reactions in EMs.

>>> dir(model)

These attributes include most of the common model analysis tasks. For example, ESs
in the model can be obtained as a python dictionary by typing:

>>> enzyme_subsets = model.EnzSubsets()

The results from most structural analyses using ScrumPy are presented in the form
of matrices. For instance, a matrix representing all EMs in the network can be generated
from the stoichiometry matrix using the command:

>>> elementary_modes = model.ElModes()

From the resulting EMs matrix, elementary modes reaction matrix EM (EM in rows
and reactions in columns) and elementary modes stoichiometry matrix ES (elementary
modes in rows and external metabolites in columns) can be obtained. While EM

represent the reactions in an EM and its associated flux (Figure 1.20(a)), ES indicate
the net usage of external metabolites by a given EM (Figure 1.20(b)). EM and ES can be
obtained using the following commands:

>>> em = elementary_modes.mo

>>> es = elementary_modes.sto

As has been demonstrated here, the interactive and user-friendly nature of ScrumPy
aims to integrate the numerous capabilities of Python programming language into
the construction and analysis of metabolic models. Further information on metabolic
modelling using ScrumPy can be found in the documentation. However, in the future
chapters of this thesis, the reader will be provided with more updates on ScrumPy
commands wherever deemed necessary.
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Introduction to modelling plant
metabolism

2.1 Introduction

The previous chapter described the basic concepts and formalisms involved in the
stoichiometric modelling of biochemical systems and how the various techniques
involved in analysing the stoichiometry of metabolic models can be used to explain
and investigate the biological properties and capabilities of the system. It is evident
that the foremost task in any modelling effort is to accurately define the model
under consideration with the help of the available genomic, molecular and metabolic
information. For this reason, most of the model analysis endeavours have concentrated
on organisms such as E. coli and S. cerevisiae, for which sufficient information is
available to accurately describe the biochemical networks. However, the recent advent
of high-throughput techniques has ensured that the genomic, molecular and metabolic
information available for more complex eukaryotes such as plants, especially the model
plant Arabidopsis thaliana, is beginning to rival that of E. coli and S. cerevisiae [103].

Apart from being the primary source of food, either directly or indirectly, plants are
extensively being used as a means of producing sustainable raw materials such as fat
and starch for industrial purposes. They are also the basis of production of numerous
pharmaceuticals and biodegradable substances. The recent surge in the availability of
data pertaining to plant metabolism has encouraged a number of kinetic modelling
efforts aimed at increasing the productivity and/or feasibility of such industrial and
pharmaceutical processes [104]. A few of these efforts will be briefly described
elsewhere in this chapter.

Although application of stoichiometric modelling to plant systems is still in its
infancy, a number of telling efforts have already been made. One major objective of this
thesis is to construct and analyse such a model of plant central carbon metabolism to
further understand its properties and behaviours. This chapter will provide an overview
of the biochemistry of plant metabolism in view of the aspects investigated in this study.
The chapter will conclude with a brief review of the various attempts to model plant
metabolic networks (primarily stoichiometric) and their outcome.

39



Chapter 2 2.2. The biochemistry of plant metabolism

Vacuole

A B C

D
E

F

G

H

I

M

J

N

K

L

Figure 2.1 – Structure of a plant cell. A. Chloroplast, B. Mitochondria, C. Nucleus,
D. Nucleolus, E. DNA, F. Plasma membrane, G. Cell wall, H. Golgi vesicles, I.
Endoplasmic reticulum, J. Cytosol, K. Thylakoids, L. Stroma, M. Peroxisomes, N.
Plasmodesmata

2.2 The biochemistry of plant metabolism

Unlike the single-celled prokaryotes, eukaryotic cells are structurally more complex
and are characterised by a membrane-bound nucleus and other complex intracellular
structures. Plant cells are eukaryotic cells that in particular have a very complex
structure and differ in several key respects even from the cells of other eukaryotic
organisms. The overall structure of a plant cell may be divided into cell wall and
protoplast. The cell wall is composed of cellulose microfibrils embedded in a matrix
of hemicellulose and pectin, and in many cases also lignin. It imparts plant cells with
the necessary shape and structure required to provide the whole plant with mechanical
support and protection from the external environment. The protoplast, on the other
hand, contains the functional components of the plant cell. It is enclosed by a
lipid bilayer impregnated with globular proteins called the plasma membrane. The
contents of a protoplast can be divided into nucleus1 and cytoplasm [105]. The latter
contains a ‘solution space’ or matrix called the cytosol that supports other particles (e.g.
ribosomes, mitochondria) and membrane systems1 (e.g. endoplasmic reticulum (ER),
golgi apparatus) in the cell (Figure 2.1) [105, 106].

The particles in the cytosol are either ribosomes1 (generally considered as separate
entities within the cell) or membrane-bound organelles commonly referred to as
compartments. Compartments can be defined as reaction spaces enclosed by membranes

1 The scope of this thesis restricts any detailed review of these systems. Interested readers are directed
to [105] and [106].
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Table 2.1 – Major metabolic compartments and their function in a plant cell.

Compartments/Subcompartments Main Function
Cytosol Supports other compartments
Plastids Photosynthesis and storage of starch

Amyloplast Storage of starch
Chloroplast Photosynthesis

Stroma Site for Calvin cycle
Thylakoid membrane Site for light reactions

Lumen Site for water splitting
Endoplasmic reticulum Modification of new proteins and lipids
Golgi apparatus Sorting and modification of proteins
Mitochondrion Energy production

Matrix Site for TCA cycle, β-oxidation
Vacuole Storage of waste products and toxic materials
Nucleus DNA maintenance and transcription

that perform specific functions within the cell. They act by sequestering the enzymes
and metabolites participating in specific metabolic processes and thereby preventing the
simultaneous occurrences of potentially incompatible reactions elsewhere within the
cell [107, 108]. A list of various compartments and their respective functions within the
cell can be found in Table 2.1. An illustration is given in Figure 2.1.

Based on the comparison of their contents, compartments are divided into two. They
are plasmatic compartments that contain a high proportion of proteins (enzymes) and
the protein-poor non-plasmatic compartments (e.g. vacuoles). Examples of plasmatic
compartments include cytosol, plastid and mitochondria. Vacuoles, ER and golgi
are, however, non-plasmatic. Many enzymes and metabolites in the plant cell are
restricted to specific plasmatic compartments. This specificity is achieved either by the
inability of certain molecules to penetrate the compartment membrane (e.g. ATP/ADP
cannot penetrate the chloroplast membrane) or by being bound to structures within the
compartments (e.g. ferredoxin bound to the thylakoid membrane) [106].

However, a number of examples exist in which the product of reactions located
in one compartment is then utilised in another. Here, physically separating enzymes
concerned with production of a substance from those involved in consumption allows
both the processes to be regulated separately. This division of labour means that
the metabolism in every compartment depends on other compartments for supplies
of energy and metabolic precursors. Therefore, to understand the metabolism in
plant cells it is necessary to know not only how metabolism and other processes are
compartmentalised within the cell but also how they are all coordinated. The rest of this
section will describe the major biochemical processes in three main compartments of the
plant cell: chloroplast, cytosol and mitochondria, that are of relevance to this thesis. An
overview of the interaction between these compartments is provided in Section 2.2.4.
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Figure 2.2 – An overview of the photosynthetic light reactions and carbon-assimilation
reactions. See text for detailed description and List of Abbreviations for metabolite
abbreviations. Adapted from [109].

2.2.1 Metabolic reactions of the chloroplast

Apart from the ancient chemolithotrophs2, the profusion of life on Earth is supported
entirely by radiant energy from the sun. The process that captures the energy from
sunlight and converts it into the chemical energy of reduced inorganic compounds
for use by all living organisms is called photosynthesis. Photosynthesis in plants
encompasses two processes: the light reactions and the carbon-assimilation reactions.
Light reactions occur only when plants are illuminated and convert solar energy to
chemical energy in the form of ATP and NADPH. Carbon-assimilation reactions (also
called dark reactions), on the other hand, use the ATP and NADPH produced during
light reactions to reduce atmospheric carbon dioxide (CO2) to form carbohydrates (such
as glucose).

In plants and algae, both the light reactions and the carbon-assimilation reactions
take place in specialised cytoplasmic compartments called chloroplasts. They contain
an outer membrane that is permeable to small molecules and ions and a selectively-
permeable inner membrane that encloses the internal compartment [110]. This
compartment contains many flattened vesicles, called thylakoids, arranged in stacks
called grana. The energy-transducing membranes of thylakoids contain the light
capturing machinery of the chloroplasts, the chlorophylls and accessory pigments (e.g.
carotenoids). These proteins, together with specific enzyme complexes embedded in
the thylakoid membrane, carry out the light reactions to produce ATP and NADPH.
The liquid space within which the thylakoids are embedded, called the stroma, contain
enzymes that can use this ATP and NADPH to assimilate carbon from the atmosphere.

2 Organisms that derive energy from oxidation of inorganic compounds.
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Figure 2.3 – Photosynthetic electron transport chain. Some electron carriers are not
shown for clarity. See text for detailed description and List of Abbreviations for
metabolite abbreviations.

2.2.1.1 Light reactions

The light-absorbing pigments of the thylakoid membranes are arranged in light harvest-
ing units called photosystems. Although all of the pigment molecules (chlorophylls and
carotenoids) in a photosystem are capable of absorbing photons, only a few chlorophyll
molecules associated with the reaction centre are involved in transducing light into
chemical energy. The former, called the light-harvesting pigments, act by transmitting
the absorbed light energy rapidly (via other chlorophyll molecules) to molecules at the
reaction centre. These chlorophyll molecules, consequently, become excited and release
an electron (oxidation) to the nearby electron acceptor (reduction)s. This leaves the
reaction centre chlorophyll with a missing electron, which it replaces with an electron
from an electron-donor molecule. This way, excitation of chlorophyll molecules by
light result in the initiation of an oxidation-reduction chain, commonly referred to as
the electron transport chain (ETC).

The thylakoid membranes of the chloroplast have two different kinds of reaction
centres, namely photosystem I (PSI) and photosystem II (PSII). These two reaction
centres act in tandem to produce ATP and NADPH during light reactions (Figure 2.3).
Synthesis of ATP during photosynthesis is called photophosphorylation [111, 112]. Two
types of photophosphorylation are observed in plants: non-cyclic and cyclic. During
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non-cyclic photophosphorylation, the reaction centre designated P680 in PSII absorbs
photons, becomes excited and produces P680∗. Being an excellent electron donor, it
donates its electrons to pheophytin acceptors, giving it a negative charge. The electron
that was lost from P680 is regained by taking up the electron released during the
oxidation of water inside the lumen (aqueous phase inside the thylakoids).

Further down the ETC, electrons reduce plastoquinone (PQ) to PQH2. PQ takes
up two protons from the stroma on reduction and pumps them into the lumen when
oxidised. Eventually, the electrons in PQH2 pass through cytochrome b6 f (CytB6)
complex and reach the reaction centre P700 in PSI. The photochemical events that
follow excitation of P700 are similar to those following excitation of P680. One
exception is that the electron acceptor in this case is ferredoxin (FD), a protein loosely
associated with the thylakoid membrane. Reduced ferredoxin is oxidised by transferring
the electrons to NADP+ with the help of the enzyme ferredoxin:NADP+ oxidoreductase
to form NADPH (Figure 2.3). This process is called non-cyclic photophosphorylation
as the electrons flow from PSII through PSI to NADP+ and are not recycled [111].

Cyclic photophosphorylation, however, involves only PSI. Electrons flowing from
P700 to ferredoxin do not reach NADP+; instead they move back through the quinones
(QA) to PQ (indicated by the blue dotted arrow attached to FD in Figure 2.3) . Reduction
of PQ to PQH2 pumps more protons into the lumen. Upon oxidation PQH2 donates the
electrons to PC, which then transfers them to P700. This cyclic electron flow occurs to
varying degrees depending on the environmental conditions, primarily light. It neither
oxidises water to evolve oxygen nor produces NADPH, but acts by pumping electrons
into the lumen resulting in valuable ATP generation [113].

Protons generated during the oxidation of water and those that are pumped into the
lumen during ETC, both cyclic and non-cyclic, create a transmembrane electrochemical
gradient of hydrogen ion concentration and membrane potential known as the proton
motive force (PMF) across the thylakoid membrane. PMF is coupled with membrane-
intrinsic ‘coupling factor’ CF0 of the ATPase protein complex. CF0 in chloroplasts
has 14 proton binding sites. One complete PMF induced rotation of CF0 can pump 14
protons to the stroma, leading to the formation of three ATP. Two NADPH molecules are
produced during a single non-cyclic photophosphorylation step. But the exact number
of ATP produced is still under debate [112]. Latest reviews on this topic are centred on
the requirement of ATP and NADPH for the carbon-assimilation reactions, i.e. in the
ratio of 3/2 [112]. Because of this uncertainty, the role of cyclic photophosphorylation
in photosynthesis is also debated. One argument is that the cyclic electron flow
acts to compensate the ATP deficit in the plant cell during adverse environmental
conditions [112, 114, 115].
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2.2.1.2 Carbon-assimilation reactions

The carbon-assimilation reactions in plants (and other autotrophs) synthesise carbohy-
drates from atmospheric CO2 by reducing it at the expense of the ATP and NADPH
produced during the light reactions. This process, also referred to as CO2 assimilation

or carbon fixation, takes place via a cyclic pathway3 occurring within the chloroplast
stroma. This pathway was elucidated in the early 1950s by Melvin Calvin and
coworkers, and is often called the Calvin cycle (Figure 2.4).

The assimilation of CO2 into biomolecules occurs in three stages: carboxylation,
reduction and regeneration [116]. The first stage involves the incorporation of CO2

and water into the five-carbon acceptor, ribulose 1,5-bisphosphate (RuBP), with the
help of the enzyme ribulose 1,5-bisphosphate carboxylase oxidase (rubisco) to form
two molecules (one of which contains the carbon atom from CO2) of the three-carbon
compound 3-phosphoglycerate (PGA). Rubisco is one of the most crucial enzyme in
the production of biomass from CO2. It accounts for almost 50% of the soluble
proteins in chloroplasts [117]. Rubisco is not absolutely specific for CO2 as a substrate.
O2 competes with CO2 at the active site, and about once in every three or four
turnovers, rubisco catalyses the condensation of O2 with RuBP to form PGA and
2-phosphoglycolate [117]. This process, photorespiration, results in no fixation of

3 Here, a pathway refers to a series of chemical reactions where the product of one enzyme-catalysed
reaction is a substrate for another.
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carbon, instead it consumes cellular energy and releases some previously fixed CO2.
2-phosphoglycolate produced during photorespiration is converted to glycolate by a
phosphatase and is exported to the peroxisome. Interested readers are directed to [117]
for a detailed description of the glycolate pathway. Analysis of the metabolic pathways
sequestered in peroxisomes is outside the scope of this thesis.

In the reduction phase, the PGA formed in the first stage is converted to glyceralde-
hyde 3-phosphate (GAP) in a two step process. The first step of which is catalysed
by the enzyme 3-phosphoglycerate kinase (PGK) that attaches the phosphoryl group of
an ATP molecule to PGA to form 1,3-bisphosphoglyceric acid (BPGA). BPGA is then
reduced in the next step with the help of the electrons donated by a molecule of NADPH
in a reaction catalysed by the enzyme glyceraldehyde 3-phosphate dehydrogenase
(GAPDHP), yielding GAP.

In the carboxylation phase RuBP is consumed during the assimilation of CO2. The
regeneration phase contains a series of reactions that regenerate RuBP from GAP to
ensure the continuous flow of CO2 into carbohydrate. Figure 2.4 illustrates the various
routes by which this is achieved. A reversible condensation of GAP with DHAP yields
fructose 1,6-bisphosphate (FBP), the cleavage product of which, fructose 6-phosphate
(F6P), is converted to starch by the enzymes in the stroma. Starch is temporarily stored
in the chloroplast as insoluble granules. The rest of the excess GAP, DHAP and PGA are
exported into the cytosol via specialised transporters to act as the precursors for sucrose
synthesis and as the intermediates of glycolysis [118, 119]. Both these processes and
the transport of Calvin cycle intermediates to the cytosol will be described elsewhere in
this chapter.

An important mechanism responsible for coordinating changes in Calvin cycle
enzyme activity in response to changes in light is the thioredoxin system [120, 116].
Thioredoxin is a small, mobile, disulphide-containing protein capable of accepting
electrons moving from PSI through FD during the electron transport chain of the light
reactions. Upon receiving the electrons, disulphide bonds in thioredoxin are reduced
in a reaction catalysed by the enzyme ferredoxin-thioredoxin reductase. Reduced
thioredoxin donates electrons for the reduction of the disulphide bonds of the four
light-activated enzymes of the Calvin cycle: GAPDHP, fructose 1,6-bisphosphatase
(FBPase), sedoheptulose 1,7-bisphosphatase (SBPase) and ribulose 5-phosphokinase
(Ru5PK). These reductive reactions are accompanied by conformational changes that
increase the activity of the enzymes [117]. A fifth enzyme rubisco is indirectly activated
by the reduction of a related enzyme rubisco activase by thioredoxin [121]. In the
absence of light, however, the disulphide bonds are re-oxidised and the enzymes are
inactivated resulting in the cessation of CO2 assimilation.

Another set of enzymes that is regulated by this light-driven reduction mechanism is
part of a second pathway in the stroma, called the oxidative pentose phosphate pathway
(OPPP), indicated by the blue arrows in Figure 2.4 [122]. The enzymes glucose 6-
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phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH) and
transaldolase of this pathway are up-regulated in the dark and down-regulated in the
light [123, 124, 63]. These enzymes support the starch accumulated in the presence
of light to be degraded to fuel glycolysis and sucrose synthesis at night (Figure 2.4).
The major enzymes that are active at night include hydrolases (e.g. amylases and
debranching enzymes), phosphorylases and glucanotransferases. The participation of
all these enzymes lead to the hydrolysis of starch primarily to maltose and glucose,
that are subsequently exported to the cytosol [125]. They are used for the synthesis of
sucrose for export from the leaf, and for cellular metabolism.

2.2.2 Glycolysis

Glycolysis is the ‘central’ metabolic pathway of glucose catabolism that is ubiquitous,
at least in part, in all organisms [123]. During glycolysis, a molecule of glucose
is degraded in a series of enzyme-catalysed reactions to yield two molecules of the
three-carbon compound pyruvate [126]. In plants, glycolysis furnishes the requisite
metabolic options needed to facilitate growth and development by oxidising hexoses
derived from starch and sucrose to generate ATP, reductant (NADH) and pyruvate. The
latter two are taken up by the mitochondria to generate more energy equivalents and
to support respiration (Section 2.2.3). Glycolysis is an amphibolic4 pathway that can
function in reverse to produce sucrose from low-molecular-weight compounds in an
energy-dependent process referred to as gluconeogenesis [127, 126]. The sucrose thus
formed is exported to non-photosynthetic parts of the plants to support their growth and
development.

The breakdown of hexoses to three-carbon pyruvate during glycolysis occurs in two
phases. During the first phase glucose released from sucrose or starch by the action
of the enzymes invertase (Inv) or α− and β−amylases, respectively, is phosphorylated
with the help of the phosphoryl group donated from ATP to form glucose 6-phosphate
(G6P) (Figure 2.5). The enzyme phosphoglucose isomerase (PGI) acts on G6P by
converting it to F6P, which is again phosphorylated by the ATP-dependent enzyme
phosphofructokinase (PFK) to produce FBP. This is in turn broken down into GAP
and DHAP (which is readily isomerised to a second molecule of GAP) to form the final
products of the ATP-utilising preparatory phase. The energy gain comes in the second
phase where the two molecules of GAP are oxidised and phosphorylated by inorganic
phosphate to form two molecules of 1,3-bisphosphoglycerate (BPGA). This reaction,
catalysed by the phosphorylating NAD-dependent GAP dehydrogenase (GAPDHP), is
coupled to the formation of two NADH molecules. In the next step the two molecules
of BPGA are converted to two molecules of pyruvate, leading to the formation of four

4 A biochemical pathway that involves both catabolism and anabolism.
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molecules of ATP. This conversion is performed via sequential reactions catalysed by
the enzymes PGK, phosphoglycerate mutase (PGlyM), enolase (ENO) and pyruvate
kinase (PK). A detailed review of the various enzymes and their role in plant glycolysis
is available in [127] and [128].

Glycolysis in plants can occur independently in two subcellular compartments,
the cytosol and the chloroplasts. These parallel glycolytic reactions are (Figure 2.5)
catalysed by isozymes5 encoded by distinct nuclear genes [127]. The presence of
isozymes in plants is attributed to the need for separate enzymes capable of catalysing

5 Two or more enzymes that catalyse the same reaction but are encoded by different genes.
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similar reactions in different subcellular compartments [129]. The genes coding for
isozymes vary from each other through the changes in amino acid composition, which
will often alter the charge or, in some cases, the physical and kinetic properties of the
enzyme [130]. Such variations will adapt the isozymes for efficient catalysis in different
compartments having specific metabolite concentrations and pH. Enzymes involved
in plastid glycolysis are synthesised as inactive precursors in the cytosol. They are
then imported into the chloroplast with concomitant cleavage of an N-terminal transit
peptide [127].

Glycolysis in the cytosol and in the chloroplast differs with their specific roles.
In cytosolic glycolysis, the major substrate, sucrose, is oxidised by the glycolytic
enzymes in the cytosol to generate energy equivalents, reductant and building blocks
for anabolism. In photosynthetic chloroplasts, however, glycolysis serves to convert
the ‘excess’ intermediates of the Calvin cycle (GAP, DHAP and PGA) to pyruvate.
In non-photosynthetic plastids and in chloroplasts in the dark, glycolytic enzymes
participate in the breakdown of starch to triose-phosphate intermediates and finally to
pyruvate [131, 118, 132]. Plastidic and cytosolic glycolysis can interact through the
action of a number of highly selective transporters in the chloroplast membrane, the
properties of which are described elsewhere in this chapter. These transporters mediate
the transfer of intermediates of the Calvin cycle and plastidic glycolysis into the cytosol
to fuel cytosolic glycolysis.

2.2.3 Mitochondrial metabolism

Mitochondria are pleomorphic organelles composed of a smooth outer membrane
surrounding an inner membrane that has convolutions (cristae) designed to attain
increased surface area. Unlike the outer membrane, the inner membrane is impermeable
to most small molecules and ions, including protons. It surrounds a protein-rich
core, called the matrix, containing DNA, ribosomes and enzymes particular to the
mitochondria [123].

Specific transporters in the mitochondrial inner membrane carry the pyruvate
produced in the cytosol during glycolysis into the matrix. Here, pyruvate is converted
to acetyl-CoA (ACoA) and CO2 in an irreversible oxidative decarboxylation reaction
catalysed by the pyruvate dehydrogenase (PDH) complex containing three different en-
zymes. The combined oxidation and decarboxylation of pyruvate requires the sequential
action of coenzyme-A (CoA-SH) and NAD+ along with three other coenzymes6 [133].

ACoA produced in the above reaction undergoes oxidation carried out by a series of
reactions called the tricarboxylic acid (TCA) cycle (Figure 2.6). Initially, ACoA donates
its acetyl group to the four-carbon compound oxaloacetate (OAA) to form the six-

6 For a complete description of this reaction, please refer [133].
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carbon citrate (CIT) in a condensation reaction catalysed by the enzyme citrate synthese
(CITSynth). CIT is then converted to isocitrate (IsoCIT), another six-carbon compound,
in the subsequent sequential dehydration and hydration reaction catalysed by the
enzyme aconitase (ACN). Ensuing oxidative decarboxylation reaction catalysed by
isocitrate dehydrogenase (IDH) produces five-carbon α-ketoglutarate (AKG), NADH
and CO2 from IsoCIT. The former product is converted to succinyl-CoA (SCoA) in
a similar reaction catalysed by the α-ketoglutarate dehydrogenase (AKGDH) enzyme
complex. This reaction takes up CoA-SH and releases NADH and CO2. In the next step,
SCoA is broken down to the four-carbon succinate (SUC) by the enzyme succinyl-CoA
synthetase (SCS). Energy released from the breakdown of the thioester (-SH) bond in
SCoA during this reaction is used to drive the synthesis of a molecule of GTP or ATP.
Oxidation of SUC is carried out by the flavoprotein succinate dehydrogenase (SDH).
Formation of the end product of this reaction, fumarate (FUM), is thus coupled to
the reduction of a molecule of ubiquinone (Q) to form QH2 and an ensuing electron
transport chain (see next paragraph). FADH2 produced during this process is considered
as a molecule of NADH in this thesis. FUM is then enzymatically converted in two steps
into the four-carbon OAA which is ready to react with another molecule of ACoA. The
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hydration and dehydration steps in this reaction are accompanied by the release of a
molecule of NADH.

In each turn of the TCA cycle four molecules of NADH are produced from a
molecule of pyruvate. Oxidation of these coenzymes release electrons that are carried
through electron carriers to form ATP and water in a process referred to as oxidative

phosphorylation (Figure 2.7). These electron carriers of the mitochondria are organised
into molecular complexes embedded in the inner membrane. Complex I (NADH
dehydrogenase) and II (succinate dehydrogenase) catalyse the electron transfer to Q
from two different electron donors: NADH (Complex I) and succinate (Complex II).
Reduced Q (QH2) serves as a carrier of electrons. It passes the electrons to Complex
III, which then passes them to another carrier, cytochrome c. Cytochrome c delivers
the electrons to Complex IV, which completes the sequence by transferring them from
reduced cytochrome c to O2 [109]. Electron flow through Complexes I, III and IV is
accompanied by the flow of protons from the matrix to the intermembrane space (IMS),
resulting in both a chemical gradient (∆pH) and an electrical gradient (∆ψ) across the
membrane. As the inner mitochondrial membrane is impermeable to protons, they can
re-enter the matrix only through the proton-specific F0 channel of the ATPase complex.
The PMF generated during the movement of protons back into the matrix through
this channel results in ATP synthesis, catalysed by the F1 complex associated with
F0 [134, 109]. This process is exactly analogous to photophosphorylation described
in Section 2.2.1.1.
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ATP synthesised in the mitochondria are exported to the cytosol via specialised
antiporters referred to as adenosine nucleotide translocases or ATP/ADP translocators
in exchange for cytosolic ADP. In non-photosynthetic eukaryotes and photosynthetic
eukaryotes in the dark, mitochondria are the site for most energy-yielding oxidation
reactions and ATP synthesis. In photosynthetic eukaryotes in the presence of light,
however, chloroplasts produce most of an organism’s ATP [135].

Although the central role of mitochondria in plant cells is to carry out energy-
yielding metabolism, it is also a site for the synthesis of vitamin cofactors and amino
acids [135]. The majority of these end products are synthesised from the four- and
five-carbon intermediates of the TCA cycle. Isolated mitochondria have been found
to contain the genome and protein-synthesising machinery required for synthesising
mainly electron transport proteins and parts of ATP synthase [136]. The majority of
the mitochondrial polypeptides are encoded in the nuclear genome, synthesised in the
cytosol and imported into the mitochondria via specific transporters [137, 138].

2.2.4 Interaction between compartments

The integration of cellular metabolism necessitates interaction between the metabolic
pathways sequestered in various subcellular compartments. Metabolism in every
compartment depends on these interactions for supplies of energy (ATP), redox
equivalents and metabolic precursors. This section will provide an overview of such
interactions between the compartments — chloroplasts, cytosol and mitochondria — a
summary of which is shown in Figure 2.8. Note that the scope of this thesis allows the
description of only those aspects of the interaction that are of relevance to the modelling
and analysis described elsewhere.

2.2.4.1 Metabolite exchange between chloroplast and cytosol

The selectively-permeable chloroplast inner membrane represents the interface between
chloroplast and cytosol [110]. It contains a variety of transporters that mediate the
exchange of metabolites between both compartments [139, 140, 141, 132, 142, 143]. In
the presence of sunlight, CO2 fixed by the Calvin cycle is exported from the chloroplast
into the cytosol for the synthesis of sucrose and pyruvate. While the former is allocated
to the heterotrophic organs of the plant such as roots, seeds or fruits, the latter is either
used for amino acid synthesis or undergoes further oxidation in the mitochondria to
produce more energy and reductant. Export of the newly-fixed carbon in the form of
the intermediates of the Calvin cycle, triose-phosphates (GAP and DHAP) and PGA, is
mediated by the triose-phosphate/phosphate translocators (TPT) of the chloroplast inner
membrane. These proteins catalyse a strict 1:1 counter-exchange of triose-phosphates or
PGA in the stroma with inorganic orthophosphate (Pi) in the cytosol [118]. The import
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of Pi ensures that the export and the uptake of the phosphate moieties are balanced, and
allows continuous ATP synthesis.

Exchange of another intermediate of the Calvin cycle, G6P, is mediated by the
glucose 6-phosphate/phosphate translocator (GPT). The main function of GPT is the
import of G6P into non-photosynthetic plastids and chloroplasts in the dark for use as a
precursor for the synthesis of starch and the OPPP. Such plastids are devoid of FBPase
activity, the key enzyme for the conversion of triose-phosphates to G6P. Therefore, they
rely on the supply of G6P from the cytosol via GPT. In contrast, FBPase is highly active
in photosynthetic chloroplasts. G6P produced during this reaction is often exchanged
with the cytosol via GPT [141, 143].

Another important phosphate translocator of the chloroplast membrane is the
phosphoenolpyruvate/phosphate translocator (PPT). Some chloroplasts do not possess
the enzymes required for the conversion of PGA to PEP [144, 143]. PEP, however, is
strictly required for various plastid-localised metabolic pathways including shikimate
pathway and the biosynthesis of various fatty acids and amino acids. Therefore,
the proposed function of PPT in such chloroplasts is the transport of PEP into the

53



Chapter 2 2.2. The biochemistry of plant metabolism

DHAP

BPGA

GAP
Pi

PGA

DHAP

BPGA

GAP

PGA

Pi

CYTOSOL

MAL

OAA

MAL

OAA

GAPDHP

PGK

GAPDH

TPITPI

GAPDHP

PGK

NAD-MDH

Figure 2.9 – Scheme of the indirect transfer of ATP and redox equivalents between
chloroplast and mitochondria. See text for detailed description and List of Abbreviations
for metabolite abbreviations.

organelle [145]. In other chloroplasts, PEP is exported to the cytosol, where it is
required by the enzyme phosphoenolpyruvate carboxylase (PEPC) for primary carbon
fixation [143]. The characteristics of PEP exchange via PPT are similar to those of
TPT [146, 141].

Besides phosphate translocators, the chloroplast inner membrane harbours other
important transport proteins, such as those responsible for the exchange of malate
(MAL) and OAA. OAA in the chloroplast is used to produce aspartate, a precursor
for the biosynthesis of various amino acids. It can also be reduced to MAL in
a reaction catalysed by the stromal NADP-dependent enzyme MAL dehydrogenase
(NADP-MDH). In the cytosol, MAL produced in a similar reaction is catalysed by NAD
dependent MDH (NAD-MDH). Malate in the chloroplast is exported to the cytosol via
MAL transporters that are linked to the OAA transporters. Any import of MAL through
these transporters results in a concomitant export of OAA, resulting in a MAL/OAA
antiport, commonly referred to as the MAL/OAA shuttle [144].

A very important non-phosphate translocator of the chloroplast inner envelope is
the ATP/ADP translocator. The activity and significance of this transport protein in the
interaction between various subcellular compartments will be discussed in the following
sections.

2.2.4.2 Transfer of redox equivalents and ATP between chloroplast and cytosol

As outlined previously, the photosynthetic ETC in the chloroplast converts light energy
to chemical energy in the form of redox equivalents (NADPH) and ATP, which are
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used by the Calvin cycle to fix atmospheric carbon. The excess NADPH and ATP
produced during the light reactions contribute to meet the cell’s energy demands for
growth and maintenance, and are exported to the cytosol so that they are accessible for
other organelles. Neither of these molecules, however, can penetrate the selectively-
permeable inner chloroplast membrane because of their charge and size.

Nevertheless, the transfer of redox equivalents from the chloroplast to the cytosol
can occur indirectly by the MAL/OAA shuttle or by the DHAP/PGA shuttle (Fig-
ure 2.9) [147, 148, 149]. The operation of these shuttle mechanisms is driven by the
existence of a redox gradient between chloroplast and cytosol. Experiments conducted
using a non-aqueous fractionation procedure showed that the ratio of NADPH/NADP
in the stroma of illuminated spinach leaves is substantially higher than the NADH/NAD
ratio in the cytosol [148]. In MAL/OAA shuttle, the redox transfer is controlled
by a light inducible NADP+-malate dehydrogenase (NADP-MDH) enzyme that is
activated when the stromal NADPH/NADP ratio is very high [150, 148]. Under such
conditions OAA is converted to MAL and subsequently exported to the cytosol via
the MAL/OAA transporter located in the inner chloroplast membrane. In this way,
the excess photosynthetic redox equivalents are released to the cytosol and the redox
gradient between the stromal NADPH/NADP and cytosolic NADH/NAD is alleviated.

With the DHAP/PGA shuttle, the provision of redox equivalents in the form of
NADH is accompanied by the export of ATP. In this shuttle, catalysed by the triose-
phosphate translocators, the export of stromal DHAP is coupled to the import of
cytosolic PGA. Once in the cytosol, DHAP is oxidised to PGA, which is then ready
to be imported into the stroma to finish the cycle (Figure 2.9). For every molecule
of DHAP exported, one molecule of both ATP and NADH, or a molecule of NADH
alone, is liberated into the cytosol depending on the cytosolic enzymes involved (no
ATP is produced when cytosolic DHAP is converted to PGA by the NAD-dependent
non-phosphorylating GAPDH, which produces NADH only) [148, 151]. In this way,
ATP and NADPH consumed during the reduction of PGA to DHAP in the chloroplast
are released into the cytosol during the oxidation of DHAP to PGA. The redox gradient
between the NADPH/NADP ratio in the stroma and the NADH/NAD ratio in the cytosol
is maintained by this shuttle, primarily by limiting the oxidation of DHAP to PGA in
the cytosol [148, 152].

Although ATP/ADP translocators are present on the selectively-permeable inner
membrane of the chloroplast [153, 154, 147, 142], the export of ATP during the
DHAP/PGA shuttle has been found to be a more efficient means by which photo-
synthetic ATP can be exported from chloroplast to cytosol [149]. Unlike the highly-
active ATP/ADP transporters on the mitochondrial membrane that can rapidly export
ATP from the matrix to the cytosol in exchange for ADP [139, 140], the activity
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and affinity of those on the chloroplast membrane are very low and suited only for
importing ATP into the chloroplast [154, 140, 144]. The maximum rate of this ATP
import, generally observed in young leaves, has been found to be 10-fold lower than
that of other metabolites such as Pi [140, 155], and hence it is considered unlikely
to play any significant role in photosynthetic leaf cells [156]. However, in non-
photosynthetic plastids and chloroplasts at night import of energy in the form of ATP
is deemed necessary to energise anabolic and catabolic reactions such as starch and
fatty acid synthesis in storage plastids [157], and starch degradation in chloroplasts at
night [158]. The import of ATP into the stroma is also regulated by the distribution of
ATP/ADP gradients in the cell. In photosynthesising and non-photosynthesising leaves,
the ATP/ADP ratio is higher in the cytosol than in the stroma [148].

2.2.4.3 Energy and metabolite exchange between cytosol and mitochondria

Like chloroplasts, mitochondria can also export ATP and redox equivalents to the
cytosol. The highly-active ATP/ADP transporters on the mitochondrial membrane
mediate a direct transfer of ATP to the cytosol with concomitant import of ADP.
As the ATP/ADP ratio outside the mitochondria is much higher than that in the
matrix [159], the proton gradient generated during the mitochondrial ETC is required
for transferring the newly-formed ATP to the higher phosphorylation potential of the
cytosolic ATP/ADP system [160].

Redox equivalents formed in the mitochondrial matrix can be either re-oxidised in
the ETC or exported to the cytosol. In contrast to the ATP/ADP transport, the export of
redox equivalents is not direct; it is mediated by several metabolite shuttles catalysed by
mitochondrial membrane transport proteins [139, 151, 149, 152]. An example for such
shuttle mechanisms is the CIT/MAL exchange, where the subsequent decarboxylation
of citrate exported into the cytosol to 2-oxoglutarate (2-OG) results in the production
of cytosolic NADH. The MAL/aspartate (Asp) exchange involving MAL/2-OG and
glutamate/Asp translocators is another example. However, the contribution of these
shuttle mechanisms to the transfer of reducing equivalents from mitochondria to the
cytosol is minor when compared to the MAL/OAA shuttle [161]. In mitochondria, MAL
and OAA are intermediates of the TCA cycle and their interconversion is mediated by
the mitochondrial NAD-MDH (Figure 2.6). The export of MAL from mitochondria is
driven by the cytosolic NADH/NAD ratio, which, in the presence of light, is 70 times
lower than in the mitochondrial matrix [151].

2.2.4.4 Interaction between chloroplast and mitochondria

Although chloroplasts and mitochondria are organelles separated by independent
membrane envelopes and the cytosol in between, they are not only interdependent in
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Figure 2.10 – Summary of ATP and redox equivalent interactions between the metabolic
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their functions but also are mutually beneficial in their interaction. Several reviews
exist that examine in detail the different aspects of the interaction between chloroplast
and mitochondrial metabolism [151, 149, 152, 162, 163]. Interactions that involve the
metabolic pathways and transport mechanisms described in the previous sections are
discussed below.

Mitochondria are the main source of ATP for photosynthetic cells in the dark
(Section 2.2.4.2). In the presence of light, however, the extent and efficiency of
mitochondrial metabolism is still not well established [149, 162]. Excess ATP
generated during photosynthesis is exported to the cytosol via the DHAP/PGA shuttle
(Section 2.2.4.2). Once in the cytosol the adenylates can restrict respiration in various
ways, for example, a high ATP/ADP ratio (greater than 20) can restrict respiration by
reducing the concentration of ADP in the cytosol [149]. In spite of these restriction
mechanisms, respiration continues in the presence of light to contribute ATP for energy-
demanding processes such as nitrogen assimilation and adapting to environmental
factors [149, 162, 163].

In photosynthesising chloroplasts, the components of the ETC become highly
reduced when the NADPH/NADP ratio becomes too high. Over-reduction results
in the photoinhibition7 of chlorophyll molecules leading to reduced photosynthetic

7 Photoinhibition is the reduction in a plant’s capacity for photosynthesis due to the build-up of excess
redox equivalents under various stress conditions such as excess light levels or suboptimal CO2 or O2
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efficiency. Mitochondrial respiration can prevent over-reduction of ETC by oxidising
the excess reductants generated in the chloroplast [149, 165]. Chloroplasts export
reductants to the cytosol through the DHAP/PGA shuttle and the MAL/OAA shuttle
(Section 2.2.4.2). MAL exported to the cytosol as part of the latter shuttle mechanism
enters mitochondria through the mitochondrial OAA translocator, to be oxidised to
OAA by mitochondrial NAD-MDH. NADH released during this process is either used
for the production of ATP or exported to the cytosol via various mitochondrial shuttle
mechanisms (Section 2.2.4.3). These redox equivalents are partly dissipated by the
mitochondria during both carbon and ammonia assimilation [149, 162, 163]. NADH
transferred to the cytosol is used for hydroxypyruvate reduction occurring as part of
the photosrespiratory pathway in the peroxisomes, and nitrate reduction proceeding as
a partial step of nitrate assimilation in the cytosol [155]. Similarly, ATP generated in
the mitochondrial matrix is translocated to the cytosol via ATP/ADP translocators to be
used in sucrose synthesis.

2.3 Models of plant metabolism

The use of computers to construct and analyse mathematical models of various aspects
of plant metabolism has a history dating back at least as far as the late 1950s, with
the work of Chance et al. published in 1960 [166]. They constructed a model of
plant central metabolism containing the reactions involved in glucose phosphorylation,
ATP utilisation, and glycolytic and oxidative phosphorylation to study the kinetics of
intermediates such as ATP, ADP and glucose in a multi-component enzyme system. In
a subsequent study, this model was extended by expanding some of the lumped reactions
in each of the four components and by including reversible reactions [167]. The major
constraints faced by the authors during these studies were the limitations of the available
computational memory and power, and the lack of sufficient experimental data required
for accurately defining the model [167].

During the mid 1970’s, there were significant developments in computer technology
that reduced the above limitations. A similar phase of progress was also seen in
metabolic engineering and metabolic control analysis8 (MCA) [168], mainly due
to the emergence of a number of theoretical tools and concepts. The result was
an array of mathematical models trying to capture the dynamic nature of plant
metabolism, especially photosynthesis. First among them was a mathematical model
of photosynthesis and photorespiration published in a Russian article by Laisk in
1973 [169]. Mathematical modelling of photosynthesis and estimation of parameters

levels [164].
8 It is a method for analysing how the control of fluxes and intermediate concentrations in a metabolic

pathway is distributed among the different enzymes that constitute the pathway.
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from empirical data were then new approaches. Laisk’s model was soon followed by the
models of Thornley (1974) [170], Milstein and Bremermann (1979) [171] and Kaitala
et al. (1982) [172]. The Thornley model (1974) was based on a novel approach in which
a very simple mathematical model was formulated to represent the most important
features of the dynamics of photosynthesis. This approach demonstrated the concept
of constructing simple models that are fairly easy to analyse and interpret in order
to study complex behaviours of the system. In contrast, Milstein and Bremermann
(1979) studied a large complicated model containing 17 nonlinear ordinary differential
equations (ODEs) to study the kinetic parameters of the Calvin photosynthesis cycle.
Kaitala et al. (1982) used the approach of Thornley to construct a kinetic model of
photosynthesis describing the effect of radiant energy and CO2 concentration in the
control of CO2 assimilation in leaves. Thornley’s approach is used elsewhere in this
thesis to simplify a structural model of photosynthesis.

An important study that relates to this thesis was performed by Giersch et al. in
1980 [173] where the available data on phosphate translocators and the triose-phosphate
oxidation system of the chloroplast envelope were used to construct a kinetic model to
estimate the efficiency of indirect ATP transfer between chloroplasts and cytosol of
leaf cells. They showed that the triose-phosphate/PGA shuttle is adequate to provide
photosynthetic ATP for cytosolic reactions at physiologically meaningful rates. Their
model also demonstrated the necessity of a transmembrane proton gradient for efficient
indirect ATP transfer across the chloroplast envelope. However, this model did not take
into account either the activity of MAL/OAA shuttle or the possibility of other routes
through which redox equivalents and ATP can be transferred from the chloroplasts
to cytosol. Similar studies employing models of plant metabolism, especially those
of photosynthesis, were undertaken by Woodrow (1986) [174], Petterson and Ryde
Petterson (1988) [175], Laisk et al. (1989) [176] and Giersch et al. (1991) [177]. Many
more examples exist, a full review of which is outside the scope of this thesis. However,
a few recent models that have some bearing to the work in this thesis are described in
the rest of this section.

One major obstacle in modelling plant systems in the later half of the 1990’s was
the limitation in the availability of sufficient and reliable data pertaining to the activity
of enzymes and the compartmentation of metabolites and reactions. However, rapid
advances in high-throughput molecular biology techniques and the emergence of a
number of theoretical concepts in metabolic modelling, both kinetic and structural,
aided in reducing this limitation to some extent. Another obstacle were the constraints
associated with computational memory and power. But this limitation was fast
diminishing as developments in the field of computer technology continued to rise
exponentially during this period. Along with computer memory and power, operating
systems and user interfaces improved beyond recognition and a plethora of software for
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Table 2.2 – Stoichiometries of elementary modes of Calvin cycle model in light
(Adapted from [63]). ‘Starch’ is interpreted as one glucose unit arising from stromal
starch. The subscript ‘cyt’ indicates a cytosolic metabolite. The last elementary mode
in the table is a futile cycle comprising starch synthase and starch phosphorylase driven
by ATP from the light reaction. See List of Abbreviations for metabolite abbreviations.

Substrate(s) Product
3 CO2 PGAcyt
3 CO2 DHAPcyt
3 CO2 GAPcyt
3 CO2 + Starch 3 PGAcyt
3 CO2 + Starch 3 DHAPcyt
3 CO2 + Starch 3 GAPcyt
6 CO2 Starch
Starch Starch

undertaking metabolic studies was introduced. Armed with these advanced technologies
and theoretical concepts, numerous attempts were made to construct sophisticated
models of plant metabolism.

A kinetic model of the Calvin cycle was formulated to study its behaviour in the
presence and absence of light (Figure 2.4) [178]. The model had 23 reactions and nearly
as many metabolites representing the conversion of triose-phosphate intermediates to
starch in the presence of light. The export of excess triose-phosphates from the
chloroplast to the cytosol with concomitant import of cytosolic inorganic phosphate was
represented using three transport reactions. The energy produced during photosynthetic
light reactions was represented in the model using a single reaction producing stromal
ATP. Light control on the model was implemented by including the thioredoxin system
where FBPase, SBPase, Ru5PK, GAPDHP and rubisco are up-regulated (included
during model analysis) in the light and down-regulated (removed during analysis) in the
dark. Starch degradation and the subsequent metabolism in the dark were represented
in the model by including the reactions of the OPPP that are down-regulated in the
light and up-regulated in the dark (Figure 2.4). The resulting model was found to
exhibit alternate steady-states of low or high carbon assimilation flux, with hysteresis
in the transitions between the steady states induced by environmental factors such as
phosphate and light intensity [179]. Further studies on this model revealed the existence
of two separate steady-states in the photosynthetic Calvin cycle [180].

An interesting observation from the simulation of the above model is that at high
cytosolic inorganic phosphate levels the total exported carbon flux via the phosphate
translocators exceeds the assimilation flux via rubisco, corresponding to a situation in
which the excess carbon requirement is being fulfilled by starch degradation [179]. This
raises the question whether it is possible for starch degradation to enhance photosyn-
thetic triose-phosphate export in the light. To answer this question a structural analysis
involving EM analysis was performed on the Calvin cycle model that was described
previously [63]. It was shown that all EMs of the system shown in Table 2.2, including
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Table 2.3 – Overall stoichiometries of EMs in the dark (Adapted from [63]). Those
metabolites that are subscripted ‘ext’ are cytosolic metabolites that have a stromal
counterpart. See List of Abbreviations for metabolite abbreviations.

Substrate(s) Product
Starch + Piext G6Pext
Starch + Piext + 2 NADP R5Pext + 2 NADPH + CO2
Starch + Piext + 4 NADP E4Pext + 4 NADPH + 2 CO2
Starch + Piext + 6 NADP GAPext + 6 NADPH + 3 CO2
Starch + Piext + 6 NADP DHAPext + 6 NADPH + 3 CO2
Starch + 12 NADP 12 NADPH + 6 CO2

the starch degrading modes, have both rubisco and light reactions as components. This
implies that none of these EMs can sustain flux in the absence of light and there is,
therefore, an obvious link between starch degradation and triose-phosphate export.

Subsequent elementary modes analysis of the Calvin cycle model in the dark
reiterated the aforementioned fact that the model is not able to perform starch
degradation in the absence of other light-activated reactions (Table 2.3). It was
shown that plants overcome this limitation by the inclusion of the OPPP and the
thioredoxin system, which ensures the availability of sugar phosphates and NADPH
in the dark by degrading starch accumulated during the light. EM analysis of this
model also emphasised that there must be a tight coupling of triose-phosphate export
to the reduction of NADP to NADPH, as in the absence of such a coupling the
oxidative reactions of the OPPP would rapidly exhaust their supply of cosubstrate,
NADP. However, to study this further the Calvin cycle model has to be extended by
incorporating light reactions, nucleotide synthesis, the shikimate pathway and the redox
exchange via shuttle mechanisms [63].

A similar study was performed on a model of carbohydrate metabolism in potato
tuber cells [181]. This model had 29 reactions representing cytosolic sucrose synthesis
and glycolysis, and starch degradation in amyloplasts. An important aspect that
distinguished this model from previous efforts was the compartmentation of reactions
and metabolites. Transfer of metabolites and ATP between the two compartments was
represented using specific transport reactions. EM analysis was performed on this model
to identify modes with the highest ATP yield and substantial starch and sucrose turnover.
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CHAPTER 3

Modelling plant carbon metabolism

3.1 Overview

The molecular and biochemical background of stromal, cytosolic and mitochondrial
carbon metabolism in plant cells were reviewed in the previous chapter with special
attention to the exchange of ATP and reducing equivalents between them. Furthermore,
the basic techniques involved in the construction and analysis of structural metabolic
models were described in Chapter 1. A major objective of this study is to investigate
the characteristics of the interaction between metabolic pathways sequestered in chloro-
plasts, the cytosol and mitochondria using structural modelling and analysis techniques.
Defining a metabolic model to study these interactions, however, necessitates manually
reconstructing independent steady-state metabolic models representing pathways in
each of these compartments and finally integrating them using specific transport
reactions. For this reason, this chapter is devoted to the reconstruction and analysis of
independent steady-state structural models of photosynthetic light reactions, the Calvin
cycle and glycolytic reactions of the chloroplast, cytosolic glycolysis and the TCA cycle.
The approach used here is to make no attempt to simplify the topology of the system,
and to use the software ScrumPy described in Chapter 1 to define each of these models
with a structure as complete as knowledge of the system allows. Once defined, the
behaviour and properties of these models were investigated using structural analysis
techniques such as ESs analysis and EM analysis.

An important aspect to be considered while constructing models of plant metabolism
is the segregation of reactions and metabolites within specific subcellular compartments
(Section 2.2). Considering the localisation is of no (or less) significance in case of small
metabolic models representing reactions occurring in a single compartment. However,
in large metabolic models spanning multiple compartments, the localisation of reactions
and metabolites has to be carefully considered and represented as many of them can exist
in multiple compartments. In the case of the modelling described in this thesis, reactions
and metabolites in particular compartments were segregated by simply attaching a suffix
containing the first three letters of the compartment to the original name. For example,
‘ lum’, ‘ str’, ‘ cyt’, ‘ mit’ and ‘ ims’ were used to suffix components localised in
lumen, stroma, cytosol, mitochondria and IMS, respectively.
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Chapter 3 3.2. Model of photosynthetic light reactions

Unless stated otherwise, models were reconstructed from the latest available
biochemical literature sources. The stoichiometries of some of the reactions were
obtained from the online pathway databases KEGG and AraCyc, and from previous
models of plant metabolism constructed in our group [63, 181].

3.2 Model of photosynthetic light reactions

3.2.1 Model definition

A stoichiometric model of light reactions representing the photosynthetic electron
transport chain was reconstructed manually. The model in ScrumPy format is available
in Appendix A and is illustrated in Figure 3.1. The final version of the model contains
10 reactions and 15 metabolites.

The transfer of electrons through electron carriers leading to the formation of
ATP and NADPH during photosynthetic light reactions forms the key structure of
the network. Photo-activated oxidation of water and concurrent release of electrons
is represented in the model as a property of PSII. Subsequent oxidation of PSII and
the ensuing electron transport chain is represented by a series of coupled oxidation-
reduction reactions. PSI is included in the model as a photo-activated redox reaction
transferring electrons from PC to FD. The number of photons consumed during the
PSI and PSII reactions was based on the evidence furnished in a recent review [112].
Although involved in the ETC, some electron carriers such as pheophytin and phyllo-
quinone were not included in the model so as to reduce its size and complexity. The
final electron acceptor NADP was linked to the model through the membrane-bound
FD oxidoreductase reaction that converts NADP+ to NADPH. Reverse electron flow in
the ETC is represented in the model using a redox reaction (‘Cyclic lum’) involving FD
and Quinone A (QA).

An important feature of the model is that it represents the exchange of protons
between two compartments — stroma and lumen. Two protons are transported into the
lumen when an electron moves from water to FD. The movement of protons from the
lumen to stroma was represented in the model by an ATPase reaction that translocates
14 protons to produce three ATP [112]. Two new reactions ADPSy and NADPHOx
were included in the stromal fraction of the model to regenerate ADP and NADP (see
Appendix A).

Photons, H2O and O2 were declared as external metabolites (Section 1.2.1) as they
are in constant exchange with the external environment. Similarly, stromal protons
were declared external as the model assumes the ETC on the thylakoid membrane as
the boundary of the system. Apart from these, two additional metabolites ‘ATPWork’
and ‘NADPHWork’ were introduced and declared external to aid the investigation of the

64



Chapter 3 3.2. Model of photosynthetic light reactions

LUMEN

STROMA

4 Photons

+8 H 2 NADPH3 ATP

2 H O2

O  + 2

P680o

+2 NADP + 2 H

P680r

P680o

P700o

3 ADP + 3 Pi

P700r

P700r

P700o

FDo

FDr

THYLAKOID MEMBRANE

QAr

QAo

ATPase

PQ

PQH2

CytB6r

CytB6o

PCo

PCr

 QAo

 QAr

+4 H +8 H
+14 H

+14 H

5 Photons

*

*

*

CF0

-4 e

-4 e

-5 e

-1 e

PQ_lum

Q_lum

CytB6_lum

PC_lum

PS1

FD_lum

NADPRe_str

-4 e

Cyclic_lum

ATPSy_str

PS2_lum

Figure 3.1 – Reaction schematic of the model of the photosynthetic electron transport
chain. See List of Abbreviations for metabolite abbreviations and Appendix A for
the stoichiometries of reactions. Red and green arrows indicate the direction of flow
of protons and electrons, respectively. Reaction names are indicated with blue text.
Metabolite and reaction name suffixes (‘ lum’ and ‘ str’) and stromal sink reactions
(ADPSy and NADPHOx) are not shown here for clarity, but were included in the model.

model with respect to the production and consumption of ATP and NADPH. The major
purpose of using these dummy external metabolites was to directly derive net energy
and reducing yields from the net stoichiometries of the EMs to be generated later.

3.2.2 Model analysis

No dead-end metabolites or dead reactions were revealed during the initial analysis
of the model, and all reactions were found to be atomically balanced. Subsequent
enzyme subsets analysis revealed four subsets containing more than one reaction and
one involving only a single reaction, as shown in Table 3.1. While the reaction involved
in reverse electron flow made a single subset of its own, reactions involved in the
production of ATP and NADPH formed independent subsets with sink reactions that
are responsible for the regeneration of ADP and NADP, respectively. The remaining
subsets involving PS1 and PS2 (ESs 1 and 4, respectively) form the basic structure of
the network. ES 1 grouped reactions that are involved in electron transfer from PSII to
FD. ES 4, on the other hand, grouped reactions involved in the oxidation of water and
the initiation of ETC.
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Figure 3.2 – Metabolic tree representing the model of the photosynthetic electron trans-
port chain. See List of Abbreviations for metabolite abbreviations and Appendix A for
the stoichiometries of reactions. The scale bar respresents a difference of θK

xy = 0.5 rad.

A metabolic tree based on reaction correlation coefficients was constructed from
the orthogonal null space of the stoichiometry matrix of the ETC model and is shown
in Figure 3.2. Leaves of this tree represent reactions and nodes represent clusters that
indicate the correlation between fluxes carried by reactions in the model. For example,
the fluxes through reactions in Clusters 1 and 3 strongly correlate with each other as
there is no apparent distance between them. Furthermore, note that the clusters on this
tree correlate with the ESs shown in Table 3.1. Enzymes in same subset have a RCC
of one, i.e. they perfectly correlate. The biological significance of the ESs and the
metabolic tree will be discussed elsewhere (Section 3.2.3).

Further analysis of the model using the EMs algorithm generated two EMs, the
overall stoichiometries of which are shown in Table 3.2. The structure of these EMs is
overlaid on the network diagram from Figure 3.1 in Figure 3.3. The dummy external

Table 3.1 – Enzyme subsets in the model of the photosynthetic electron transport chain.
See Figure 3.1 for a graphical representation of the reactions involved. Stoichiometries
of the reactions are available in Appendix A.

Subset Reactions Function

1

PS1 lum

Redox reactions of the electron transport chainCytB6 lum
PQ lum
PC lum

2 NADPRe str Production of NADPH and regeneration of NADPNADPHOx str

3 ADPSy str ATP production and regeneration of ADPATPSy str

4 PS2 lum Water oxidation and initiation of electron transportQ lum
5 Cyclic lum Reverse electron flow through FD and QA
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Figure 3.3 – Elementary modes of the model of the photosynthetic electron transport
chain. (a) EM representing non-cyclic electron flow in the ETC leading to the production
of ATP and NADPH. Note that this EM is capable of generating proton gradient in the
lumen by importing protons (red arrows) from the stroma and by splitting water. ATP
is produced when these electrons are pumped from the lumen to stroma by ATPase.
NADPH is formed when the electrons are transferred from FD to NADP. (b) EM
representing cyclic electron flow in the ETC. This EM contributes to the net ATP yield
by importing additional protons via PQ. Here, electrons are transferred from FD to QA.

Table 3.2 – Stoichiometries of EMs of the photosynthetic ETC model. ATPWork and
NADPHWork are dummy external metabolites that directly represent the net energy and
reducing yields of the EMs. ‘ lum’ and ‘ str’ indicate lumen and stromal localisation of
metabolites, respectively. The external species Proton str is omitted here for clarity, but
was included in the analysis.

EM Substrates Products

1 1 H2O lum + 7 Photons 1
2 O2+ 9

7 ATPWork + 1 NADPHWork
2 2 H2O lum + 9 Photons 1 O2+ 12

7 ATPWork
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metabolites ATPWork and NADPHWork were used to directly derive net energy and
reducing yields from the net stoichiometry of the EMs. Note that the stoichiometries of
these EMs correspond to the cyclic and non-cyclic photophosphorylation in chloroplasts
(Section 2.2.1.1).

3.2.3 Discussion

ESs analysis of the model revealed groups of reactions that always operate together
and thus share strictly coupled fluxes. Several interesting observations were made from
the list of ESs shown in Table 3.1. ES 1 grouped all those redox reactions that are
involved in transferring electrons from PSII to FD, suggesting that they operate in fixed
flux proportions. This justifies the initial act of not including in the model some of the
intermediate redox reactions such as pheophytin and phylloquinone that are involved in
the photosynthetic ETC in plants. Including them would have served only to lengthen
the list of reactions in ES 1, thereby making further interrogation of the model much
more complicated. More importantly, ES 1 contains the redox reaction PQ that is
responsible for the generation of the proton gradient in the lumen. This property of
ES 1 makes it an important set of reactions responsible for photosynthesis. An equally
important, although smaller, subset is the ES 4 that contains reactions involved in the
oxidation of water and the initiation of the ETC. Oxidation of water liberates protons
needed to make up the total number required for the production of ATP, and electrons
required to excite the chlorophyll molecules in PSII. ESs 2 and 3, on the other hand,
grouped reactions that are involved in the production and regeneration of NADPH and
ATP, respectively. The fluxes through these ES are maintained by the amount of ATP
and NADPH produced. Another interesting subset is ES 5 that contains the reaction
responsible for reverse electron flow. In the photosynthetic ETC, reverse electron
flow from FD to QA is responsible for cyclic photophosphorylation and generation of
additional ATP.

A reaction correlation tree represents the correlation between the fluxes carried by
reactions in the steady-state model. Each of the ESs in Table 3.1 was found to form a
separate cluster on the reaction correlation tree shown in Figure 3.2. It is evident that
Clusters 1 and 3 representing reactions involved in electron transport and ATP synthesis,
are tightly correlated. This result conforms to the scenario observed in photosynthetic
ETC in plant cells, where PMF generated by protons pumped into the lumen during
electron transport via PQ results in the formation of ATP (Section 2.2.1.1). Clusters 4
and 5 in the metabolic tree are also highly correlated, the biological significance of
which is debated [112, 182]. One argument is that the reactions in these two clusters are
required to make up the protons needed for ATP synthesis.

The major objective behind EM analysis was to interrogate the behaviour and
properties of the model. The overall stoichiometries of the EMs 1 and 2 as shown in
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Table 3.2 correspond to the cyclic and non-cyclic photophosphorylation in chloroplasts,
respectively. Several interesting observations were made by considering the reactions
involved in each of these EMs (Figures 3.3 (a) and (b)). Reactions in EM 1 carry out
oxidation of water in the presence of light to form protons and O2 in the lumen. In
addition to this they participate in the ensuing electron transport chain that mediates
the import of protons from stroma to lumen. For each electron carried through the
ETC reactions, two protons are pumped into the lumen. Hence, in one iteration of
EM 1, a total of 12 protons (four from the oxidation of two molecules of water +
eight from electron transport through PQ) are pumped into the lumen. ATP is produced
by this EM when protons are pumped back into the stroma through the ATP synthase
protein complex. The CF0 unit of the ATPase complex in plant chloroplasts requires
14 protons for a complete rotation resulting in the formation of three molecules of ATP
(Section 2.2.1.1). Since only 12 protons are available in the lumen the ratio of net
ATP/NADPH calculated from the stoichiometry of EM 1 is 2.57/2. This ratio agrees
with the observations made by Allen (2002) [112] in the most recent review on this
subject. NADPH is produced when electrons are transferred from FD to NADP.

The EM representing cyclic photophosphorylation (EM 2), however, only contains
reactions that are involved in the ETC and the reactions responsible for the reverse
electron flow. In this EM, an electron that reaches FD through the ETC is transferred
back to QA. Subsequent movement of this electron through the ETC mediates the import
of two protons from the stroma to the lumen. These protons contribute to the overall
proton requirement for the synthesis of ATP. Based on overall stoichiometry, EM 2
can produce 24/14 ATP from two molecules of H2O. Although the real function of
cyclic photophosphorylation in chloroplasts is still debated, it follows from the above
observations that it mediates the import of protons into the lumen, thereby increasing
the rate of non-cyclic photophosphorylation.

3.3 The model of the Calvin cycle

3.3.1 Model extension

The stoichiometric model of the Calvin cycle constructed by Poolman et al. (2003) [63]
(reviewed in Section 2.3) was modified to fit the requirements of this study by removing
reactions involved in dark metabolism (OPPP) and by including additional reactions
that are active in the presence of light. To begin with, glycolytic reactions in the
chloroplast that mediate the sequential conversion of PGA to MAL and OAA were
introduced into the model. This was followed by the addition of transport reactions
responsible for the export of intermediates of the new reactions (MAL, OAA and
PEP) and G6P into the cytosol (see Section 2.2.4.4 for a detailed description of these

69



Chapter 3 3.3. The model of the Calvin cycle

DHAP GAP BPGA PGA

R5P

Ru5P

RuBP

X5P

ADP ATP

ATP

ADP

S7PSBP

E4P

F6P

FBP

NADP NADPH

G6P

G1P

STARCH

ATP

ADP

Pi

Pi
Pi

Pi

Pi

CHLOROPLAST  
MEMBRANE

CYTOSOL

STROMA

CO2

RUBISCO

PGKGAPDH

FBPase

SBPase

Ru5PK

StSynth

TPI

Ald1

TKL1

Ald2 TKL2

R5Piso

X5Piso

PGI
PGM

StPase

TPT-DHAP TPT-GAP TPT-PGA

PGlyM
PGA2

ENO
PEP PYR

ADP

PK

ATP

MAL

NADPH

ME

NADP

OAA

NADP

NADPMDH

NADPH

CO2

PiPi Pi

TX_PEP TX_MAL TX_OAA
Pi

TX_G6P

ATP

ADP + Pi 

ATPase

Figure 3.4 – Reaction schematic of the model of the Calvin cycle containing stromal
’glycolytic’ reactions. See List of Abbreviations for metabolite abbreviations and
Appendix B for the stoichiometries of reactions. Red arrows indicate transport reactions
exporting intermediates of chloroplast metabolism to the cytosol. Reaction names are
indicated with blue text. Metabolite and reaction name suffixes (‘ str’ and ‘ cyt’) are not
shown here for clarity, but were included in the model.

transport reactions). Export of stromal G6P and PEP were each coupled with the
import of cytosolic Pi. To simplify future analysis and interrogation of the model the
MAL/OAA shuttle was included as two independent reactions that export MAL and
OAA to the cytosol. Light reactions were included as part of the original model in the
form of a sink reaction producing ATP. NADPH and NADP were considered as external
metabolites. The resulting model represented carbon fixation via CO2 assimilation to
produce starch, triose-phosphate intermediates of the Calvin cycle and intermediates of
stromal glycolytic reactions, and subsequent export of some of these intermediates into
the cytosol.

Apart from NADPH and NADP, CO2, starch and cytosolic GAP, DHAP, PGA and Pi

constituted the external metabolites in the original model. In addition to this, four new
external metabolites were introduced into the extended model to represent the cytosolic
versions of G6P, PEP, MAL and OAA exported from the chloroplast. The final version
of the model, containing 30 reactions and 23 metabolites, is furnished in ScrumPy ‘.spy’
format in Appendix B and is illustrated in Figure 3.4.

3.3.2 Model analysis

ESs analysis of the extended model revealed six subsets containing more than one
reaction and 12 involving only a single reaction. A list of the reactions constituting
the major ESs and their respective functions is shown in Table 3.3. The largest subset,
ES 2, was composed of eight reactions and its biological significance will be discussed
elsewhere (Section 3.3.3). The remaining ESs were found to be trivial and will not be
discussed further.

A metabolic tree based on reaction correlation coefficients was constructed from the
orthogonal null space of the stoichiometry matrix of the extended Calvin cycle model
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Table 3.3 – Enzyme subsets of the extended Calvin cycle model containing more than
two reactions. See Figure 3.4 for a graphical representation of the reactions involved.
Stoichiometries of the reactions are available in Appendix B. ‘↔’ and ‘→’ indicate the
reversible and irreversible conversion of one set of metabolites to another by reactions
in that particular subset, respectively. Other less significant subsets that are composed
of only a single reaction are omitted.

Subset Reactions Function

1 ME str PEP→MALPK str

2

Ald2 str

Regenerative phase of the Calvin cycleRubisco str
SBPase str
TKL2 str
Ru5PK str

GAP→ RuBPR5Piso str
TKL1 str
X5Piso str

3 Ald1 str F6P→ triose-phosphates DHAP and GAPFBPase str

4 NADPMDH str MAL↔ OAA and
TX OAA str the export of OAA from stroma to cytosol

5 GAPDH str GAP↔ PGAPGK str

6 Eno str PGA↔ PEPPGlyM str

TX_PGA_str

Rubisco_str

TKL1_str

Ald2_str

X5Piso_str

SBPase_str

R5Piso_str

TKL2_str

Ru5Pk_str

GAPDH_str

PGK_str

ATPase

StSynth_str

StPase_str

PGM_str

TX_G6P_str

TPI_str

TX_DHAP_str

TX_GAP_str

PGI_str

Ald1_str

FBPase_str

TX_OAA_str

NADPMDH_str

TX_MAL_str

TX_PEP_str

PGlyM_str

Eno_str

ME_str

PK_str

1

Reactions of ES 2
representing the
regenerative phase of
the Calvin cycle

Figure 3.5 – Metabolic tree representing the extended Calvin cycle model. See List of
Abbreviations for metabolite abbreviations and Appendix B for the stoichiometries of
reactions. The green rectangle highlights the ES in Table 3.3. The scale bar respresents
a difference of θK

xy = 1 rad.
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Table 3.4 – Overall stoichiometries of the eight new EMs of the extended Calvin
cycle model. Stoichiometries of the EMs in the original model are shown in Table 2.2.
‘ str’ and ‘ cyt’ indicate stromal and cytosolic localisation of metabolites, respectively.
External species NADP str, NADPH str and Pi cyt are omitted here for clarity, but were
included in the analysis.

EM Substrates Products
1 6 CO2 G6P cyt
2 3 CO2 PEP cyt
3 4 CO2 MAL cyt
4 4 CO2 OAA cyt
5 3 CO2 + Starch str 3 PEP cyt
6 6 CO2 + Starch str 3 MAL cyt
7 6 CO2 + Starch str 3 OAA cyt
8 Starch str G6P cyt

(Figure 3.5). Two distinct clusters, one representing reactions of the Calvin cycle (red)
and the other representing glycolytic reactions (blue), were observed in this tree. The
node representing the largest ES is highlighted with a green box.

EM analysis of the extended model generated 16 EMs, half of which corresponded to
the complete set of EMs obtained from the original model by Poolman et al. (2003) [63].
Overall stoichiometries of the EMs in the original model are tabulated in Table 2.2
and those of the additional new EMs obtained from the extended model are shown in
Table 3.4. The biological significance of these EMs will be discussed in the next section.

3.3.3 Discussion

The major objective of ES analysis of the extended Calvin cycle model was
to identify reactions that operate together in fixed flux proportions. It was found
that the model is composed mainly of smaller ESs constituting either one or two
reactions. However, the largest subset, ES 2, was composed of eight reactions that
form the regenerative limb of the Calvin cycle. These reactions regenerate RuBP
from GAP thereby ensuring the continuous assimilation of CO2 into carbohydrates
(Section 2.2.1.2). ES 2 can carry flux in only one direction, i.e. from GAP to RuBP,
since several key reactions in this subset, such as Rubisco, Ru5PK and SBPase, are
irreversible.

The reasons for performing EM analysis on the extended model were twofold: to
interrogate the behaviour and properties of the model and to identify potential routes
whereby carbon assimilated via the Calvin cycle is exported to the cytosol. A total of 16
EMs were generated from the extended model. Overall stoichiometries and participating
reactions of eight of these EMs were identical to those from the original model of the
Calvin cycle (Table 2.2). These EMs were classified as: (a) three EMs producing one
each of PGA, DHAP and GAP from three CO2; (b) three EMs producing three each of
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PGA, DHAP and GAP from three CO2 and G6P from starch; (c) one EM producing
starch from CO2; (d) a futile cycle synthesising and degrading starch. Using these
EMs it was shown that starch degradation can serve to support the Calvin cycle in the
presence of light by producing triose-phosphate intermediates that are exported to the
cytosol [63]. Other interesting biological properties of these EMs were reviewed in
Section 2.3. From the point of interest of this thesis, however, these EMs are considered
as the various routes through which carbon fixed into Calvin cycle intermediates GAP,
DHAP and PGA using energy and redox equivalents from light reactions are exported
to the cytosol.

The remaining eight novel EMs of the extended model shown in Table 3.4 can be
classified as: (a) one EM (EM 1) involved in the synthesis and export of G6P from
CO2; (b) three EMs (EMs 2-4) producing PEP, MAL and OAA from CO2 and exporting
them into cytosol; (c) three EMs (EMs 5-7) producing PEP, MAL and OAA from CO2

and intermediates of starch degradation; (d) one EM (EM 8) involved in the synthesis
and export of G6P liberated during starch degradation. A general characteristic of
these EMs is that they represent the export of carbon to the cytosol. EMs 1-4 fix
carbon via CO2 assimilation into G6P, PEP, MAL and OAA and then export these
intermediates to cytosol. EMs 5-8, on the other hand, use both CO2 assimilation
and starch degradation to fix carbon into the intermediates before exporting them to
the cytosol. Another general feature of these EMs is that all of them, except EM 8,
contain reactions constituting ES 2. This ES 2 backbone was also found to exist in the
EMs of the original model, other than in the futile cycle. This observation suggests
that the regenerative limb of the Calvin cycle is the most important set of reactions in
Calvin cycle. Furthermore, it implies a strong coupling of ES 2 with the production of
intermediates of the Calvin cycle.

3.4 Model of cytosolic glycolytic reactions

3.4.1 Model construction

A stoichiometric model of plant central carbon metabolism containing reactions
involved in glucose catabolism and sucrose synthesis in the cytosol was constructed.
The purpose of constructing this model was to study the distribution of carbon flux
between the intermediates of chloroplast metabolism exported to the cytosol and the
intermediates of gluconeogenesis and glycolysis such as sucrose, PYR, MAL and OAA.
The final version of the model containing 26 reactions and 17 metabolites is available
in ScrumPy format in Appendix C. An illustration of the model is shown in Figure 3.6.

Anabolic and catabolic reactions of the cytosol leading to the formation of sucrose
and PYR, OAA and MAL, respectively, from intermediates of the Calvin cycle and

73



Chapter 3 3.4. Model of cytosolic glycolytic reactions

Table 3.5 – Enzyme subsets of the model of cytosolic glycolytic reactions containing
more than two reactions. See Figure 3.6 for a graphical representation of the reactions
involved. Stoichiometries of the reactions are available in Appendix C. ‘↔’ indicates
the reversible conversion of one set of metabolites to another by reactions in that
particular subset.

Subset Reactions Function

1 TX MAL cyt Synthesis and exchange of MALNADMDH cyt

2

PGM cyt

Reactions involved in sucrose synthesis and export
NDPK cyt
SuSyn cyt
UGPase cyt
Suc EX

3 PGlyM cyt PGA↔ PEPEno cyt

4 PGK cyt GAP↔ PGAGAPDHP cy

5 TX PYR cyt Synthesis and exchange of PYRPK cyt

stromal glycolytic reactions, form the key structure of the network. Synthesis and
degradation of sucrose was represented as a single reaction catalysed by the enzyme
sucrose synthase. Activities of other sucrose degrading enzymes (Inv and HK) were
not included in the model so as to simplify future analysis and interrogation. Sucrose
metabolism was linked to PYR synthesis by means of standard glycolytic reactions
that convert F6P to PYR. This branch of glycolysis was then attached to MAL/OAA
metabolism by means of the CO2-binding PEPC reaction. The model contains four
irreversible reactions catalysed by enzymes PFK, GAPDH, PK and PEPC.

Import of the intermediates of chloroplast metabolism into the cytosol was rep-
resented in the model using specific transport reactions that mediate Pi-dependent
antiport of G6P, DHAP, GAP, PGA and PEP. MAL and OAA exchange with stroma was
implemented using two independent transport reactions. Similarly, a simple transport
reaction was introduced into the model to represent the diffusion of PYR across the
chloroplast membrane. Apart from the stromal metabolites associated with the above
transport reactions, sucrose, protons, CO2 and stromal Pi were declared as external
metabolites. Additionally, ATP, ADP, NADH and NAD were declared external as
the energy and reducing equivalents produced during chloroplast and/or mitochondrial
metabolism were not available to the model. See Section 2.2.4.2 for a brief review
on the mechanisms that mediate the import of ATP and NADPH into the cytosol.
Compartmentation of metabolites and reactions in the cytosol was implemented by
attaching the suffix ‘ cyt’ to their names.

74



Chapter 3 3.4. Model of cytosolic glycolytic reactions

G6P

DHAP

PEP

PYR

MAL

OAA

F6P

FBP

GAP

BPGA

PGA

PGA2

Sucrose

CO2

PFK PFP

Ald1

TPI

GAPDHP

PGK

PGlyM

ENO

PK

PEPC

NADMDH

PGI

SuSyn

PGM

UGPase
NDPK

GAPDH

G1P

UDPG
PPi

UTP

UDP

PPi

NAD

NADH

ATP

ADP

NAD

NADH

NADH

NAD

ADP

ATP

ATP

ADP

ADP

ATP

Pi

Pi

Pi

TPT_GAP TPT_DHAP

TPT_PGA

TX_PYR

TX_OAA

TX_MAL

TX_PEP

TX_G6P

Figure 3.6 – Reaction schematic of the model of cytosolic glycolytic reactions. See List
of Abbreviations for metabolite abbreviations and Appendix C for the stoichiometries
of reactions. Red arrows indicate transport reactions exchanging intermediates of
chloroplast metabolism to the cytosol. Reaction names are indicated with blue text.
Metabolite and reaction name suffixes (‘ str’ and ‘ cyt’) are not shown here for clarity,
but were included in the model.

3.4.2 Model analysis

No dead-end metabolites or dead reactions were revealed during the initial analysis
of the null space of the stoichiometry matrix representing the model. Subsequent
enzyme subsets analysis revealed 14 subsets involving only a single reaction and five
containing more than one reaction. A list of reactions constituting the major ESs and
their respective functions is shown in Table 3.5. Smaller subsets are not listed in the
table for clarity. The largest ES, ES 2, contained five reactions that act in fixed flux
proportions to synthesise sucrose from G6P. NADMDH (ES 1) and PK (ES 5) formed
independent subsets with transport reactions that mediate the exchange of their products

75



Chapter 3 3.4. Model of cytosolic glycolytic reactions

Suc_EX

UGPase_cyt

PGM_cyt

SuSyn_cyt

NDPK_cyt

Sucrose synthesis

TX_G6P_cyt

PGI_cyt

Ald1_cyt

TPT_GAP_cyt

TPT_DHAP_cyt

TPI_cyt

PFK_cyt

PFP_cyt

PGK_cyt

GAPDHP_cyt

TPT_PGA_cyt

GAPDH_cyt

Uptake of intermediates from chloroplast

PGlyM_cyt

Eno_cyt

TX_PYR_cyt

PK_cyt

TX_PEP_cyt

NADMDH_cyt

TX_MAL_cyt

TX_OAA_cyt

PEPC_cyt

1

Lower glycolysis
Synthesis and export of PYR, MAL and OAA

Figure 3.7 – Metabolic tree representing the model of glycolytic reactions in the
cytosol. See List of Abbreviations for metabolite abbreviations and Appendix C for
the stoichiometries of reactions. The scale bar respresents a difference of θK

xy = 1 rad.

EM 36: 1G6P_str > 1/2Sucrose

EM 44: 1DHAP_str > 1/4Sucrose

EM 34: 1/2G6P_st r+ 1DHAP_str > 1/2Sucrose

EM 43: 1GAP_str > 1/4Sucrose

EM 39: 1G6P_str + 2GAP_str > 1Sucrose

EM 42: 1DHAP_str + 1GAP_str > 1/2Sucrose

EM 35: 1G6P_str + 1DHAP_str + 1GAP_str > 1Sucrose

EM 47: 2PGA_str > 1/2Sucrose

EM 40: 1G6P_str + 2PGA_str > 1Sucrose

EM 41: 2PEP_str + 1G6P_str >1Sucrose

EM 0: 2PEP_str > 1/2Sucrose

EM 46: 1PEP_str + 1DHAP_str > 1/2Sucrose

EM 38: 1PEP_str + 1G6P_str + 1DHAP_str > 1Sucrose

EM 45: 1DHAP_str + 1PGA_str > 1/2Sucrose

EM 37: 1G6P_str + 1DHAP_str + 1PGA_str > 1Sucrose

0.5

G6P Sucrose

DHAP Sucrose

GAP Sucrose

DHAP + GAP Sucrose

PGA Sucrose

PEP Sucrose

PEP + DHAP Sucrose

DHAP + PGA Sucrose

Figure 3.8 – Dendrogram showing overall stoichiometries of the EMs of the model
of cytosolic glycolytic reactions that produce sucrose from chloroplast intermediates,
clustered by angle based on their net external metabolite usage (Section 1.4.2.3). Some
external metabolites were omitted here for clarity, but were included in the analysis.
Branch colouration indicates differing net carbon stoichiometries. ‘ str’ indicates the
localisation of the external metabolites in the stroma. The scale bar respresents a
difference of θK

xy = 0.5rad.
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1 -1 1 1 -1 0 -1 -2 0 0 -2 -2 -4 -4 0 -4 -4 4 EM 0

1 -1 1 1 -1 0 -1 -2 0 4 2 -2 0 0 0 0 0 0 EM 44

1 -1 1 1 -1 1 0 -1 0 2 1 -1 0 0 0 0 0 0 EM 34

1 -1 1 1 -1 0 -1 -2 4 0 -2 -2 0 0 0 0 0 0 EM 43

1 -1 1 1 -1 1 0 -1 2 0 -1 -1 0 0 0 0 0 0 EM 39

1 -1 1 1 -1 0 -1 -2 2 2 0 -2 0 0 0 0 0 0 EM 42

1 -1 1 1 -1 1 0 -1 1 1 0 -1 0 0 0 0 0 0 EM 35

ES 2

Figure 3.9 – Heatmap representing reactions participating in the EMs of the model of cy-
tosolic glycolytic reactions that produce sucrose from chloroplast intermediates. Rows
were clustered by angle based on their reaction usage. ‘ cyt’ indicates localisation of
reactions in the cytosol. The heatmap has been coloured according to the stoichiometric
coefficient of a reaction in an EM, i.e. = 0 (black), < 0 (green) and > 0 (red).

with the stroma. Reactions constituting ES 3 and ES 4 convert PGA to PEP and GAP
to PGA, respectively. Note that these two ESs are identical to those obtained from the
model of stromal carbon metabolism (Table 3.3).

A metabolic tree representing correlation between fluxes carried by reactions in
the model was constructed from the stoichiometry of the model (Figure 3.7). Two
distinct clusters were observed. The larger cluster (red) represented reactions of the
upper glycolysis that perform two different, but related, tasks - importing intermediates
of chloroplast metabolism into the cytosol and converting these intermediates into
sucrose. The second cluster (blue) was composed of reactions of lower glycolysis that
are involved in the synthesis and subsequent export of PYR, MAL and OAA.

The major objective of performing EM analysis on this model was to ascertain
the existence of carbon flux from intermediates of chloroplast metabolism to sucrose,
and PYR, MAL and OAA. A total of 48 EMs representing various routes mediating
such carbon flux were generated from the model. From the entire set of EMs, four
independent subsets containing modes responsible for the production of sucrose, PYR,
MAL and OAA were extracted. EMs in each of these subsets were hierarchically
clustered based on the net usage of external metabolites. The reason for doing this
was to group together EMs that share similar functional properties.
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EM 22: 1/2G6P_str > 1PYR_str

EM 25: 1/2G6P str > 1PYR_str
G6P PYR

EM 30: 1GAP_str > 1PYR_str
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G6P MAL
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EM 9: 1GAP_str > 1OAA_str

EM 3: 1GAP_str > 1OAA_str
GAP OAA

EM 5: 1/2G6P_str > 1OAA_str

EM 2: 1/2G6P_str > 1OAA_str
G6P OAA

EM 8: 1DHAP_str > 1OAA_str
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DHAP OAA
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Figure 3.10 – Dendrogram showing overall stoichiometries of EMs of the model of
cytosolic glycolytic reactions that produce PYR (a), MAL (b) and OAA (c) from
chloroplast intermediates clustered by angle based on their net external metabolite
usage. Some external metabolites were omitted here for clarity, but were included in
the analysis. Branch colouration indicates differing net carbon stoichiometries. ‘ str’
indicates localisation of metabolites in the stroma. Scale bars respresents a difference of
θK

xy = 0.5rad.
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A dendrogram illustrating the arrangement of clusters produced by hierarchical
clustering of the stoichiometries of EMs producing sucrose is shown in Figure 3.8.
A heatmap representing reactions participating in the EMs was constructed from the
EMs reaction matrix and the rows were hierarchically clustered (Figure 3.9). Columns
of the heatmap were then sorted with respect to the order of leaves on the reaction
correlation tree shown in Figure 3.7. The presence of EMs converting G6P, DHAP,
GAP, PGA and PEP to sucrose is evident from the overall stoichiometries of EMs
shown in Figure 3.8 and also from the reaction participation heatmap. Meanwhile,
dendrograms representing the overall stoichiometries of EMs mediating carbon flux
from chloroplast intermediates to PYR, MAL and OAA are shown in Figures 3.10 (a),
(b) and (c), respectively.

3.4.3 Discussion

Results from the ESs analysis, shown in Table 3.5, reveal some very interesting
properties of the model. The major ES, ES 2, containing reactions involved in sucrose
synthesis and export, represents the only means by which sucrose can be synthesised
by the model. Therefore, synthesis of sucrose from any intermediate of chloroplast
metabolism must involve this subset. This is evident from the fact that all EMs in the
system that produce sucrose use this ES, as shown in the reaction participation heatmap
in Figure 3.9. Furthermore, in the reaction correlation tree representing the model
(Figure 3.7), it can be seen that flux through ES 2 correlates with those through PGI and
the G6P transporter. These observations suggest that for any G6P entering the system,
there is a higher chance of it to be converted to sucrose. Further analysis using more
sophisticated approaches such as kinetic modelling or FBA must be performed before
considering this any further. EM analysis of the model, however, generated an EM that
could produce sucrose directly from G6P using ES 2 and PGI (EM 36 in Figures 3.8
and 3.9). Another interesting aspect here is the importance of enzymes aldolase (Ald1)
and PFP that convert GAP and DHAP to FBP and FBP to F6P, respectively, for sucrose
synthesis. As can be easily seen in the heatmap, they are involved in all but one EM
that produces sucrose from chloroplast intermediates, thus signifying their importance
in sucrose metabolism.

Another important aspect that was investigated using EM analysis was the fate of
intermediates of chloroplast metabolism imported into the cytosol. On this basis, the
entire set of EMs obtained from the model may be divided between as those producing
sucrose via the gluconeogenesis pathway and those producing PYR, MAL and OAA
via the glycolysis pathway. The former is exemplified by the overall stoichiometries of
EMs shown in Figure 3.8, indicating carbon flux from chloroplast intermediates G6P,
GAP, DHAP, PGA and PEP (and a combination of some of these intermediates) to
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sucrose. Carbon flux from PYR, MAL and OAA to sucrose was not identified in the
EMs because of the presence of two irreversible reactions PK and PEPC (Figure 3.6).
On the other hand, overall stoichiometries of EMs producing PYR, MAL and OAA from
the aforementioned chloroplast intermediates represented in dendrograms 3.10 (a), (b)
and (c), respectively, indicate carbon flux via the glycolytic pathway.

3.5 Model of the TCA cycle and oxidative phosphoryla-
tion

3.5.1 Model definition

A structural model of mitochondrial metabolism composed of the reactions of the TCA
cycle and the associated electron transport chain was constructed manually. Synthesis
of redox equivalents during the sequential conversion of PYR to OAA via reactions of
the TCA cycle and concurrent ATP synthesis, mediated by an electron transport chain
initiated by the oxidation of these redox equivalents, forms the key structure of the
model. The major objective of constructing this model was to investigate the various
routes through which PYR is converted to NADH and ATP, and ascertain the existence
of carbon flux. The final version of the model containing 17 reactions and 21 metabolites
is available in ScrumPy ‘.spy’ format in Appendix D and is illustrated in Figure 3.11.

The model represents interaction between three compartments — cytosol, mitochon-
dria and the IMS. Import of PYR from the first compartment was represented in the
model using a transport reaction. Subsequent sequential reactions converting PYR to
OAA epitomised the TCA cycle division of the model. Of these, four reactions catalysed
by enzymes PDH, IDH, AKGDH and NADMDH were accompanied by the synthesis of
NADH. CoA-SH, CO2 and H2O associated with some reactions were not considered in
the model definition in order to simplify future analysis and interrogation. The second
division of the model is comprised of the reactions of the mitochondrial ETC. Oxidation
of NADH and the resulting initiation of the ETC were represented in the model using
the Complex I reaction. The Complex II reaction, on the other hand, initiated the
ETC during the oxidation of succinate to fumarate. Export of protons into the third
compartment, the IMS, was represented in the model by the reactions of Complex I,
III and IV, and the resulting ATP synthesis (when protons return to the matrix) was
represented by Complex V.

The MAL/OAA shuttle on the mitochondrial membrane was included in the model
as two independent reactions pumping MAL and OAA to the cytosol. The mitochondrial
AKG transporter was not included in the analysis as cytosolic nitrogen metabolism
is outside the scope of this thesis. Apart from PYR, MAL and OAA, two additional
external metabolites ‘NADHWork’ and ‘ATPWork’ were introduced into the model to
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Figure 3.11 – Reaction schematic of the model of mitochondrial metabolism. See List
of Abbreviations for metabolite abbreviations and Appendix D for the stoichiometries
of reactions. Red arrows indicate transport reactions. Reaction names are indicated with
blue text. Metabolite and reaction name suffixes (‘ mit’ and ‘ cyt’) are not shown here
for clarity, but were included in the model.

investigate the production and consumption of ATP and NADH directly from the net sto-
ichiometries of EMs. Protons in the intermembrane space were also declared external.

3.5.2 Model analysis

Enzyme subsets analysis of the model revealed three subsets containing more than one
reaction and four involving only a single reaction. A list of reactions constituting the
major ESs and their respective functions is shown in Table 3.6. The largest subset,
ES 1, constituted nine reactions of the TCA cycle that convert PYR in the mitochondrial
matrix to MAL. Subsequent conversion of MAL to OAA, however, also depends on
transport reactions of the MAL/OAA shuttle that form ES 3. The remaining subset,
ES 2, grouped together reactions of the mitochondrial ETC that mediate electron
transport through cytochrome and resulting proton import into the IMS.

A metabolic tree based on reaction correlation coefficients was constructed to study
the correlation between fluxes carried by reactions in the model and is shown in
Figure 3.12. Two distinct clusters, one representing reactions of the TCA cycle and the
other representing reactions of the mitochondrial ETC, were observed in the metabolic
tree. The former cluster was further divided into two separate clusters representing
reactions in ES 1 and ES 3, respectively. A cluster representing the mitochondrial
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Table 3.6 – Enzyme subsets of the model of mitochondrial metabolism containing more
than two reactions. See Figure 3.11 for a graphical representation of the reactions
involved. Stoichiometries of the reactions are available in Appendix D. Other less
significant subsets that are composed of only a single reaction are omitted.

Subset Reactions Function

1

FUM mit

Reactions of the TCA Cycle converting PYR to MAL

CITSynth mit
SCS mit
SDH mit
ACN mit
AKGDH mit
TX PYR mit
IDH mit
PDH mit

2 Complex III Electron transport through cytochrome and proton exportComples IV

3 TX MAL mit MAL and OAA exchange with cytosolTX OAA mit

Regeneration of ADPATPSink_mit

Complex_IV

Complex_III

Electron transport and
proton export into IMS

ATP SynthesisComplex_V

Oxidation of NADHComplex_I

Mitochondrial
ETC

TX_OAA_mit

TX_MAL_mit

NADMDH_mit

MAL/OAA shuttle

PDH_mit

TX_PYR_mit

IDH_mit

SCS_mit

ACN_mit

SDH_mit

AKGDH_mit

CITSynth_mit

FUM_mit

PYR MAL

Reactions of the
TCA Cycle

0.5

Figure 3.12 – Metabolic tree representing the model of mitochondrial metabolism.
See List of Abbreviations for metabolite abbreviations and Appendix D for the
stoichiometries of reactions. The scale bar respresents a difference of θK

xy = 1 rad.

ETC, on the other hand, had four separate sub-clusters, the largest of which contained
the reactions Complex III and Complex IV that mediate electron transfer to the final
electron acceptor. Complex I and Complex V formed related but distinct clusters on
the tree.

EM analysis of the model revealed four EMs, the overall stoichiometries of which
are shown in Table 3.7. A heatmap representing reactions participating in each of these
EMs was constructed from the EMs reaction matrix by hierarchically clustering its rows
(Figure 3.13). EM 1 involves the synthesis of ATP and redox equivalents from PYR
imported into the mitochondrial matrix from cytosol. This EM represents the oxidation
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Table 3.7 – Overall stoichiometries of the EMs of the model of mitochondrial
metabolism. ‘ATPWork’ and ‘NADHWork‘ represent ATP formed and NAD+

regenerated, respectively. External metabolite Proton ims (proton localised in IMS) is
omitted here for clarity, but were included in the analysis. ‘ cyt’ and ‘ mit’ indicate
cytosolic and mitochondrial localisation of metabolites, respectively.

EM Substrates Products

1 1 PYR cyt 4 NADHWork mit + 11
2 ATPWork mit

2 2 PYR cyt + 2 OAA cyt MAL cyt + 6 NADHWork mit + 9 ATPWork mit
3 2 PYR cyt + 8 OAA cyt 8 MAL cyt + 3 ATPWork mit
4 2 MAL cyt 2 OAA cyt + 2 NADHWork mit + 2 ATPWork mit
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Figure 3.13 – Heatmap representing reactions participating in the EMs of the model
of mitochondrial metabolism. Rows were clustered by angle based on their reaction
usage. ‘ mit’ indicates localisation of metabolites in the cytosol. The heatmap has been
coloured according to the stoichiometric coefficient of a reaction in an EM, i.e. = 0
(black), < 0 (green) and > 0 (red).

of NADH produced by reactions of the TCA cycle and the production of ATP mediated
by the resulting ETC. EMs 2 and 3 produce ATP from PYR and OAA imported from
the cytosol. The difference between these two modes is that EM 3 does not involve the
production of reducing equivalents. The remaining EM, EM 4, represents ETC mediated
ATP generation initiated by the oxidation of NADH produced via the MAL/OAA shuttle
without the need for any carbon flux.

3.5.3 Discussion

ESs analysis of the model revealed some very important properties of the system. The
largest ES (Table 3.6), ES 1, represents the major path of carbon flux in the model
leading up to the synthesis of MAL from cytosolic PYR imported into the mitochondria.
It follows that the reactions of this subset produce most of the reducing equivalents
generated by the model. Additionally, the presence of SDH in this subset means that
any flux through it will lead to the formation of ATP via the ETC. Similar inferences
can be drawn from the heatmap representing the reactions participating in the EMs of
the model (Figure 3.13). Here, EM 3 uses reactions of ES 1 and the ETC initiated by
SDH to produce ATP from PYR. EMs 1 and 2, however, uses the set of reactions used
by EM 3 along with Complex I to produce ATP and regenerate NAD+.
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The other major ES, ES 3, contains transport reactions responsible for the exchange
MAL and OAA. From the reaction correlation tree shown in Figure 3.12, it is
evident that the fluxes through the reactions in ES 3 correlate very strongly with
that through NADMDH reaction. These three reactions together form the basic
structure of MAL/OAA shuttle that can indirectly import reducing equivalents into the
mitochondrial matrix. Oxidation of NADH by Complex I initiates the ETC that lead to
the formation of ATP. EM 4 in Figure 3.13 represents the reactions that use this shuttle
mechanism to produce ATP and NAD+ in the mitochondrial matrix.

The primary reasons for performing EM analysis on this model were twofold: to
investigate the carbon flux through reactions of the TCA cycle and to investigate the
major routes of ATP synthesis. From the overall stoichiometries of the EMs shown in
Table 3.7 and the reaction participation heatmap shown in Figure 3.13 , it is evident that
EMs 1, 2 and 3 require oxidation of PYR to initiate carbon flux through the reactions
of the TCA cycle. Along with ATP and the reducing equivalents, MAL and OAA are
produced as part of this carbon flux. The major routes involved in ATP synthesis and
the regeneration of NAD+, however, were discussed in the previous paragraphs.
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CHAPTER 4

Integrated models of plant metabolism

4.1 Introduction

The properties and behaviours of independent steady-state structural models of the
light reactions, the Calvin cycle, glycolysis and the TCA cycle, representing metabolic
pathways in the chloroplast, cytosol and mitochondria, were described in the previous
chapter. The purpose of this chapter, however, is to investigate the characteristics of the
interaction between these compartments using structural model analysis techniques.

From the review in Chapter 2, it must be noted that, unlike the mitochondrial
membrane, the inner chloroplast membrane does not have dedicated ATP/ADP trans-
porters that can export ATP to the cytosol. Nevertheless, ATP and NADPH formed
in the stroma during the light reactions are exported to the cytosol for the synthesis
of sucrose and fatty acids, and to drive metabolism in other organelles. To date, two
shuttle mechanisms — triose-phosphate/PGA and MAL/OAA — have been identified
that mediate the transfer of ATP and reducing equivalents from chloroplast to cytosol
(see Section 2.2.4.2 for a detailed explanation). One of the original goals motivating
this structural investigation of the interaction between compartments was to identify
other potential routes or shuttle mechanisms through which ATP and NADPH may be
exported from chloroplast to cytosol without any net carbon flux.

The role of mitochondrial metabolism in protecting plants from photoinhibition of
the chlorophyll molecules, brought about by the overreduction of the components of the
photosynthetic ETC, was reviewed in Section 2.2.4.4. A second objective motivating
this study was to investigate the various routes through which NADPH produced during
the light reactions and exported to the cytosol via the various shuttle mechanisms are
converted to ATP by the mitochondrial ETC.

For the purposes described above, independent models presented in the previous
chapter were integrated using relevant transport reactions. While the first part of this
chapter investigates the characteristics of the exchange of ATP and reducing equivalents
between chloroplast and cytosol, the latter part examines the effect of mitochondrial
metabolism on ATP and redox interactions between chloroplast and cytosol, and the
various routes involved in controlling the overreduction of photosynthetic ETC.
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Figure 4.1 – Schematic representation of the integrated model of light reactions, the
Calvin cycle and glycolysis representing the energy and redox interactions between
chloroplast (green dotted enclosure) and cytosol. Transport reactions between the
compartments are shown using red arrows. External metabolites are highlighted in
purple. Suffixes ‘ str’ and ‘ cyt’ representing the stromal and cytosolic localisation of the
metabolites and reactions are not shown here for clarity, but were included in the model.
See text for detailed description of the model definition and List of Abbreviations for
metabolite abbreviations.

4.2 Interaction between chloroplast and cytosol

4.2.1 Model Integration

The steady-state stoichiometric models of the Calvin cycle (Section 3.3) and glycolysis
(Section 3.4) were integrated with the help of transport reactions that mediate the trans-
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Table 4.1 – Enzyme subsets in the combined model of glycolysis and chloroplast
metabolism, involving the light reactions and the Calvin cycle in the absence of net
CO2 fixation. See Figure 4.1 for a graphical representation of the reactions involved.

Subset Reactions Function

1 NADHOx cyt Reactions involved in the production
NonCyclicPS and transfer of NADPH

2
PK str This is an inconsistent ES as PK
TX PYR str is irreversible and can be ignored
PK cyt during the analysis of EMs

3
NADMDH cyt

Reactions of the MAL/OAA shuttleTX MALOAA str
NADPMDH str

4 TPI str Conversion of GAP and DHAPTPI cyt

5

PGI str
Ald1 str
PFK cyt Transfer of stromal G6P to cytosol
TX G6P str and its conversion to cytosolic
Ald1 cyt GAP and DHAP
PGI cyt
FBPase str

6

PGlyM cyt

Stromal and cytosolic PGA to PEPPGlyM str
Eno cyt
Eno str

7 PGK cyt Reversible conversion of cytosolic
GAPDHP cyt GAP to PGA

8 PGK str Reversible conversion of stromal
GAPDHP str GAP to PGA

9

ME str, Ald2 str
Rubisco str, X5Piso str
SuSyn cyt, UGPase cyt Dead reactions
PGM str, NDPK cyt Reactions that are not involved
PGM cyt, R5Piso str in the transfer of ATP and
Ru5Pk str, TKL1 str redox equivalents
PEPC cyt, PFP cyt
StSynth str, TKL2 str

fer of Calvin cycle intermediates G6P, DHAP, GAP, PGA, PEP, PYR, MAL and OAA
from chloroplast to cytosol. ATP and NADPH required for the Calvin cycle to produce
these intermediates were supplied to the combined model by incorporating a simplified
version of the model of the light reactions described in Section 3.2 (Appendix A).
The simplified model contains two independent reactions named ‘NonCyclicPS’ and
‘CyclicPS’ representing the overall stoichiometries of the EMs 1 and 2, respectively, of
the light reactions shown in Table 3.2. While ‘NonCyclicPS’ represents the conversion
of an external metabolite ‘Photon nc’ to stromal ATP and NADPH, ‘CyclicPS’ rep-
resents the formation of stromal ATP from the external metabolite ‘Photon n’. The
reason for introducing the simplified model was to simplify the future analysis and
interpretation of the combined model. Stoichiometries of the independent models of
the light reactions, the Calvin cycle and glycolysis is available in ScrumPy format in
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Figure 4.2 – Metabolic tree representing the correlations between fluxes carried by
reactions in the combined model of light reactions, the Calvin cycle and glycolysis. All
carbon flux in the model was shut off by removing carbon input into the system. See List
of Abbreviations for metabolite abbreviations and Appendix A for the stoichiometries
of reactions. The scale bar respresents a difference of θK

xy = 1 rad.

Appendices A, B and C, respectively. An illustration of the combined model is shown
in Figure 4.1. The final version of the model contained 49 reactions and 53 metabolites.

Exchange of the intermediates of the Calvin cycle — produced using ATP and
NADPH generated during the light reactions — between chloroplast and cytosol forms
the key structure of this network. Carbon flux through this model was ascertained
using standard stoichiometric model analysis techniques, a dendrogram showing the
correlation between fluxes carried by reactions in an extended model (that also contains
the TCA cycle reactions) is shown in Figure 4.8. Several modifications were made
to this combined model in order to investigate the exchange of ATP and reducing
equivalents without any net carbon flux. External metabolites of the independent models
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— starch, sucrose and PYR — were now made internal and the dummy metabolites,
stromal and cytosolic ‘ATPWork’ and ‘NADWork’, were declared external. These
dummy metabolites were originally introduced into the model to directly derive net
energy and reducing yields from the net stoichiometries of the EMs. Once the carbon
flux is shut off and the external metabolites defined, the combined model now represents
the exchange of ATP and redox equivalents generated during the light reactions between
chloroplast and cytosol.

4.2.2 Model Analysis

ES analysis of the combined model of the light reactions, the Calvin cycle and glycolysis
revealed nine subsets composed of more than two reactions and eight involving only
a single reaction. A list of reactions constituting the major ESs and their respective
functions are shown in Table 4.1. Smaller subsets are not listed here for clarity.
The largest subset (ES 9), containing 16 reactions, represented reactions that were
not involved in the exchange of ATP and reducing equivalents. These reactions,
although integral to the independent models (Sections 3.2, 3.3 and 3.4), do not have
any flux associated with them as the net carbon flux in the model was initially shut off.
The second largest subset, ES 5, contained seven reactions that were involved in the
conversion of stromal DHAP and PGA to G6P, the export of G6P to the cytosol via the
G6P transporter (TX G6P) and its subsequent conversion to cytosolic GAP and PGA at
the expense of a molecule of ATP.

A metabolic tree based on reaction correlation coefficients, representing the cor-
relations between fluxes carried by reactions in the model, was constructed from the
orthogonal null space of the stoichiometry matrix of the combined model (Figure 4.2).
Clusters that correspond to ESs shown in Table 4.1 were identified. The properties of
some of these clusters are provided in Figure 4.2.

EM analysis of the model revealed 36 EMs, the overall stoichiometries of which
were hierarchically clustered, as shown in the dendrogram in Figure 4.3. Seven distinct
clusters were observed in the dendrogram. Clusters 1, 2 and 4 contained EMs that were
not involved in the transfer of ATP and/or reducing equivalents across the chloroplast
envelope. EMs in Cluster 1 were futile cycles involving DHAP and GAP, and PGA and
PEP transporters. While Cluster 2 contained EMs that use ATP and/or NADPH from
the stroma to initiate substrate cycles that do not export them to the cytosol, Cluster 4
represented an EM that converted ATP produced from photons into the stroma to stromal
ATPWork. These clusters, containing a total of 13 EMs, were removed from the original
set of EMs and will not be discussed further. Overall stoichiometries of the remaining
23 EMs were hierarchically clustered and are shown in the dendrogram in Figure 4.4.
Clusters 3 and 5 of this dendrogram contained EMs involved in the transfer of ATP
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Figure 4.3 – Dendrogram representing the overall stoichiometries of the entire set of
EMs generated from the combined model of the light reactions, the Calvin cycle and
glycolysis, clustered by angle based on their net external metabolite usage. Blue, orange,
green and purple clusters contain EMs that mediate the transfer of ATP and/or reducing
equivalents between chloroplast and cytosol. EMs in red clusters are not involved in
either energy or redox exchange. ‘ str’ and ‘ cyt’ indicate the localisation of the external
metabolites in stroma and cytosol, respectively. See List of Abbreviations for metabolite
abbreviations. The scale bar respresents a difference of θK

xy = 0.5 rad.

and NADPH from the chloroplast to the cytosol, respectively. Cluster 7 represented an
EM that uses the MAL/OAA shuttle to export NADPH to the cytosol. EMs capable of
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Figure 4.4 – Dendrogram representing the overall stoichiometries of the 23 EMs
obtained after removing the EMs that are not involved in the transfer of ATP and/or
reducing equivalents. Blue, orange, green and purple clusters contain EMs that mediate
the transfer of ATP and/or reducing equivalents between chloroplast and cytosol. ‘ str’
and ‘ cyt’ indicate the localisation of the external metabolites in stroma and cytosol,
respectively. See List of Abbreviations for metabolite abbreviations. The scale bar
respresents a difference of θK

xy = 0.5 rad.

exporting both ATP and NADPH from the stroma were grouped in Cluster 6. A heatmap
representing reactions participating in the final set of EMs was constructed from the
EMs reaction matrix (Figure 4.5). Rows of this matrix were hierarchically clustered
based on the overall stoichiometries of the EMs and columns were sorted based on the
order of the leaves on the reaction correlation tree shown in Figure 4.2.

4.2.3 Discussion

The major objective of performing ES analysis of the model was to identify reactions
that operate in fixed flux proportions. Results from the ESs analysis, shown in Table 4.1,
revealed some very important properties of the integrated model. Reactions in ES 9,
identified as dead reactions, are obviously not involved in the exchange of either ATP or
reducing equivalents between the compartments. Note that the objective of performing
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0 0 0 0 2 2 1 1 1 1 1 1 1 1 1 0 0 2 2 2 0 -2 -2 2 2 2 2 0 0 1 EM 14

3. EMs transferring
stromal ATP to 
the cytosol

5. EMs transferring 
stromal NADPH to 
the cytosol

6. EMs exporting 
stromal  ATP and 
NADPH to the 
cytosol

7. EM exporting 
NADPH to cytosol

Figure 4.5 – Heatmap representing reactions participating in the elementary modes of
the combined model of glycolysis and chloroplast metabolism. Rows were clustered
based on the overall stoichiometries of EMs and the columns were clustered based on
reaction correlation coefficients that represent the correlations between fluxes carried by
reactions in the model. Each EM represents a potential route involved in the transfer of
ATP and/or reducing equivalents from chloroplast to cytosol. Blue, orange, green and
purple clusters relate to those in the dendrogram in Figure 4.4. Transport reactions
involved in these modes are highlighted in red text. ‘ str’ and ‘ cyt’ indicates the
localisation of the external metabolites in the stroma and cytosol, respectively. The
heatmap has been coloured according to the stoichiometric coefficients of reactions in
an EM i.e. = 0 (black), < 0 (green) and > 0 (red) (i.e.. red and green indicate forward
and backward reactions, respectively. Black represents non-participation of a reaction
in an EM).

the structural analysis of the integrated model was to investigate the major routes
through which ATP and reducing equivalents may be exported from chloroplast to cy-
tosol without any net carbon flux. Reactions in ES 9 reiterates the absence of any carbon
flux in the model. ES 5, containing reactions involved in the conversion of stromal GAP
and DHAP to cytosolic GAP and DHAP via the G6P transporter, represents the only
means by which the G6P transporter can exchange ATP and redox equivalents across
the chloroplast envelope. Net stoichiometry of this ES involves utilisation of cytosolic
ATP, so when it occurs as part of EMs involved in chloroplast-cytosol transfer, it can
only achieve net transfer of NADPH as ATP from the chloroplast is consumed.

The reasons for performing EM analysis on the integrated model of the light
reactions, the Calvin cycle and glycolysis were twofold: to identify potential routes
through which ATP and reducing equivalents are transferred across the chloroplast
envelope without any net carbon flux and to interrogate the properties and behaviours
of the major transporters involved in this transfer. From the 36 possible EMs
obtained from the model, 23 distinct routes responsible for ATP and redox transfer

92



Chapter 4 4.2. Interaction between chloroplast and cytosol

DHAPDHAP

PEP

GAP

BPGA

PGA

PGA2

PEP

PGA

PGA2

GAP

BPGA

TPI

GAPDHP

PGK

PGlyM

ENO

TPI

PGlyM

ENO

GAPDHP

PGK

GAPDH

NAD

NADH

NAD

NADH

NADP

ADP

ATP

ADP

ATP

PiPi

TPT_DHAP

TPT_PGA

TX_PEP

Pi Pi

Pi Pi

Pi Pi

Pi Pi

TPT_GAP

CHLOROPLASTCYTOSOL

(a)

DHAPDHAP

PEP

GAP

BPGA

PGA

PGA2

PEP

PGA

PGA2

GAP

BPGA

TPI

GAPDHP

PGK

PGlyM

ENO

TPI

PGlyM

ENO

GAPDHP

PGK

GAPDH

NAD

NADH

NAD

NADH

NADP

ADP

ATP

ADP

ATP

PiPi

TPT_DHAP

TPT_PGA

TX_PEP

Pi Pi

Pi Pi

Pi Pi

Pi Pi

TPT_GAP

CHLOROPLASTCYTOSOL

(b)

DHAPDHAP

PEP

GAP

BPGA

PGA

PGA2

PEP

PGA

PGA2

GAP

BPGA

TPI

GAPDHP

PGK

PGlyM

ENO

TPI

PGlyM

ENO

GAPDHP

PGK

GAPDH

NAD

NADH

NAD

NADH

NADP

ADP

ATP

ADP

ATP

PiPi

TPT_DHAP

TPT_PGA

TX_PEP

Pi Pi

Pi Pi

Pi Pi

Pi Pi

TPT_GAP

CHLOROPLASTCYTOSOL

(c)

F6P

G6P

DHAP

G6P

DHAP

F6P

FBP

GAP

BPGA

PGA PGA

GAP

BPGA

FBP

PFK PFP

Ald1

TPI

GAPDHP

PGK

PGI

FBPase

TPI

GAPDHP

PGK

Ald1

PGI

GAPDH

PPi

NAD

NADH

ATP

ADP

NAD

NADH

NADP

ADP

ATP

ADP

ATP

PiPi

Pi

TPT_DHAP

TPT_PGA

TX_G6P

Pi Pi

Pi Pi

Pi Pi

TPT_GAP

Pi Pi

CHLOROPLASTCYTOSOL

(d)

F6P

G6P

DHAP

G6P

DHAP

F6P

FBP

GAP

BPGA

PGA PGA

GAP

BPGA

FBP

PFK PFP

Ald1

TPI

GAPDHP

PGK

PGI

FBPase

TPI

GAPDHP

PGK

Ald1

PGI

GAPDH

PPi

NAD

NADH

ATP

ADP

NAD

NADH

NADP

ADP

ATP

ADP

ATP

PiPi

Pi

TPT_DHAP

TPT_PGA

TX_G6P

Pi Pi

Pi Pi

Pi Pi

TPT_GAP

Pi Pi

CHLOROPLASTCYTOSOL

(e)

F6P

G6P

DHAP

G6P

DHAP

F6P

FBP

GAP

BPGA

PGA PGA

GAP

BPGA

FBP

PFK PFP

Ald1

TPI

GAPDHP

PGK

PGI

FBPase

TPI

GAPDHP

PGK

Ald1

PGI

GAPDH

PPi

NAD

NADH

ATP

ADP

NAD

NADH

NADP

ADP

ATP

ADP

ATP

PiPi

Pi

TPT_DHAP

TPT_PGA

TX_G6P

Pi Pi

Pi Pi

Pi Pi

TPT_GAP

Pi Pi

CHLOROPLASTCYTOSOL

(f)

Figure 4.6 – A representative set of EMs of the integrated model of light reactions, the
Calvin cycle and glycolysis involved in the transfer of ATP and/or reducing equivalents
from chloroplast to cytosol. (a), (b), (c), (d), (e) and (f) represent EMs 35, 20, 15, 8,
32 and 16, respectively. Overall stoichiometries of these EMs are shown Figure 4.4.
EMs and their flux are indicated by the grey overlay. Energy and reducing equivalents
consumed and produced in each of these EMs are coloured green and red, respectively.
While (a) and (b) indicate the role of PEP transporter in the transfer of ATP and reducing
equivalents, (c), (d), (e) and (f) illustrate the role of G6P transporter. See text for more
details on these EMs.

were identified. When the overall stoichiometries of these EMs were hierarchically
clustered, four distinct groups of EMs were identified (Figure 4.4). The first cluster,
Cluster 3, containing six EMs was found to be involved in the transfer of ATP. Overall
stoichiometries (Figure 4.4) and participating reactions (Figure 4.5) indicate that the
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ATP transferred by these EMs came from the cyclic branch of the light reactions.
However, the presence of ESs 7 and 8 containing cytosolic and stromal PGK and
GAPDHP suggests that the ATP transfer through these modes must also involve coupled
NADPH export from chloroplast. This explains the reason for having the MAL/OAA
shuttle (ES 3) associated with these EMs. Reducing equivalents produced in the cytosol
by GAPDHP are transferred into the stroma via the MAL/OAA shuttle, to provide the
EMs with the NADPH required to transfer ATP into the cytosol. For these reasons, as
these EMs are potential routes for ATP transfer into the cytosol, it can be concluded that
cyclic photophosphorylation cannot mediate ATP transfer into the cytosol on its own.

Clusters 5 and 7 contain EMs involved in the transfer of reducing equivalents
produced during non-cyclic photophosphorylation across the chloroplast envelope.
While Cluster 7 contains only one EM that uses the MAL/OAA shuttle to do this,
Cluster 5 contains ten EMs that use a combination of different transporters other than the
MAL/OAA shuttle. Two main groups of EMs can be observed in Cluster 5. The first
group of EMs employ stromal PGK and GAPDHP, and cytosolic GAPDH to transfer
reducing equivalents into the cytosol. A representative EM of this cluster, EM 35, is
illustrated in Figure 4.6(a). The second group imports stromal G6P produced from
PGA into the cytosol via the G6P transporter, and converts it into cytosolic FBP with
the help of PGI and PFK reactions. FBP is then broken down into two molecules of
GAP by the cytosolic Ald1 and TPI reactions. EMs in this cluster show that both these
molecules can follow independent routes from this point. In the case of the EMs 8,
7, 28 and 31, while one molecule of GAP moves back into the chloroplast via the
TPT GAP or TPT DHAP transporter the other gets converted to PGA either via the
PGK and GAPDHP reactions or the GAPDH reaction. A representative EM, EM 8, is
illustrated in Figure 4.6(d). In EMs 29 and 32, however, both molecules of GAP are
converted to PGA - one using GAPDHP and PGK reactions and the other using the
GAPDH reaction. See Figure 4.6(e) for a representative example. Consumption and
production of a molecule of ATP by cytosolic PFK and PGK, respectively, in these EMs
means that there is only a net import of reducing equivalents into the cytosol. EMs in
this group exemplify the role of the G6P transporter in transferring reducing equivalents
across the chloroplast envelope. However, EMs 16 and 14 of Cluster 6 are capable of
a net export two molecules of NADPH and a molecule of ATP into the cytosol. In the
case of these EMs both molecules of GAP generated from FBP are converted to PGA
by the cytosolic reactions GAPDHP and PGK, forming two molecules of NADPH and
ATP. One molecule of this ATP is used up by the PFK reaction while converting F6P to
FBP. See Figure 4.6 (f) for an illustration of EM 16. The other three EMs in Cluster 6
use stromal and cytosolic PGK and GAPDHP to export both ATP and NADPH from the
chloroplast (Figures 4.6(c) and (b)).

From the heatmap in Figure 4.5 it is evident that all EMs except the one in Cluster 3
use stromal PGK and GAPDHP to initiate the export of ATP and redox equivalents.
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Along with these two stromal reactions the cytosolic PGK and GAPDHP form the most
important enzymes required to facilitate the exchange of ATP and NADPH between the
two compartments. The heatmap also shows that the flux through the PGA transporter
is directed into the chloroplast in all EMs that use it. Similarly, the direction of flux
through stromal reactions PGlyM and Eno means that the flux through PEP transporter
is directed into the chloroplast. These two transport reactions replenish the stroma with
the metabolites PGA and PEP required to initiate the transfer of ATP and reducing
equivalents. DHAP and GAP transporters, on the other hand, are involved in the
exchange of triose-phosphates across the chloroplast envelope. The resulting pathway
is mediated by coupled reactions GAPDHP, PGK and TPI running anti-parallel in the
stroma and cytosol. These transporters are involved in 15 EMs. In four EMs involving
the G6P transporter, the GAP and DHAP transporters mediate the influx of triose-
phosphates into the stroma. The role of the G6P transporter in the model was described
earlier. The above observations suggest that apart from the triose-phosphate, PGA
and MAL/OAA transporters described earlier by Heineke et al. [148], two additional
transporters — G6P and PEP transporters — are potentially involved in the exchange
of ATP and reducing equivalents across the chloroplast envelope. However, more
sophisticated techniques such as FBA and kinetic modelling must be employed to
ascertain the exact nature of their role. Another important outcome of this analysis
is that the observations highlight the role of the chloroplast as the source and target of
redox regulations in the plant cell. Integrating mitochondrial metabolism to the existing
model might enable us to investigate this further.

4.3 Energy and redox interactions between chloroplast,
cytosol and mitochondria

4.3.1 Model extension

An integrated steady state structural model containing light reactions, the Calvin cycle
and glycolysis representing the exchange of ATP and reducing equivalents between
chloroplast and cytosol was described in the previous section. This model was
extended to include mitochondrial metabolism by integrating the stoichiometric model
of the TCA cycle described in Section 3.5. The models were combined with the
help of MAL/OAA and PYR transporters that mediate the exchange of metabolites
between mitochondria and cytosol. Stoichiometries of the independent models of light
reactions, the Calvin cycle, glycolysis and TCA cycle in ScrumPy format is available in
Appendices A, B, C and D, respectively. An illustration of the integrated model is shown
in Figure 4.7. The final version of the model contains 63 reactions and 72 metabolites.
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Figure 4.7 – Schematic representation of the integrated model of light reactions,
the Calvin cycle, glycolysis and the TCA cycle representing the energy and redox
interactions between chloroplast (green dotted enclosure), cytosol and mitochondria
(red dotted enclosure). Reaction of the oxidative phosphorylation were included in the
model definition to simplify future analysis and interpretation of the model. Transport
reactions between the compartments are highlighted in red arrows. External metabolites
are highlighted in purple. Suffixes ‘ str’, ‘ cyt’ and ‘ mit’ representing the stromal,
cytosolic and mitochondrial localisation of the metabolites and reactions are not shown
here for clarity, but were included in the model. See text for detailed description of the
model definition and List of Abbreviations for metabolite abbreviations.
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One objective of constructing this model was to investigate the major routes through
which ATP and reducing equivalents are exchanged between chloroplast, cytosol and
mitochondria without any net carbon flux. However, the extended model was tested
using standard stoichiometric model analysis techniques to ascertain the existence of
carbon flux. A dendrogram representing the correlation between fluxes carried by
reactions in the model with carbon flux is shown in Figure 4.8. In order to restrict
carbon flux in the extended model, PYR, MAL and OAA, which had been considered
external in the independent model of TCA cycle and oxidative phosphorylation, were
now made internal. Note that the carbon flux through the initial model of light reactions,
the Calvin cycle and glycolysis was already shut off.

The reactions involved in oxidative phosphorylation were not included in the
definition of the extended model for two reasons. Firstly, it simplified the model
definition and future analysis and interpretation of the model. Secondly, it was shown
during the analysis of the reactions participating in EM 4 in Figure 3.13 that the
reactions of the oxidative phosphorylation can mediate direct oxidation of mitochondrial
NADH to yield ATP without the involvement of any carbon flux. If follows from
this that any NADH formed in the mitochondrial matrix is ultimately converted to
mitochondrial ATP. For this reason, a new dummy metabolite, ‘NADHWork’, was
introduced into the mitochondrial model to derive net reducing yields from the net
stoichiometries of the EMs. Compartmentation of metabolites and reactions were
maintained by using the suffixes ‘ str’, ‘ cyt’ and ‘ mit’ representing stroma, cytosol
and mitochondria, respectively. The extended model now represented the exchange
of ATP and reducing equivalents produced during light reactions between chloroplast,
cytosol and mitochondria without any net carbon flux.

4.3.2 Model Analysis

Reactions involved in the major ESs of the initial model, constituting light reactions,
the Calvin cycle and glycolysis, were shown in Table 4.1 and the characteristics of these
ESs were described in Section 4.2.2. ESs analysis of the extended model showed that
all subsets in the initial model, both major and minor, were conserved. In addition
to this, two novel characteristics were observed. Firstly, the total number of reactions
in the largest ES of the initial model, ES 9, rose from 16 to 27. This subset, already
containing reactions of the stromal and cytosolic metabolism that were considered dead,
now included reactions of the TCA cycle that were not involved in the transfer of ATP
or reducing equivalents. The amended list of reactions in ES 9 is shown in Table 4.2.
Note that all reactions in the TCA cycle are dead in the absence of carbon flux in the
model. Secondly, a new ES (ES 10 in Table 4.2) containing reactions mediating the
mitochondrial MAL/OAA shuttle was identified. This ES represents the only route
through which reducing equivalents can enter or leave mitochondrial matrix.
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Figure 4.8 – Dendrogram representing the correlation between fluxes carried by
reactions in the combined model of light reactions, the Calvin cycle, glycolysis and
the TCA cycle in the presence of carbon flux. Five distinct clusters were observed, the
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Table 4.2 – ESs obtained from the extended model. ESs of the initial model comprising
light reactions, the Calvin cycle and glycolysis were shown in Table 4.1. See Figure 4.7
for a graphical representation of the reactions involved.

Subset Reactions Function

9

ME str, Ald2 str
Rubisco str, X5Piso str
SuSyn cyt, UGPase cyt
PGM str, NDPK cyt
PGM cyt, R5Piso str Dead reactions
Ru5Pk str, TKL1 str Reactions that are not involved
PEPC cyt, PFP cyt in the transfer of ATP and
StSynth str, TKL2 str redox equivalents
AKGDH mit, TX PYR mit
Fumarase mit, SCS mit
ACOase mit, CITSynth mit
IDH mit, PDH mit, SDH mit
PEPC cyt, NDPK cyt

10
NADMDH mit Reactions of the mitochondrial
TX MALOAA mit MAL/OAA shuttle
NADMDH cyt

A dendrogram representing the correlation between fluxes carried by reactions in the
extended model was constructed after removing those reactions that are not involved
in the exchange of ATP and reducing equivalents (Figure 4.9). Clusters on this tree
corresponded to those on the tree representing the initial model shown in Figure 4.2.
However, a new cluster representing the reactions mediating mitochondrial MAL/OAA
shuttle (ES 10) was identified.

EM analysis of the extended model revealed 53 EMs, the overall stoichiometries
of which were hierarchically clustered as shown in the dendrogram in Figure 4.10. It
was found that all EMs of the initial model of light reactions, the Calvin cycle and
glycolysis were conserved in the new set of EMs, i.e. clusters 1-7 containing EMs of the
initial model (Figure 4.3) were also present in the dendrogram representing EMs of the
extended model (Figure 4.10). Furthermore, clusters 1, 2 and 4 in Figure 4.3, containing
13 EMs that were not involved in ATP and redox exchange, were also present in the new
dendrogram. EMs in these clusters were removed from the original set of EMs of the
extended model and will not be discussed further. Properties of the remaining 23 EMs in
the conserved clusters 3, 5, 6 and 7 of the initial model were described in Section 4.2.2.

In addition to the conserved clusters described above, 3 new clusters — clusters 8, 9
and 10 — containing a total of 17 EMs were found in the dendrogram representing the
overall stoichiometries of the EMs of the extended model. Clusters 8 and 9 contained
EMs capable of transferring reducing equivalents generated in the stroma into the
mitochondrial matrix. EMs in cluster 9 were also capable of transferring stromal ATP
into the cytosol. The EM in Cluster 10, however, was involved in transferring stromal
reducing equivalents into the mitochondrial matrix with the help of the stromal and
mitochondrial MAL/OAA shuttle. A dendrogram containing the 40 EMs that were
involved in ATP and redox exchange was constructed and is shown in Figure 4.11.
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Figure 4.9 – Metabolic tree representing the correlation between fluxes carried by
reactions in the extended model composed of light reactions, the Calvin cycle, glycolysis
and reactions of the TCA cycle. All carbon flux in the model was shut off by removing
carbon input into the system. See List of Abbreviations for metabolite abbreviations and
Appendix A for the stoichiometries of reactions. The scale bar respresents a difference
of θK

xy = 1 rad.

A heatmap representing the reactions participating in these EMs was constructed from
the EMs reaction matrix (Figure 4.12). Rows of this matrix were clustered based on
the overall stoichiometries of the EMs and columns were sorted based on the order of
leaves on the reaction correlation tree shown in Figure 4.9. Properties of the reactions
participating in the EMs of the initial model shown in this dendrogram were described
in Section 4.2 and will not be discussed further.

4.3.3 Discussion

The major objective of performing structural analysis of the model was to investigate the
major routes through which ATP and reducing equivalents can be exchanged between
chloroplast, cytosol and mitochondria without any net carbon flux. The absence of
carbon flux in the model was confirmed by the presence of several key reactions in ES 9
that were identified as dead reactions (Table 4.2). Of these, a reaction of particular
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Figure 4.10 – Dendrogram representing the overall stoichiometries of the 53 EMs
mediating the exchange of ATP and reducing equivalents in the extended model. Red
and blue clusters indicate EMs mediating interaction between chloroplast and cytosol
that are conserved from the initial model. Green clusters indicate EMs mediating
interaction between chloroplast, cytosol and mitochondria. ‘ str’, ‘ cyt’ and ‘ mit’
indicate the localisation of the external metabolites in stroma, cytosol and mitochondria,
respectively. See List of Abbreviations for metabolite abbreviations. The scale bar
respresents a difference of θK

xy = 0.5 rad.
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6. EMs involved in the transfer of stromal
ATP and NADPH to the cytosol

Figure 4.11 – Dendrogram representing the overall stoichiometries of the 40 EMs
obtained from the extended model after removing the EMs that were not involved in
the transfer of ATP and/or reducing equivalents. Blue clusters contain EMs of the
initial model (Figure 4.4) that are conserved in the extended model. Green clusters
represent the new set of EMs that are involved in the exchange of ATP and reducing
equivalents between chloroplast, cytosol and mitochondria. ‘ str’, ‘ cyt’ and ‘ mit’
indicate the localisation of the external metabolites in stroma, cytosol and mitochondria,
respectively. See List of Abbreviations for metabolite abbreviations. The scale bar
respresents a difference of θK

xy = 0.5 rad.

interest is the mitochondrial SDH. Having no flux through this reaction means that the
model can no longer reduce mitochondrial quinones that can mediate electron transport
leading to the production of ATP. Consequently, the only route through which ATP
can be generated in the mitochondrial matrix in the absence of carbon flux is via
the oxidation of NADH by Complex I. Protons are pumped into the IMS during this
process and the resulting proton gradient lead to ATP synthesis. It follows from this
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Figure 4.12 – Heatmap representing reactions participating in the elementary modes
of the extended model containing light reactions, the Calvin cycle, glycolysis and
TCA cycle. Each EM represent a potential route involved in the exchange of ATP
and/or reducing equivalents between chloroplast, cytosol and mitochondria. Transport
reactions involved in these modes are highlighted in red text. ‘ str’ and ‘ cyt’ indicates
the localisation of the external metabolites in the stroma and cytosol, respectively.
Heatmap has been coloured according to the stoichiometric coefficients of reactions in
an EM i.e. = 0 (black), < 0 (green) and > 0 (red) (i.e.. red and green indicate forward
and backward reactions, respectively. Black represent non-participation of a reaction in
an EM).

that all EMs of the model that can import NADH into the mitochondrial matrix can only
use Complex I to produce ATP. ES 10, containing the reactions of the mitochondrial
MAL/OAA shuttle, contains the reactions through which reducing equivalents can enter
or leave the mitochondrial matrix. The role of this shuttle mechanism in transferring
reducing equivalents across the mitochondrial membrane is evident in the heatmap
shown in Figure 4.12. Other shuttle mechanisms, such as the MAL/aspartate shuttle,
were not considered in the current study as including them would take the model outside
the scope of this thesis.

Clusters in the dendrogram representing correlation between fluxes carried by
reactions in the initial model were conserved in the dendrogram representing the
extended model (Figure 4.9). From the metabolic tree it is evident that the flux through
stromal and mitochondrial MAL/OAA shuttles strongly correlate with the flux through
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NonCyclicPS. Along with the EMs obtained from the model, it indicates that most
reducing equivalents imported into the cytosol from the stroma are taken up by the
mitochondria to produce ATP. However, in a live plant cell, cytosolic NADH is used
by other metabolic pathways such as nitrate assimilation and some is exported into the
peroxisomes. Nevertheless, it can be concluded that excess NADH in the cytosol is
exported into the mitochondria along the routes identified by the EMs.

From the dendrograms representing the overall stoichiometries of the EMs of the
initial model (Figure 4.3) and the extended model (Figure 4.10) it can be seen that EMs
of the former are conserved in the latter. This agrees with the recent observation that
modes of a subsystem exist as modes of the enlarged system [183]. Here, reactions in
the subsystem containing light reactions, the Calvin cycle and glycolysis were extended
by including reactions of the TCA cycle to form the enlarged system. Properties of the
EMs of the initial model were discussed in Section 4.2 and were found to be consistent
with that of the conserved set of EMs obtained from the extended model. Furthermore,
based on the participation of reactions in the EMs of the initial and extended model
it can be assumed that the EMs of the subsystem and the enlarged system share some
common traits, such as the involvement of stromal GAPDHP and PGK in all EMs and
the direction of flux in stromal Eno and PGlyM reactions. However, more experiments
in this direction are required to take this any further.

Overall stoichiometries of the additional EMs of extended model formed three
separate clusters, namely Clusters 8, 9 and 10, as shown in the dendrogram in
Figure 4.11. Cluster 10, representing reactions participating in the EM 1, indicates
a direct route through which redox equivalents in the stroma can be transferred to
the mitochondria. Stromal NADPH is transferred into the cytosol via the stromal
MAL/OAA shuttle, from where excess NADPH is moved into the mitochondrial matrix
by the mitochondrial MAL/OAA shuttle. Inside mitochondria, however, NADH is
converted to ATP by the activity of Complex I. Clusters 8 and 9 contain EMs that
represent other routes through which reducing equivalents can be exported from the
chloroplast to the cytosol. From the above observations it is evident that in plant cells
under high light stress, these EMs mediate the conversion of excess stromal NADPH
to mitochondrial ATP, thereby contributing to protecting the plant from photoinhibition
(Section 2.2.4.4). Furthermore, along with EM 1, EMs in Clusters 8 and 9 represent the
major routes through which chloroplast and mitochondria interact. From the direction
of flow of flux in these EMs it is clear that the chloroplast act as the source and target
for redox regulation in the plant cell.

From the heatmap in Figure 4.12 it is evident that G6P and PEP transporters partic-
ipate in many EMs involved in the transfer of redox equivalents into the mitochondria.
This result exemplifies the role of these transporters in mediating the transfer of energy
and reducing equivalents into various compartments within the plant cell.
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CHAPTER 5

Metabolic models to analyse
microarray data

5.1 Introduction

Independent steady-state structural models of the light reactions, the Calvin cycle,
glycolysis and the TCA cycle were described in Chapter 3. These models were then
integrated in the previous chapter to construct a larger model where the characteristics
of eukaryotic cells, such as the compartmentation of reactions and the involvement of
transport reactions, were considered. This model was later used to investigate the ATP
and redox interactions between chloroplasts, cytosol and mitochondria in a plant cell.
The primary objective of this chapter is to use the model to analyse expression levels
of genes obtained from microarray experiments. The basic principles and common
techniques involved in the analysis and interpretation of microarray data were described
in Section 1.5.

The motivation for performing this study was threefold. Firstly, previous attempts
to integrate metabolic models with gene expression data have successfully employed
ESs from steady-state stoichiometric models as the linking factor [38, 41]. One early
result, that functionally related genes are often coexpressed [184], has provided strong
motivation for the adoption of expression microarrays to study the characteristics of
ESs. The outcome of these studies revealed important features of genetic and metabolic
regulation existing within a metabolic model. A study by Schuster et al. [38], using
a model of S. cerevisiae central carbon metabolism, showed that the expression levels
of genes coding for enzymes in an ES are more highly correlated when compared to
enzymes that were grouped randomly. Similar results were obtained from a recent
analysis performed on a genome-scale model of E. coli [41]. With the help of the
integrated expression values, the latter study also showed that many subsets in the E. coli

model belong to known operons or regulons. These results supported the hypothesis that
the enzymes within a given subset are genetically regulated in a coherent fashion. For
these reasons, it was expected that combining stoichiometric model analysis techniques
with gene expression profiles might reveal potential relationships and novel biological
properties, and novel applications of metabolic models.
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Secondly, unlike the case with ESs, no efforts have been made to integrate the RCCs
of a steady-state stoichiometric model and the levels of gene expression. As described in
Section 1.4.2.3, RCCs are a quantitative extension to the concept of ESs. They represent
the strength of correlation between fluxes carried by reactions in a stoichiometric
model, and are therefore a good candidate for relating with the correlation between the
expression levels of genes. In reality, there exists a complex relationship between gene
expression and metabolic flux. Many enzymes can accept several different substrates,
thus relating the expression of one gene to several fluxes. The converse applies to
enzyme complexes, where several genes are related to one flux. Similarly, in the case of
isozymes, several genes are coupled to one or several fluxes. For these reasons, it is dif-
ficult to draw conclusions on flux through a metabolic reaction based on the expression
of a corresponding gene and vice versa. However, integrating RCCs with microarray
data may help to relate coexpressed genes and reactions that share similar flux.

Finally, integration of the properties of stoichiometric models such as RCCs may
aid microarray data analysis by dimensional reduction, classification and annotation.
Measurements of gene expression levels by microarray experiments create a high-
throughput of data, the interpretation of which increasingly requires novel and efficient
dimensional reduction strategies. Many clustering methods have been proposed and
are widely used [185]. These algorithms group genes and/or samples into clusters
of similar expression profiles, in order to suggest possible functional relationships
between them [184, 186, 187, 188]. The importance of graphical representations and of
clustering algorithms stands out from many recent publications devoted to co-expression
analysis and gene function prediction [184, 186, 187, 188, 189, 190, 191].

This chapter aims to combine hierarchical clustering of RCCs representing the
correlation between fluxes carried by reactions in a metabolic model, with the classical
gene expression correlation based clustering for studying microarray expression data.
Such an integration may provide novel graphical representations or cluster annotations
through correlation between the fluxes carried by enzymes, and the expression levels of
genes coding for these enzymes.

5.2 Methodology

5.2.1 Mapping the ‘reaction—enzyme—protein—gene’ associations
in the model

In the definition of the models of the light reactions, the Calvin cycle, glycolysis and the
TCA cycle given in Appendices A, B, C and D, respectively, the reaction names are rep-
resented using common reaction abbreviations. The foremost step in integrating these
metabolic models with data from public databases is to substitute such abbreviations
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with the reaction identifiers specific to the database of choice. The database used here
was AraCyc (Section 1.5). A table containing the common reaction names used in the
model and their corresponding AraCyc reaction identifiers is provided in Appendix E.

The next step is to identify all those genes that are coding for the reactions in the
model. As has been described earlier in Section 1.5, the associations between reactions,
proteins, enzymes and genes are not in most cases one-to-one, and hence not easy to
map. A Python based ScrumPy add-on called PyoCyc† [13] was used for this purpose.
It can be used to read BioCyc (Section 1.5) flat files1 into the Python environment as
a nested dictionary (Table 1.4). This dictionary has a hierarchical structure with genes
as the root node2 and proteins as children3. Enzymes are represented as children of
proteins and reactions as the children of enzymes. Metabolites are the ‘end-nodes’ or
‘leaves’ of this structure. An example showing the Python scripts required for extracting
genes coding for a reaction using PyoCyc is given below.

The mitochondrial reaction catalysed by the enzyme succinyl-CoA synthetase
is represented in the model definition as ‘SCS mit’. This enzyme is known as
‘SUCCCOASYN-RXN’ in the AraCyc database. To extract the genes coding for this
enzyme, first the AraCyc database has to be loaded into a Python dictionary object:

>>> import PyoCyc

>>> AraCyc = PyoCyc.Organism(data = "aracyc_database")

Once that is done, the dictionary has to be traversed to find the parents of this reaction,
which will include enzyme-reaction associations, and the polypeptide monomers
constituting the protein.

>>> AraCyc["SUCCCOASYN-RXN"].TravParents()

[ENZRXNQT-9439, AT5G23250-MONOMER, AT5G23250, ENZRXNQT-9438,

AT2G20420-MONOMER, AT2G20420, ENZRXNQT-9437, AT5G08300-MONOMER,

AT5G08300]

The parents of the items in the list above are the genes coding for ‘SUCCCOASYN-
RXN’.

>>> AraCyc["SUCCCOASYN-RXN"].TravParents()[0].GetParents()[0].

GetParents()[0].UID

’AT5G23250’

1 A ‘flat file’ is a plain text or mixed text and binary file which usually contains one record per line,
within which the single fields may be separated by delimiters, e.g. commas.

2 Every hierarchical structure has a member that is at the highest level. This member is called the ‘root’
or root node. It can be thought of as the starting node.

3 Nodes that share the same parent node.
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Note that the script described above illustrates the extraction of only one gene. However,
it can be modified to obtain all the genes coding for a particular reaction.

Genes coding for a few reactions, such as the transport reactions, could not be
retrieved as the data pertaining to them was not available in the AraCyc database.
Meanwhile, some other reactions in the model such as the ‘Cyclic lum’ (mediating
cyclic photosphosphorylation in the lumen) do not have any genes associated with them.
The reason for this is that these reactions are either composite or spontaneous. In order
to keep track of the isoforms of a protein for which a gene codes, the names of the
isoforms were appended to the gene name as suffix.

5.2.2 Integrating metabolic models with gene expression data

The Nottingham Arabidopsis Stock Centre’s microarray database, NASCArrays (Sec-
tion 1.5), was the source of gene expression data used in this study. The ‘super
bulk gene’ file containing nearly 3500 hybridisations, each with expression levels of
over 22,500 genes represented on the ATH1 array, was downloaded. These arrays
were derived from varied experiments, tissues, conditions, treatments and genetic
backgrounds, providing the diversity for correlation analysis. For the purpose of
this study, however, only those arrays derived from experiments conducted on leaves,
rosettes and cotyledons were used. From the 63 arrays obtained, three that used RNA
from species other than A. thaliana, or which involved pre-amplification of the RNA
used as the source for the hybridisation, were excluded. Expression data from individual
experiments were log-transformed to adjust for the effects of variations in the quantity of
starting RNA and the differences in the labelling and detection efficiencies. No further
modification or scaling was made on the data unless otherwise specified. An expression
matrix representing all experiments used in this analysis along with the genes, a short
description of the genes and their expression values can be found in the tab delimited4

text file ‘supercluster.txt’ in the compact disc (CD) accompanying this thesis.
Expression data for the genes ultimately coding for reactions in the model were

extracted and large-scale correlation analysis was performed essentially as described by
Causton et al. (2003) [185], by calculating Pearson’s correlation coefficient for each
gene pair (Section 1.5).

5.2.3 Clustering of the correlation matrix and generation of com-
pressed heatmaps

The expression profiles of genes in the Pearson’s correlation matrix generated in the
previous section were hierarchically clustered using the WPGMA algorithm (Sec-
4 A tab delimited file can be imported into standard spreadsheet programs such as Microsoft Excel and

OpenOffice.org Spreadsheet.
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tion 1.4.2.3), and an expression correlation tree was generated as described in Sec-
tion 1.4.2.3. Leaves of this tree represent genes in the model and the intermediate nodes
are clusters that represent genes that are coexpressed. The columns of the correlation
matrix were then sorted in the order of the leaves of the expression correlation tree.

A reaction correlation tree based on RCCs was generated from the model using the
method described in Section 1.4.2.3. The order of the reactions in this dendrogram was
used to sort the corresponding genes along the rows of the expression correlation matrix.

The correlation matrix obtained after clustering the rows and columns was then
imported into the TM4-MeV† [44] multi experiment visualisation program (version
4.5.1) to generate a compressed gene expression correlation heatmap. Although, MeV
provides a number of clustering algorithms and methods for microarray data analysis,
note that it was used here solely as a heatmap visualisation tool.

The annotated Python code of the program used for the automation of the steps
involved in the construction of clustered Pearson’s correlation matrix from a gene
expression matrix, using input from a metabolic model, is included in the CD. A UML†5

diagram representing the interaction between the Python classes in this program is
shown in Appendix F.

5.3 Results and Discussion

The Python based ScrumPy tool PyoCyc was effectively used to extract the possibly
complete set of genes coding for reactions in the combined model containing the light
reactions, the Calvin cycle, glycolysis and the TCA cycle. The final set of 54 reactions
yielded a total of 193 genes for further analysis. The gene expression profiles of
these genes from 60 varied microarray experiments performed on green leaves, rosettes
or cotyledons were then extracted from NASCArrays. The gene expression matrix
obtained had genes coding for reactions in the model along the rows, and various
microarray experiments along the columns.

A Pearson’s correlation matrix representing the correlations between the expression
profiles of genes coding for reactions in the model was constructed. It was visualised
using the TM4-MeV heatmap visualisation tool and the compressed heatmap obtained
is shown in Figure 5.1. Although no detailed information was obtained from this
heatmap, hierarchically clustering the rows and columns of the matrix grouped together
genes whose expression profiles correlate (Figure 5.1). A dendrogram showing the four
distinct clusters in this heatmap is given in Figure 5.2. Each of these clusters represents
genes sharing correlated expression profiles. Numerous studies [184, 44, 186, 187,
188, 190] have shown that genes in such clusters are functionally related and are often

5 The Unified Modeling Language is an open method used to specify, visualise, construct and document
the artifacts of an object-oriented software
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Figure 5.1 – Heatmap showing Pearson’s correlation matrix generated from the
expression matrix representing the correlations between genes coding for reactions in the
combined model. Positive and negative correlation between the genes are represented
by red and green, respectively. Black represents no correlation between genes. Red
cells across the diagonal of the matrix shows individual genes perfectly correlating with
themselves. Row and column designations are omitted here for clarity, but are included
in the version provided in the CD.

coexpressed. Similar properties were observed in the Pearson’s correlation matrix in
Figure 5.3. Cluster A contained genes that primarily code for reactions involved in
photosynthetic light reactions. Several of the Calvin cycle and TCA cycle genes were
also observed in this cluster. Clusters B and C contained a mix of genes that code for
the Calvin cycle and glycolysis, and a few reactions of the TCA cycle. Cluster D,
on the other hand, had genes that predominantly code for reactions of the TCA
cycle. The distribution of genes in these clusters provided enough evidence to indicate
that functionally related genes in the model are coexpressed. A couple of examples
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AT3G26650|GAPOXNPHOSPHN-RXN_str&1.2.1.13-RXN_cyt&PHOSPHORIBULOKINASE-RXN_str&GAPOXNPHOSPHN-RXN_cyt
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ATCG00680|PSII-RXN_lum
ATCG00690|PSII-RXN_lum

ATCG00710|PSII-RXN_lum
ATCG00490|RIBULOSE-BISPHOSPHATE-CARBOXYLASE-RXN_str

ATCG01080|NADPH-DEHYDROGENASE-RXN_lum
AT4G26390|PEPDEPHOS-RXN_str&PEPDEPHOS-RXN_cyt

AT3G04050|PEPDEPHOS-RXN_str&PEPDEPHOS-RXN_cyt
AT5G50850|RXN0-1134_mit
AT5G08570|PEPDEPHOS-RXN_str&PEPDEPHOS-RXN_cyt
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AT1G79750|MALIC-NADP-RXN_str

AT4G04040|2.7.1.90-RXN_cyt
AT3G53910|MALATE-DEH-RXN_mit&MALATE-DEH-RXN_str&MALATE-DEH-RXN_cyt

AT5G49190|SUCROSE-SYNTHASE-RXN_cyt
AT1G17410|NUCLEOSIDE-DIP-KIN-RXN_cyt

AT5G47810|6PFRUCTPHOS-RXN_cyt
AT3G25960|PEPDEPHOS-RXN_str&PEPDEPHOS-RXN_cyt
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AT4G23900|NUCLEOSIDE-DIP-KIN-RXN_cyt
AT2G20420|SUCCCOASYN-RXN_mit

AT5G20830|SUCROSE-SYNTHASE-RXN_cyt
AT4G26970|ACONITATEDEHYDR-RXN_mit

AT2G22480|6PFRUCTPHOS-RXN_cyt
AT5G14590|ISOCITDEH-RXN_mit
AT3G08590|3PGAREARR-RXN_str&3PGAREARR-RXN_cyt
AT2G22780|MALATE-DEH-RXN_mit&MALATE-DEH-RXN_str&MALATE-DEH-RXN_cyt

AT3G03250|GLUC1PURIDYLTRANS-RXN_cyt
AT1G23190|PHOSPHOGLUCMUT-RXN_str&PHOSPHOGLUCMUT-RXN_cyt

AT5G25450|1.10.2.2-RXN_mit
AT5G65750|2OXOGLUTDECARB-RXN_mit

AT1G54340|ISOCITDEH-RXN_mit
AT1G03630|NADPH-DEHYDROGENASE-RXN_lum

AT3G01850|RIBULP3EPIM-RXN_str
AT5G56350|PEPDEPHOS-RXN_str&PEPDEPHOS-RXN_cyt
AT5G17380|RXN0-1134_mit

AT3G47520|MALATE-DEH-RXN_mit&MALATE-DEH-RXN_str&MALATE-DEH-RXN_cyt
AT4G09320|NUCLEOSIDE-DIP-KIN-RXN_cyt

AT2G42790|CITSYN-RXN_mit
AT1G18270|F16ALDOLASE-RXN_str&F16ALDOLASE-RXN_cyt&SEDOBISALDOL-RXN_str

AT4G26270|6PFRUCTPHOS-RXN_cyt
AT1G30120|RXN0-1134_mit
AT2G34590|2TRANSKETO-RXN_str&1TRANSKETO-RXN_str

AT1G01090|RXN0-1134_mit
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AT5G56630|6PFRUCTPHOS-RXN_cyt
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AT1G73370|SUCROSE-SYNTHASE-RXN_cyt
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AT5G51820|PHOSPHOGLUCMUT-RXN_str&PHOSPHOGLUCMUT-RXN_cyt
AT4G24620|PGLUCISOM-RXN_str&PGLUCISOM-RXN_cyt

AT3G04790|RIB5PISOM-RXN_str
AT2G21170|TRIOSEPISOMERIZATION-RXN_str&TRIOSEPISOMERIZATION-RXN_cyt

AT4G11010|NUCLEOSIDE-DIP-KIN-RXN_cyt
AT2G41000|1.10.2.2-RXN_mit

AT1G09780|3PGAREARR-RXN_str&3PGAREARR-RXN_cyt
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AT3G55410|2OXOGLUTDECARB-RXN_mit

AT3G02090|1.10.2.2-RXN_mit
AT1G47420|SUCCINATE-DEHYDROGENASE-UBIQUINONE-RXN_mit

AT5G65685|GLYCOGENSYN-RXN_str
AT5G40650|SUCCINATE-DEHYDROGENASE-UBIQUINONE-RXN_mit
AT1G51980|1.10.2.2-RXN_mit

AT5G62575|SUCCINATE-DEHYDROGENASE-UBIQUINONE-RXN_mit
AT5G05370|1.10.2.2-RXN_mit
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AT1G08480|SUCCINATE-DEHYDROGENASE-UBIQUINONE-RXN_mit

AT3G47833|SUCCINATE-DEHYDROGENASE-UBIQUINONE-RXN_mit
AT4G32470|1.10.2.2-RXN_mit
AT1G24180|RXN0-1134_mit

AT1G65930|ISOCITDEH-RXN_mit
AT1G04410|MALATE-DEH-RXN_mit&MALATE-DEH-RXN_str&MALATE-DEH-RXN_cyt

AT1G11720|GLYCOGENSYN-RXN_str
AT2G46390|SUCCINATE-DEHYDROGENASE-UBIQUINONE-RXN_mit

AT1G80230|CYTOCHROME-C-OXIDASE-RXN_mit
AT1G52710|CYTOCHROME-C-OXIDASE-RXN_mit

AT5G03690|F16ALDOLASE-RXN_str&F16ALDOLASE-RXN_cyt&SEDOBISALDOL-RXN_str
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Figure 5.2 – Dendrogram representing the correlations between the expression profiles
of genes coding for reactions in the model. Leaf names are not shown here for clarity,
but are provided in the file ‘chlorocytomito exprFullTree.pdf’ included in the CD. Four
separate clusters were observed. Cluster A contains genes that predominantly code for
reactions of the photosynthetic light reactions. However, many genes coding for the
Calvin cycle and glycolysis reactions were also observed. Clusters B and C contain a
mix of genes that code for reactions of the Calvin cycle and glycolysis, and very few
that code for the TCA cycle reactions. Cluster D has genes that predominantly code for
reactions of the TCA cycle. Scale bar respresents a difference of θK

xy = 2rad.
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Figure 5.3 – Heatmap showing Pearson’s correlation matrix representing the
correlations between the expression profiles of genes coding for reactions in the
combined model. Rows and columns of this matrix were hierarchically clustered. The
dendrogram based on which the clustering was performed is shown in Figure 5.2. See
the text associated with this dendrogram for details on the four clusters A, B, C and
D. Positive and negative correlation between the genes are represented by red and
green, respectively. Black represents no correlation between genes. Red cells across
the diagonal of the matrix shows genes perfectly correlating with each other. Row and
column designations are omitted here for clarity, but are included in the version provided
in the CD.

of such genes are those coding for the reactions ‘RXN-924’ of the light reactions
(Cluster A) and ‘SUCCINATE-DEHYDROGENASE-(UBIQUINONE)-RXN’ of the
TCA cycle (Cluster D). A few earlier studies have shown that coexpressed genes in
clusters occupy nonrandom positions with respect to the pathway structure [186, 188].
However, no affiliation to any specific pathway structure was immediately evident from
the distribution of genes in the correlation matrix.

A metabolic tree was constructed based on the RCCs calculated from the null space
of the stoichiometry matrix of the combined model of the light reactions, the Calvin
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Figure 5.4 – Dendrogram representing the correlations between fluxes carried by
reactions in the combined model of light reactions, the Calvin cycle, glycolysis and
the TCA cycle in the presence of carbon flux. Five distinct clusters were observed; the
general characteristics of each are presented. ‘ lum’, ‘ str’, ‘ cyt’ and ‘ mit’ indicate
localisation of metabolites in the lumen, stroma, cytosol and mitochondria, respectively.
Reaction designations were obtained from AraCyc 6.0. See Appendix E for reaction
name definitions. Scale bar respresents a difference of θK

xy = 1rad.

cycle, glycolysis and the TCA cycle in the presence of carbon flux (Figure 5.4). Clusters
on this tree represent correlations between fluxes carried by reactions in the model.
Five functional clusters were observed. Cluster 1 represents the correlations between
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1
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-1.0 0.0 1.0

Figure 5.5 – Heatmap showing the Pearson’s correlation matrix, whose rows and
columns were hierarchically clustered based on reaction correlation coefficients (RCCs)
representing correlations between fluxes carried by reactions in the model and Pearson’s
correlation coefficients representing correlations between the expression profiles of
genes coding for reactions in the model, respectively. The dendrogram based on
which the clustering was performed is shown in Figures 5.4 and 5.2, respectively. See
the text assosiated with these dendrograms for details of the various clusters shown
here. Positive and negative correlation between the genes are represented by red and
green, respectively. Black represents no correlation between genes. Row and column
designations are omitted here for clarity, but are included in the version provided in the
CD.

reactions of upper glycolysis/gluconeogenesis, mediating the conversion of chloroplast
intermediates to sucrose, whereas Cluster 4 contains reactions of lower glycolysis,
converting GAP and DHAP to PYR. Cluster 2 groups reactions of the Calvin cycle
and the glycolytic reactions in the stroma. Correlations between reactions of the TCA
cycle are represented in Cluster 3. Finally, Cluster 5 indicates correlations between
reactions of the photosynthetic light reactions. These clusters point to the distribution
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Figure 5.6 – Corresponding correlation profiles of the genes coding for reactions in
Cluster 1 that have correlated flux. Gene names are suffixed with reaction names and
details about the compartment in the metabolic model from which it was extracted. ‘ str’
and ‘ cyt’ represent stroma and cytosol, respectively. Red and green represent positive
and negative correlation, respectively. Black indicates ‘no correlation’. See Appendix E
for reaction name definitions.

of reactions in the various compartments included in the model. The order of the
reactions along the leaves of this tree was then used to sort the genes along the rows
of the Pearson’s correlation matrix constructed earlier, in such a way that the genes
coding for a particular reaction are placed together. The resulting heatmap, shown
in Figure 5.5, now contains genes whose expression profiles correlate, and are hence
considered coexpressed, arranged along the columns, and genes that code for reactions
that have correlated fluxes clustered arranged the rows. Note that, from here on, each
cluster on this matrix will be referred to using co-ordinates; for example, Cluster A5
represents the cluster formed at the intersection of the correlation profiles of genes in
Cluster A across the column and Cluster 5 across the row.

Several observations were made from the pattern of distribution of the reordered
clusters on this heatmap. Firstly, it was found that many genes coding for reactions that
have correlated metabolic fluxes often have corresponding correlation profiles. This
characteristic is particularly evident among the positively correlated genes that code for
reactions in each of the horizontal clusters. A representative example, Cluster 1, with
gene and reaction designations is shown in Figure 5.6. A number of genes coding for
each reaction in the cluster have similar correlation profiles with many genes coding for
other reactions in the cluster. Similar observations can be made from the correlation
profiles of genes coding for reactions in Clusters 2 and 5 in Figure 5.7. This result has
strong implications as it demonstrates that genes coding for reactions that share similar
fluxes are often coexpressed.

Secondly, the clusters in the heatmap can now distinguish within- and cross-pathway
correlation patterns. As described earlier, each metabolic pathway is composed of a
series of biochemical reactions that are connected by their intermediates: the reactants
(or substrates) of one reaction are the products of the previous one, and so on. For this
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Figure 5.7 – Heatmap representing within- and cross- pathway correlations. It also
shows the correspondence between the correlation profiles of rubisco (highlighted with
with a box around the gene name) and other genes coding for reactions in chloroplast
and cytosol. Note that the Clusters B, C and D were trimmed to enable this visualisation,
but are considered as part of the correlation profile. Gene names are suffixed with
reaction names and details about the compartment in the metabolic model from which
it was extracted. ‘ str’ and ‘ cyt’ represent stroma and cytosol, respectively. Some gene
name suffix were either shortened or trimmed off for clarity. Red and green represent
positive and negative correlation, respectively. Black indicates ‘no correlation’. See
Appendix E for reaction name definitions.
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reason, there is a good chance for such reactions within a pathway to be coexpressed.
Similarly, many pathways are interconnected with other pathways by means of utilising
intermediate metabolites or end products from other pathways. Therefore, it is likely
that reactions in some pathways have similar co-expression profiles with genes coding
for reactions in other pathways. The heatmap shown in Figure 5.6, representing the
genes coding for reactions involved in the conversion of cytosolic GAP and DHAP
to sucrose (Cluster 1), exemplifies a within-pathway correlation pattern. Figure 5.7,
on the other hand, shows a heatmap visualisation in which Clusters 5, 2 and 1 —
representing reactions involved in the photosynthetic light reactions, the Calvin cycle
and upper glycolysis (GAP to sucrose) — share corresponding correlation profiles.

Thirdly, the heatmap is now able to distinguish the compartments in which a gene
is more highly expressed. From the dendrogram shown in Figure 5.2, it is evident
that each cluster contained a high number of genes coding for reactions in a particular
compartment. For example, Clusters A and D contained genes predominantly coding for
light reactions and the Calvin cycle in the chloroplast, and the TCA cycle reactions in the
mitochondria, respectively. Similarly, the metabolic tree shown in Figure 5.4 was able to
successfully distinguish the various compartments in the model, based on the correlation
between the fluxes carried by the reactions within them. By clustering the rows
and columns of the Pearson’s correlation matrix based on these dendrograms, distinct
patterns were formed on the heatmap that could reveal the localisation of enzymes. For
instance, Cluster D3 represents genes that strongly correlate with genes that code for
reactions in the mitochondria. Another example is Clusters A1, A2 and A5, where
the genes strongly correlate with genes that code for stromal and cytosolic reactions
(Figure 5.7). Accordingly, it was found that correlation profiles of genes in these clusters
correspond to the correlation profiles of genes with known localisation (Table 5.1). An
example is the gene ‘ATCG00490’ coding for rubisco in the chloroplast (Figure 5.7).
Note that the correlation profiles of this gene correspond to those coding for light
reactions in Cluster 5 and other reactions in the chloroplast (Clusters 1 and 2). It follows
from this observation that by comparing the correlation profile of a gene with known
localisation with the correlation profiles of other genes in the cluster, conclusions can be
drawn about their compartmentation in the cell. Based on this hypothesis, localisation
of the complete set of proteins coded by the genes in the matrix can be predicted using
standard programming techniques. Such programs have the added benefit of allowing
the user to control the sensitivity of the prediction by selecting a threshold correlation
coefficient based on which corresponding correlation profiles can be identified. For
example, a threshold correlation coefficient of 0.8 will only identify genes that strongly
correlate with the reference gene whose localisation is already known.

Identifying the localisation of proteins is an important step towards a broader
understanding of the cellular function as a whole, and may help in determining the
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Table 5.1 – A random list of genes coding for reactions in the extended model,
and the localisation predictions made by various bioinformatic and experimental
techniques. ‘chl’, ‘cyt’, ‘mit’, ‘per’, ‘nuc’, ‘ext’ and ‘unc’ represent chloroplast, cytosol,
mitochondria, peroxisome, nucleus, extra cellular and unclear, respectively. ‘-’ means
that the software was unable to make any prediction.
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AT2G21330 chl mit mit mit chl - - chl chl chl chl chl chl
AT3G04790 chl mit cyt chl chl mit - mit chl chl chl - chl
AT4G12800 chl mit ext mit chl mit - chl chl chl chl - chl
AT1G52230 chl mit mit chl chl mit chl chl chl chl chl
AT3G12780 chl mit cyt mit chl - - chl chl chl mit cyt chl
AT1G18270 ext - cyt chl er - - per chl cyt nuc - cyt
AT5G52920 chl mit mit mit chl - - chl chl chl chl chl cyt
AT2G22480 chl mit cyt chl chl mit - chl chl chl - - cyt
AT1G12000 chl - cyt mit chl - - chl - cyt - - cyt
AT3G04120 - mit cyt - - - per per - cyt mit cyt cyt
AT2G20360 mit mit mit mit mit mit - chl mit chl mit - mit
AT5G14590 chl mit mit mit mit - - chl mit chl mit - mit
AT2G27730 mit mit mit - mit mit - chl mit - mit mit mit
AT1G47420 mit - mit mit mit mit - mit mit cyt mit - mit
AT2G05710 chl mit cyt chl chl - - unc chl chl mit - mit

role of thousands of uncharacterised proteins predicted by the genome sequencing
projects. Modern organelle-focused experimental approaches can identify proteins
in a given compartment. However, reliable protein localisation requires that the
technique used must be able to distinguish between genuine organelle residents
and contaminating proteins [192]. Although reasonably pure preparations of some
organelles can be achieved, there are many difficulties associated with measuring and
characterising proteins that are in a compartment [193]. Nevertheless, a variety of
experimental methods are currently being used to identify protein localisation. Recently
green fluorescent protein (GFP) and mass spectrometry (MS) techniques have been
successfully employed to deduce the localisation of approximately 1100 and 2600
proteins, respectively [194, 193, 195]. Although these techniques have accelerated
the flow of protein localisation information, the subcellular location of the majority
of proteins in a plant cell is still not known.

A relatively simple, low-cost and rapid means to tackle this issue is to employ
bioinformatic targeting algorithms to predict protein localisation from amino acid
sequence. A number of software tools exist, including TargetP† [196], Predotar† [197],
iPSORT† [198], SubLoc† [199], MitoProt II† [200], MITOPRED† [201], PeroxiP† [202],
and WoLF PSORT† [203], which can predict proteins targeted towards plastid, cytosol,
nucleus, mitochondria, peroxisome or the endoplasmic reticulum. However, many of
these tools are aimed at identifying particular compartments, and hence predictions
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1
2

XB A

Figure 5.8 – Heatmap representing the correlation profiles of genes coding for isoforms
of pyruvate kinase (PK) in different compartments. Gene names are suffixed with the
AraCyc reaction identifier and details about the compartment in the metabolic model
from which it was extracted. Some clusters in the region ‘X’ were trimmed off to enable
this visualisation. Clusters A contains genes that predominantly code for reactions in
the chloroplast. Cluster A1 represents PK genes anticorrelating with other genes in
Cluster A. On the other hand, Cluster A2 contain genes that strongly correlate with
Cluster A. Clusters B1 and B2 represent similar characteristics of correlation with genes
that predominantly code for reactions in the cytosol. ‘ str’ and ‘ cyt’ represent stroma
and cytosol, respectively. Red and green represent positive and negative correlation,
respectively. Black indicate ‘no correlation’.

made by them are reportedly biased towards that compartment [204]. Furthermore,
the outputs of such programs have been found to be somewhat inconsistent with each
other, or with experimentally determined results [204], making them unreliable for some
analyses. Nevertheless, localisation predictions made by these tools on the complete set
of genes in A. thaliana are available in the SUBA II† database [195] for free download.
The approach described earlier was used to predict the localisation of the complete set
of genes in the model and the results were compared against the predictions made by
experimental techniques such as GFP and MS as obtained from the SUBA database.
A random list of genes in the model and their predicted localisation along with the
available bioinformatic and experimental predictions are shown in Table 5.1. The
‘Microarray’ column in this table contains the predictions made using the approach
described in this thesis. It is evident that the bioinformatic tools MitoProt2 and MitoPred
are strongly biased towards mitochondrial predictions. On the other hand, TargetP and
MultiLoc seem to show bias towards identifying genes in chloroplasts. It was found
that the predictions made by the method described in this study strongly correspond to
those obtained from GFP and MS based predictions. A similar table containing a list of
107 genes coding for reactions in the extended model and their localisation predictions
is included in the accompanying CD as a tab delimited text file named ‘predictions.txt’.
Localisation of the remaining genes could not be predicted as they did not correlate
strongly with the reference genes used. A threshold correlation coefficient of 0.7 was
used to obtain this result.

Finally, the heatmap made it possible to distinguish genes coding for isoforms of
proteins in different compartments. It was found that correlation profiles of some
genes coding for a particular reaction do not correspond to the correlation profiles
shared by the other genes coding for the same reaction. Correlation profiles of such
genes, however, were found to correspond with those in different compartments. This
observation suggests that these two sets of genes may be coding for isoforms of proteins
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in two different compartments. For instance, the correlation profiles of genes coding for
‘PEPDEPHOS-RXN’ (pyruvate kinase) are shown in the heatmap in Figure 5.8. Three
genes that share similar correlation profiles can be seen (Cluster 2A) corresponding
strongly with genes coding for reactions in the chloroplast. Meanwhile, two other
genes with similar properties can be seen (Cluster 1B) corresponding strongly with
genes coding for cytosolic reactions. This difference in their correlation profiles can
mean that they are coding for protein isoforms localised in chloroplast and cytosol.
Similar cases involving genes coding for the reactions ‘GAPOXNPHOSPHN-RXN’,
‘PHOSGLYPHOS-RXN’, ‘MALATE-DEH-RXN’ and ‘PHOSPHOGLUCMUT-RXN’
were detected in the heatmap, but discussing them all would just reiterate the same point.

5.4 Conclusion

Results obtained from this analysis shows that the characteristics of metabolism derived
from metabolic models can be effectively integrated with large-scale experimental data.
The approach described here was able to successfully relate the correlation between
fluxes carried by reactions in a stoichiometric model with the expression profiles of the
genes involved. Furthermore, the results suggest that metabolic models can be used
to upgrade the information content in gene expression data by providing additional
metabolic information. The case study involving a compartmentalised stoichiometric
model of plant metabolism and related gene expression data provided new insight into
within- and cross-pathway correlation patterns. This result has strong implications as
it shows that large-scale metabolic models can be used to identify new genes and can
assist in gene annotation. Another outcome of this case study was in reference to the lo-
calisation of proteins in particular compartments within a plant cell. The results showed
that the correlation profiles of a gene can aid in predicting the localisation of its protein
product. Given good quality microarray expression data containing sufficient experi-
ments that allow reliable statistical analysis, the technique described here can be used
more generically. With the large number of publically available metabolic networks
and expression data, this approach may significantly contribute to the identification
of enzyme localisation in many different eukaryotic systems. Finally, the case study
showed that the correlation profiles, together with RCCs, can be used to distinguish
genes coding for protein isoforms. Such information may again help in gene annotation.
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CHAPTER 6

General discussion and future
directions

6.1 Relevance and implications of the modelling de-
scribed in this thesis

The initial objective of this thesis was to construct a stoichiometric model of the central
carbon metabolism in a plant cell. This objective seemed very trivial considering the rel-
atively simple data requirements for defining stoichiometric models and the numerous
successful attempts at constructing stoichiometric metabolic models, although mostly
prokaryotic. One challenge that became immediately apparent in the initial stages of
this study was associated with the localisation of enzymes and metabolites in specific
compartments within the plant cell. Compartments act by sequestering the enzymes
and metabolites participating in specific metabolic processes and thereby preventing
the simultaneous occurrence of potentially incompatible reactions elsewhere within
the cell (Section 2.2). Therefore, any attempt to construct a stoichiometric model of
eukaryotic system, in particular that of higher eukaryotes such as plants and animals, is
not complete if this property has not been addressed.

Unlike modelling metabolism within a single major compartment, as in the case of
prokaryotes1, modelling metabolism in multi-compartmental systems requires careful
mapping of the numerous interactions between the compartments sequestering the
metabolic pathways of interest. Furthermore, it is also essential to devise a strategy
to integrate the localisation information in the model definition. For these reasons, a
modular approach was adopted in the modelling described in this thesis. Self-contained
steady-state stoichiometric models of metabolism in specific compartments were con-
structed and their independent properties and behaviours were analysed using a selection
of standard model analysis techniques that were described in Chapter 1. Metabolites and
reactions in these models were segregated using unique name suffixes that distinguish
their localisation. The considerably smaller independent models were then integrated
using specific transport reactions to form a larger model that simultaneously maintains

1 A number of prokaryotic models include a ‘periplasm’ and/or a ‘cell wall’ compartment — though not
so much happens in these of relevance to central carbon metabolism.
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the localisation of reactions and metabolites and the interactions between the various
compartments involved.

While a number of organism-specific genome-scale stoichiometric metabolic mod-
els of prokaryotes and lower eukaryotes have been constructed in the post-genomic era
(approximately 15 in 2006 [205]), very few such models of higher eukaryotes have
been published [13, 206]. These models, by not taking the localisation of metabolites
and reactions into consideration, exemplify the major challenge that has been restricting
researchers from attempting to construct genome-scale models of eukaryotic systems.
The approach described in this thesis is simple and effective and can be extended to
define compartmentalised genome-scale models.

6.2 Model analysis techniques to analyse compartmen-
talised models

The purpose of Chapter 1 was not only to survey the multitude of techniques involved
in stoichiometric model analysis, but also to highlight how such methods can be used
for analysing complex models of eukaryotic systems. Over the past several years
EM analysis has been extensively used to investigate the characteristics of steady-
state stoichiometric models of prokaryote metabolism (Section 1.4.3.1). It has found
numerous applications, especially in identifying novel pathways within metabolic
models and predicting the biomass yield (Section 1.4.3.1). This thesis describes
the application of EM analysis to study the interaction between compartments in a
eukaryotic system. In Chapter 4 EM analysis was successfully employed as a tool to
identify major routes involved in the transfer of ATP and reducing equivalents between
multiple compartments within the plant cell. The results obtained from this study
illustrate the application of EM analysis in predicting the role of specific transporters
in the exchange of ATP and reducing equivalents. Furthermore, it describes how EM
analysis can be fruitfully employed to investigate the role of transporters in integrating
the metabolism in various compartments.

Chapters 3 and 4 demonstrate novel techniques for the visualisation of the overall
stoichiometries of EMs and the reactions participating in the complete set of EMs
of a system. These techniques not only enable clustering, and thereby assimilating
the information content in large number of EMs, but also help in extracting valuable
biological information. With the advent of new and improved algorithms for the
identification of the complete set of EMs in a genome-scale model [183], the modelling
community is on the lookout for techniques that can extract valuable information from
the millions of EMs that could be generated. The heatmap visualisation technique
employed in this thesis to analyse reactions participating in EMs is a proven candidate
for analysing such high-throughput data.
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RCCs and the metabolic trees constructed from them were extensively used
throughout this thesis. They were instrumental in identifying reactions that shared
correlated fluxes within specific models described in Chapters 3 and 4. Using RCCs
to study metabolic models is a very recent and underused concept, and the results
illustrated in this study can serve as additional examples for its ability to identify
functional modules within metabolic models. Above all Chapter 5 of this thesis
describes a novel application of RCCs — as means for integrating metabolic models
with gene expression data obtained from microarray experiments. A number of previous
studies have attempted to use ESs to integrate properties of metabolic models with
gene expression data [38, 41]. Such studies do not take into consideration either the
relationship between ESs in a model or the relationship between reactions in ESs and
those that are not. These studies, therefore, often neglect genes coding for reactions
in the model that are not involved in a subset. During the course of this study it was
found that the above disadvantages can be overcome by using RCCs to integrate model
properties and gene expression data. The range of applications of RCCs described in
this study advocates its wide use as a standard stoichiometric model analysis tool.

6.3 Metabolic models, microarray data and localisation
predictions

Microarray experiments are high-throughput techniques that generate expression pro-
files of the complete set of genes in an organism. Traditional microarray data
analysis techniques involve the application of various clustering algorithms to study the
correlation between expression profile of genes. While these techniques often neglect
the vast amount of biochemical information available, this thesis wanted to emphasise
its importance in obtaining improved predictions of cellular behaviour. The approach
described in Chapter 5 used the correlation between fluxes carried by reactions in a
steady-state stoichiometric model to cluster and analyse expression profiles of genes
coding for reactions in the model. The results obtained suggest that biochemical
properties of metabolic models can be used to upgrade the information content in gene
expression data by providing additional metabolic information. The outcome of this
study has strong implications as it demonstrates a potential application of eukaryotic
genome-scale metabolic models. Incorporating such models into microarray data may
facilitate gene annotation and the identification of genes coding for protein isoforms.
Furthermore, it can aid in predicting the localisation of enzymes in multi-compartmental
systems. At present, there are very few methods that can effectively predict the
localisation of enzymes in a eukaryotic cell. While some of the most reliable methods
are based on molecular biology techniques and hence require considerable time and
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effort in obtaining data, others are based on bioinformatic algorithms whose results were
often found to be biased [204]. However, in the presence of a steady-state genome-scale
model and sufficient microarray data, the technique described in this thesis can be used
as a quick and preliminary means of determining the localisation of the genes of interest.

6.4 Directions for future work

ATP and NADPH generated during the light reactions are exported into the cytosol via
various shuttle mechanisms in the chloroplast membrane. Once in the cytosol, NADH
has several important uses. It is taken up by mitochondria to produce ATP and by
peroxisomes for hydroxypyruvate reduction occurring as part of the photosrespiratory
pathway [151]. It is also essential for nitrate reduction proceeding as a partial step of
nitrate assimilation in the cytosol [151, 119]. Analysis of the integrated model of the
light reactions, the Calvin cycle, glycolysis and the TCA cycle described in this thesis
illustrated the various shuttle mechanisms involved in the transfer of ATP and reducing
equivalents into the cytosol and identified the important transport proteins involved.
Furthermore, it described some of the routes involved in the uptake of cytosolic reducing
equivalents into the mitochondria. The integrated model, however, does not contain
reactions of the photorespiratory pathway or the nitrate reduction pathway. Therefore,
an important direction for future work is to extend the integrated model with reactions
in these pathways. Analysis of the extended model may reveal novel routes involved in
the exchange of ATP and reducing equivalents between chloroplast and mitochondria,
and may provide more insight into the important aspects of ATP and NADH utilisation
in the cytosol. Above all, it will enable a more comprehensive analysis of the energy
and redox interactions between various compartments within the plant cell.

Integrating reactions of the nitrate reduction pathway into the model has an added
advantage as it will then enable the introduction of new reactions into the model such
as those involved in nitrogen assimilation. Nitrogen assimilation takes place inside
the chloroplast and consumes ATP generated during light reactions [151]. Therefore,
integrating them would help to draw a more complete picture of the energy utilisation
within chloroplast. Integrating nitrogen assimilation reactions will also introduce more
transport reactions into the model such as those involved in the MAL/CIT and the
MAL/ASP shuttle mechanisms on the mitochondrial membrane. Similarly, transport
reactions of the chloroplast membrane such as the MAL/2-OG shuttle will become
included in the model. These shuttle mechanisms may reveal more routes involved
in the exchange of energy and reducing equivalents between stroma and mitochondrial
matrix. Furthermore, they will help to investigate the numerous interactions between
the cytosol and mitochondria.

In the same way, the integrated model can be extended by including other metabolic
pathways in various compartments such as the shikimate pathway in the stroma. This
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will contribute towards achieving a compartmentalised genome-scale model of the plant
cell. Note that the automated reconstruction of compartmentalised eukaryotic genome-
scale models is as yet impossible because of two important factors. Firstly, information
about the localisation of the majority of enzymes and metabolites in a plant cell is not
yet available. Secondly, the stoichiometric information pertaining to transport reactions
is not clearly defined in pathway databases such as KEGG and AraCyc that are used for
the automated reconstruction of genome-scale models.

Furthermore, such extended models, once integrated with experimental data such
as gene expression profiles, may help in identifying novel biological properties of the
system. For example, it can reveal novel isoforms of genes in various compartments
and thereby help in gene annotation. Most importantly, such extended models can aid
in testing the approach described in Chapter 5 to identify major issues that have to be
addressed, and in refining the technique further.

Another important direction for future work involves analysing the extended model
in the absence of the light reactions. Plants use the ATP and NADPH produced
during the light reactions to produce transitory starch. In the absence of light,
however, it is broken down by various enzymes in the chloroplast such as amylases
and phosphorylases to produce glucose, maltose and other intermediates. The former is
oxidised by reactions of the OPPP to produce redox potential in the form of NADPH and
substrates required for initiating shikimate pathway and nucleotide synthesis [125, 63].
Most intermediates of starch catabolism are transported into the cytosol via chloroplast
membrane transporters to enable metabolism in the cytosol. By analysing the extended
model in the absence of light reactions such carbon interactions between chloroplast
and cytosol can be studied further. Note that, in the dark, mitochondria are the main
sources of ATP for cellular processes. The modified model can be used to investigate
various routes involved in the exchange of ATP from mitochondria. Furthermore, the
techniques described in this thesis can be used to identify various redox interactions
between chloroplast, cytosol and mitochondria at night. A similar study describing the
activity of the Calvin cycle in the absence of light was described in [63].

Experimental validation would immensely increase the value of the results presented
in the thesis. This should include, in particular, the verification of two important
predictions. Firstly, the role of G6P and PEP transporters in the transfer of ATP
and reducing equivalents across the chloroplast membrane could be tested using
experimental techniques. One possible starting point for such a study would be
to follow the procedure described by Heineke et al. (1991) [148]. They used a
subcellular fractionation technique to assay the concentration of reducing equivalents
in the stroma and the cytosol for describing the activity of triose-phosphate/PGA and
MAL/OAA shuttle mechanisms. A second, easier, approach would be to employ kinetic
modelling techniques. Using the vast amount of kinetic information that is available in
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public databases and literature sources, detailed kinetic models can be constructed to
investigate the role of GPT and PPT. An example for a kinetic model constructed to
investigate the role of triose-phosphate/PGA and MAL/OAA shuttle mechanisms in the
exchange of ATP and reducing equivalents is available in [173].

Secondly, predictions of the localisation of enzymes made by analysing microarray
data with RCCs can be tested using molecular biology techniques. One widely-used
method involves tagging a gene coding for the enzyme of interest with fluorescent
proteins such as GFP and expressing it in live plant cells. Localisation of the enzyme
can then be determined using the confocal laser scanning microscopy technique. A
recent study that illustrates the use of GFP fusions to determine the localisation
of uncharacterised proteins is described in [193]. I have already initiated such
an investigation, involving 24 carefully selected genes coding for reactions in the
integrated model, in collaboration with the Plant Cell Biology Group at Oxford Brookes
University, but experiments are not yet complete.
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[139] H. W. Heldt and U.-I. Flügge, The biochemistry of plants, vol. 12, ch. Subcellular
transport of metabolites in plant cells, pp. 49–85. Academic Press, New York,
1987.

[140] U.-I. Flügge and H. W. Heldt, “Metabolite translocators of the choroplast
envelope,” Annu. Rev. Plant Physiol. Mol. Biol., vol. 42, pp. 129–144, 1991.
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APPENDIX A

Model of photosynthetic light reactions
in .spy format
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###################################################################
######## MODEL OF PHOTOSYNTHETIC ELECTRON TRANSPORT CHAIN #########
###################################################################

Structural()
External(H2O_lum, Photon, O2, Proton_str)

PS2_lum:
4Photon + 2H2O_lum -> O2 + 4Proton_lum + 4e_hi ˜

Q_lum:
e_hi + 2Proton_str + 2Q_o_lum -> 2Q_r_lum ˜

PQ_lum:
Q_r_lum + 2 PQ_lum -> 2PQH2_lum + Q_o_lum ˜

CytB6_lum:
2PQH2_lum + CytB6_o_lum -> 2PQ_lum + CytB6_r_lum + 4Proton_lum ˜

PC_lum:
CytB6_r_lum + PC_o_lum -> CytB6_o_lum + PC_r_lum ˜

PS1_lum:
5Photon + PC_r_lum + FD_o_str -> PC_o_lum + FD_r_str ˜

NADPRe_str:
FD_r_str + NADP_str + Proton_str -> NADPH_str + FD_o_str ˜

Cyclic_lum:
FD_r_str + Q_r_lum -> FD_o_str + Q_o_lum ˜

ATPSy_str:
14Proton_lum + 3ADP_str + 3Pi_str -> 14Proton_str + 3ATP_str ˜

ADPSy_str:
ATP_str -> ADP_str + Pi_str + x_ATPWork ˜

NADPHOx_str:
NADPH_str -> NADP_str + Proton_str + x_NADPHWork ˜

###################################################################

Figure A.1 – Model of light reactions representing photosynthetic electron transport
chain in .spy format. The model is described in Section 2.2.1.1 and illustrated in
Figure 2.3. See List of Abbreviations for metabolite and reaction abbreviations. ‘ lum’
and ‘ str’represent metabolites and reactions localised in lumen and stroma, respectively.
‘ o’ and ‘ r’ indicate the oxidised and reduced state of a metabolite, respectively.
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Model of Calvin cycle in .spy format
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###################################################################
##################### MODEL OF CALVIN CYCLE #######################
###################################################################

Structural()

External(CO2, Starch_str, PGA_cyt, GAP_cyt, NADPH_str, NADP_str)
External(G6P_cyt, PEP_cyt, DHAP_cyt, Pi_cyt, MAL_cyt, OAA_cyt)

###################################################################
######################## CO2 ASSIMILATION #####################
###################################################################

Rubisco_str:
CO2 + RuBP_str -> 2 PGA_str ˜

PGK_str:
PGA_str + ATP_str <> BPGA_str + ADP_str ˜

GAPDH_str:
BPGA_str + NADPH_str <> NADP_str + GAP_str + Pi_str ˜

TPI_str:
GAP_str <> DHAP_str ˜

Ald1_str:
DHAP_str + GAP_str <> FBP_str ˜

FBPase_str:
FBP_str -> F6P_str + Pi_str ˜

###################################################################
####################### STARCH SYNTHESIS #######################
###################################################################

PGI_str:
F6P_str <> G6P_str ˜

PGM_str:
G6P_str <> G1P_str ˜

StSynth_str:
G1P_str + ATP_str -> ADP_str + 2 Pi_str + Starch_str ˜

###################################################################
###################### STARCH DEGRADATION ######################
###################################################################

StPase_str:
Starch_str + Pi_str -> G1P_str ˜
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TKL1_str:
F6P_str + GAP_str <> E4P_str + X5P_str ˜

Ald2_str:
E4P_str + DHAP_str <> SBP_str ˜

SBPase_str:
SBP_str -> S7P_str + Pi_str ˜

TKL2_str:
GAP_str + S7P_str <> X5P_str + R5P_str ˜

R5Piso_str:
R5P_str <> Ru5P_str ˜

X5Piso_str:
X5P_str <> Ru5P_str ˜

Ru5Pk_str:
Ru5P_str + ATP_str -> RuBP_str + ADP_str ˜

###################################################################
################ GLYCOLYTIC REACTIONS OF CHLOROPLAST ############
###################################################################

PGlyM_str:
PGA_str <> PGA2_str ˜

Eno_str:
PGA2_str <> PEP_str ˜

PK_str:
PEP_str + ADP_str -> PYR_str + ATP_str ˜

ME_str:
PYR_str + CO2 + NADPH_str <> MAL_str + NADP_str ˜

NADPMDH_str:
MAL_str + NADP_str <> OAA_str + NADPH_str ˜

###################################################################
############### TRANSPORT REACTIONS OF CHLOROPLAST ################
###################################################################

TX_PGA_str:
PGA_str + Pi_cyt -> Pi_str + PGA_cyt ˜

TX_GAP_str:
GAP_str + Pi_cyt -> Pi_str + GAP_cyt ˜
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TX_DHAP_str:
DHAP_str + Pi_cyt -> Pi_str + DHAP_cyt ˜

TX_MAL_str:
MAL_str -> MAL_cyt ˜

TX_OAA_str:
OAA_str -> OAA_cyt ˜

TX_G6P_str:
G6P_str + Pi_cyt -> Pi_str + G6P_cyt ˜

TX_PEP_str:
PEP_str + Pi_cyt -> Pi_str + PEP_cyt ˜

###################################################################
########################### SINK REACTIONS ########################
###################################################################

ATPase_str:
ADP_str + Pi_str -> ATP_str ˜

###################################################################

Figure B.1 – Model of the Calvin cycle described by Poolman et al. [63] extended
to include ‘glycolytic’ reactions of the chloroplast. The Calvin cycle is reviewed in
Section 2.2.1.2 and illustrated in Figure 2.4. See List of Abbreviations for metabolite
and reaction abbreviations. ‘ cyt’ and ‘ str’ indicate metabolites localised in cytosol and
stroma, respectively.

153



APPENDIX C

Model of the glycolytic reactions of
cytosol
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###################################################################
############ MODEL OF GLYCOLYTIC REACTIONS OF CHLOROPLAST #########
###################################################################

Structural()

External(Sucrose, CO2_cyt, ATP_cyt, ADP_cyt, PPi_cyt, Pi_cyt)
External(MAL_str, PEP_str, G6P_str, DHAP_str, GAP_str, PGA_str)
External(Pi_str, OAA_str, PYR_str, NADH_cyt, NAD_cyt)

###################################################################
###################### SUCROSE METABOLISM #########################
###################################################################

Suc_EX:
Sucrose_cyt -> Sucrose ˜

PGI_cyt:
G6P_cyt <> F6P_cyt ˜

PGM_cyt:
G6P_cyt <> G1P_cyt ˜

SuSyn_cyt:
F6P_cyt + UDPG_cyt <> Sucrose_cyt + UDP_cyt + Pi_cyt ˜

UGPase_cyt:
UDPG_cyt + PPi_cyt <> G1P_cyt + UTP_cyt ˜

NDPK_cyt:
UTP_cyt <> UDP_cyt ˜

PFK_cyt:
F6P_cyt + ATP_cyt -> FBP_cyt + ADP_cyt ˜

PFP_cyt:
F6P_cyt + PPi_cyt <> FBP_cyt + Pi_cyt ˜

Ald1_cyt:
FBP_cyt <> GAP_cyt + DHAP_cyt ˜

TPI_cyt:
DHAP_cyt <> GAP_cyt ˜

GAPDHP_cyt:
GAP_cyt + NAD_cyt + Pi_cyt <> BPGA_cyt + NADH_cyt ˜

PGK_cyt:
BPGA_cyt + ADP_cyt <> PGA_cyt + ATP_cyt ˜
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GAPDH_cyt:
GAP_cyt + NAD_cyt -> PGA_cyt + NADH_cyt ˜

PGlyM_cyt:
PGA_cyt <> PGA2_cyt ˜

Eno_cyt:
PGA2_cyt <> PEP_cyt ˜

PK_cyt:
PEP_cyt + ADP_cyt -> PYR_cyt + ATP_cyt ˜

PEPC_cyt:
PEP_cyt + CO2_cyt -> OAA_cyt + Pi_cyt ˜

NADMDH_cyt:
OAA_cyt + NADH_cyt -> MAL_cyt + NAD_cyt ˜

###################################################################
####################### TRANSPORT REACTIONS #######################
###################################################################

TX_PYR_cyt:
PYR_cyt -> PYR_str ˜

TX_PEP_cyt:
PEP_str + Pi_cyt -> PEP_cyt + Pi_str ˜

TX_G6P_cyt:
G6P_str + Pi_cyt -> G6P_cyt + Pi_str ˜

TX_DHAP_cyt:
DHAP_str + Pi_cyt -> DHAP_cyt + Pi_str ˜

TX_GAP_cyt:
GAP_str + Pi_cyt -> GAP_cyt + Pi_str ˜

TX_PGA_cyt:
PGA_str + Pi_cyt -> PGA_cyt + Pi_str ˜

TX_MAL_cyt:
MAL_cyt <> MAL_str ˜

TX_OAA_cyt:
OAA_cyt <> OAA_str ˜

Figure C.1 – Model of the glycolytic reactions in chloroplast in .spy format, as described
in Section 2.2.2 and illustrated in Figure 2.5. See List of Abbreviations for metabolite
and reaction abbreviations. ‘ cyt’ and ‘ str’ indicate metabolites localised in cytosol and
stroma, respectively.
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####################################################################
################### MITOCHONDRIAL METABOLISM ###################
####################################################################

Structural()

External(MAL_cyt, PYR_cyt, OAA_cyt, Proton_ims)
External(NADHWork_mit, ATPwork_mit)

####################################################################
################### REACTIONS OF THE TCA CYCLE #####################
####################################################################

PDH_mit:
PYR_mit + NAD_mit + CoASH_mit + Proton_mit -> ACoA_mit + NADH_mit ˜

CITSynth_mit:
OAA_mit + ACoA_mit <> CIT_mit + CoASH_mit ˜

ACN_mit:
CIT_mit <> IsoCIT_mit ˜

IDH_mit:
IsoCIT_mit + NAD_mit + Proton_mit -> AKG_mit + NADH_mit ˜

AKGDH_mit:
AKG_mit + CoASH_mit + NAD_mit + Proton_mit -> SCoA_mit + NADH_mit ˜

SCS_mit:
SCoA_mit + ADP_mit + Pi_mit <> SUC_mit + ATP_mit + CoASH_mit ˜

SDH_mit:
SUC_mit + Q_mit <> Fumerate_mit + QH2_mit ˜

FUM_mit:
Fumerate_mit <> MAL_mit ˜

NADMDH_mit:
MAL_mit + NAD_mit + Proton_mit <> OAA_mit + NADH_mit ˜

####################################################################
####################### TRANSPORT REACTIONS ####################
####################################################################

TX_MAL_mit:
MAL_mit <> MAL_cyt ˜

TX_OAA_mit:
OAA_cyt <> OAA_mit ˜
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TX_PYR_mit:
PYR_mit <> PYR_cyt ˜

####################################################################
############ MITOCHONDRIAL ELECTRON TRANSPORT CHAIN ################
####################################################################

Complex_I:
NADH_mit + Q_mit + Proton_mit -> NAD_mit + QH2_mit + Proton_ims
+ NADHWork_mit ˜

Complex_III:
QH2_mit + Cyt_ox_mit + Proton_mit -> Q_mit + Cyt_red_mit + Proton_ims ˜

Complex_IV:
Cyt_red_mit + Proton_mit -> Cyt_ox_mit + Proton_ims ˜

Complex_V:
3ADP_mit + 3Pi_mit + 12Proton_ims -> 12Proton_mit + 3ATP_mit ˜

ATPSink_mit:
ATP_mit -> ADP_mit + Pi_mit + ATPwork_mit ˜

Figure D.1 – Model of mitochondrial metabolism containing reactions of TCA cycle
and mitochondrial ETC in .spy format, as described in Section 2.2.3 and illustrated in
Figures 2.6 and 2.7. See List of Abbreviations for metabolite and reaction abbreviations.
‘ cyt’, ‘ mit’ and ‘ ims’ indicate metabolites localised in cytosol, mitochondria and
intermembrane space, respectively.
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Abbreviation AraCyc Identifier
ACN ACONITATEDEHYDR-RXN

AKGDH 2OXOGLUTDECARB-RXN

Ald1 F16ALDOLASE-RXN

Ald2 SEDOBISALDOL-RXN

CITSynth CITSYN-RXN

Complex I NADH-DEHYDROG-RXN

Complex III 1.10.2.2-RXN

Complex IV CYTOCHROME-C-OXIDASE-RXN

ENO 2PGADEHYDRAT-RXN

FBPase F16BDEPHOS-RXN

FUM FUMHYDR-RXN

GAPDH 1.2.1.13-RXN

GAPDHP GAPOXNPHOSPHN-RXN

GlyM 3PGAREARR-RXN

IDH ISOCITDEH-RXN

NAD-MDH MALATE-DEH-RXN

NADP-MDH MALATE-DEH-RXN

NDPK NUCLEOSIDE-DIP-KIN-RXN

PDH RXN0-1134

PEPC PEPCARBOXYKIN-RXN

PFK 6PFRUCTPHOS-RXN

PFP 2.7.1.90-RXN

PGI PGLUCISOM-RXN

PGK PHOSGLYPHOS-RXN

PGM PHOSPHOGLUCMUT-RXN

PK PEPDEPHOS-RXN

R5Piso RIB5PISOM-RXN

Ru5PK PHOSPHORIBULOKINASE-RXN

Rubisco RIBULOSE-BISPHOSPHATE-CARBOXYLASE-RXN

SBPase SEDOHEPTULOSE-BISPHOSPHATASE-RXN

SCS SUCCCOASYN-RXN

SDH SUCCINATE-DEHYDROGENASE-(UBIQUINONE)-RXN

StPase RXN-1826

StSynth GLYCOGENSYN-RXN

SuSyn SUCROSE-SYNTHASE-RXN

TKL1 1TRANSKETO-RXN

TKL2 2TRANSKETO-RXN

TPI TRIOSEPISOMERIZATION-RXN

UGPase GLUC1PURIDYLTRANS-RXN

X5Piso RIBULP3EPIM-RXN
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APPENDIX F

UML representation of the ScrumPy
add-on used for integrating metabolic

models with gene expression data
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ClusteredRMatrix

+ __init__()
+ GetClusteredMatrix()

ReacCorrelation

+ __init__()
+ GetKMtx()
+ GetReacCorrMtx()
+ GetAbsAngDistance()
+ GetNJTree()

ReadPyoCyc

+ __init__()
+ Probes2GenesModel()
+ Genes2ReacsModel()
+ GetReacsModel()
+ Reacs2GenesModel()
+ Probes2GenesArray()

ReadSuperCluster

+ __init__()
+ ReadSuperCluster()

SortedRMatrix

+ __init__()
+ GetSortedMatrix()
+ GetSortedList()

SuperCluster

+ __init__()
+ SuperCluster()
+ GetRMtx()
+ GetGeneRData()
+ PlotRValues()
+ GetNJTree()

1..1

1..1+PyoCycData

1..1

1..1+rc

1..1

1..1+sc

1..1

1..1+sc

1..1

1..1+OriginalMtx

Figure F.1 – UML representation of the ScrumPy add-on used for integrating metabolic
models with gene expression data
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APPENDIX G

Contents of the CD
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Table G.1 – Files and directories included in the CD accompanying this thesis.

File/Directory name Contents
chlorocytomito rmtx Heatmap showing Pearson’s correlation matrix generated from

the expression matrix representing the correlation between genes
coding for reactions in the combined model.

chlorocytomito exprFullTree.pdf Dendrogram representing the correlation between the expression
profiles of genes coding for reactions in the model.

chlorocytomito clusteredrmtx.pdf Heatmap showing Pearson’s correlation matrix representing the
correlation between the expression profiles of genes coding for
reactions in the combined model. Rows and columns of this
matrix were hierarchically clustered.

chlorocytomito srmtx.pdf Heatmap showing the Pearson’s correlation matrix whose rows
and columns were hierarchically clustered based on reaction
correlation coefficients (RCCs) representing correlation between
fluxes carried by reactions in the model and Pearson’s correlation
coefficients representing correlation between the expression
profiles of genes coding for reactions in the model, respectively.

cluster a.pdf Heatmap representing within- and cross- pathway correlations.
It also shows the correspondence between the correlation profiles
of rubisco (highlighted with with a box around the gene name)
and other genes coding for reactions in chloroplast and cytosol.

cluster 1.pdf Corresponding correlation profiles of the genes coding for
reactions in Cluster 1 that have correlated flux. Gene names are
suffixed with reaction names and details about the compartment
in the metabolic model from which it was extracted.

isoforms.pdf Heatmap representing the correlation profiles of genes coding
for isoforms of pyruvate kinase (PK) in different compartments.

compartment predictions.txt Tab delimited text file containing the localisation of genes
coding for reactions in the integrated model predicted using the
approach described in Chapter 5.

supercluster.txt Tab delimited text file containing expression data of over 225000
genes in approximately 60 experiments. Data obtained from
NASCArrays (March, 2010).

python scripts Contains the Python scripts used for integrating RCCs with gene
expression profiles. The scripts require ScrumPy and PyoCyc
to be installed on a Linux platform. The UML diagram for the
scripts is available in Appendix F.
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(GCB 2009), Halle (Saale) , Germany, September 28-30, 2009 (I. Grosse, S. Neumann,
S. Posch, F. Schreiber, and P. F. Stadler, eds.), vol. 157 of LNI, GI, 2009.
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Expression profiles of metabolic models to predict
compartmentation of enzymes in multi-compartmental

systems

Achuthanunni Chokkathukalam, Mark Poolman, Chiara Ferrazzi and David Fell

cbaunni@brookes.ac.uk

Abstract: Enzymes and other proteins coded by nuclear genes are targeted towards
various compartments in the plant cell. Here, we describe a method by which localisa-
tion of enzymes in a plant cell may be predicted based on their transcription profile in
conjunction with analysis of the structure of the metabolic network. This method uses
reaction correlation coefficients to identify reactions in a metabolic model that carry
similar flux.

First a correlation matrix for the expression of genes of interest is calculated and
the columns clustered hierarchically using the correlation coefficient. The rows clus-
tered using reaction correlation coefficients. In the resulting matrix, we show that the
genes in a particular compartment are clustered together and compartmental predic-
tions, with respect to a reference gene can be readily made.

1 Introduction

Spatial organisation of metabolism and other cellular functions is a well known feature of
plant cells. Enzymes and other proteins coded by nuclear genes are targeted towards var-
ious compartments in the plant cell with the help of the targeting information within their
amino acid sequence. Identifying the localisation of proteins is thus an important step
towards a broader understanding of the cellular function as a whole and may help in deter-
mining the role of thousands of uncharacterised proteins predicted by the genome sequenc-
ing projects. Modern organelle-focused experimental approaches can identify proteins in
a given compartment. However, reliable protein localisation requires that the technique
used must be able to distinguish between genuine organelle residents and contaminating
proteins [DDWL04]. Although reasonably pure preparations of some organelles can be
achieved, there are many difficulties associated with measuring and characterising proteins
that are in a compartment [DHS+06]. Nevertheless, a variety of experimental methods are
currently being used to identify protein localisation. Recently chimeric fusion proteins
(FPs) and mass spectrometry (MS) techniques have been successfully employed to deduce
the localisation of approximately 1100 and 2600 proteins, respectively [HVTF+06]. Al-
though these techniques have accelerated the flow of protein localisation information, the
subcellular location of the majority of proteins in a plant cell is still not known.

A relatively simple, low-cost and rapid means to tackle this issue is to employ bioinfor-



matic targeting algorithms to predict protein localisation from amino acid sequence. A
number of software tools exists, including TargetP [EBvHN07], Predotar [SPLL04], iP-
SORT [BTM+02], SubLoc [HS01], MitoProt II [CV96], MITOPRED [GFS04], PeroxiP
[EEvHC03], and WoLF PSORT [HPO+07], which can predict proteins targeted towards
plastid, cytosol, nucleus, mitochondria, peroxisome or the endoplasmic reticulum. How-
ever, the output of such programs has been found to be somewhat inconsistent with each
other, or with experimentally determined results [HVTFM05], making them unreliable for
some analyses.

The advent of whole-system approaches such as microarrays and metabolomics and the
accumulation of such high-throughput data have created new opportunities for studying
how reactions are coordinated to meet cellular demands. Microarray experiments monitor
the expression of thousands of genes simultaneously. Grouping together genes of similar
expression pattern is a general starting point in the analysis of expression data. Similarity
between genes is measured by the correlation of their expression profiles and hierarchi-
cal clustering methods are used to partition data into clusters of genes exhibiting similar
expression patters [IBB04]. Numerous studies have shown that co-expression patterns of
gene expression across many microarray datasets form modules of genes that are function-
ally correlated [WPM+06, MDO+08]. Recently this approach was successfully employed
in identifying new genes involved in cellulose synthesis in plants [PWM+05].

Here, we describe a method by which localisation of enzymes may be predicted based
on the co-expression profiles of genes coding for reactions in a structural model of plant
carbon metabolism. Structural models contain stoichiometries of reactions in a metabolic
system. Based on the correlation between these reactions, it can be represented hierarchi-
cally as a metabolic tree in which the root node represents the complete system, leaf nodes
represent individual reactions, and the intermediate nodes represent metabolic modules
capable of the net interconversion of metabolites common to reactions inside and outside
the module [PSPF07]. Our technique uses reaction correlation profiles generated from
metabolic models together with expression correlation profiles obtained from the microar-
rray data to identify the distribution of enzymes in a particular compartment with respect
to the experimentally determined location of a protein representing that compartment.

2 Materials and methods

2.1 Construction of the model of plant carbon metabolism

A structural model of plant carbon metabolism including plastid and cytosol compart-
ments was constructed (Figure 1). The model contains reactions of the Calvin cycle, light
reactions and glycolysis and is based, in part, on previous models of plant metabolism con-
structed in our group [PFR03, Ass05]. Protons, CO2, pyruvate and sucrose were made ex-
ternal (metabolites that are in constant exchange with the extracellular environment) yield-
ing a model with a total of 53 reactions and 49 metabolites. Reversibility of the reactions
was determined based on literature. All modelling and model analysis were performed



Figure 1: Reaction schema of the model of plant carbon metabolism. For simplicity, the light re-
actions are depicted here as two separate reactions producing ATP and NADPH. Protons, CO2 and
sucrose are considered external. ‘ str’ and ‘ cyt’ represent the compartments stroma and cytosol,
respectively. Notice the transporters connecting reactions of the plastid and the cytosol.



Figure 2: Metabolic tree constructed from the model showing four separate clusters containing reac-
tions capable of net interconversion of metabolites; A. Reactions of the Malate/Oxaloacetate shuttle.
B. Calvin cycle reactions. C. Reactions of glycolysis. D. Reactions involved in the regeneration of
cytosolic UDP. ‘ str’ and ‘ cyt’ represent the compartments chloroplast and cytosol, respectively.

using the metabolic modelling tool ScrumPy (http://mudshark.brookes.ac.uk) [Poo06].

The model represents the formation of sucrose and pyruvate from the Calvin cycle in-
termediates transported to the cytosol via specific transport proteins. It contains several
reactions such as phosphoglyceromutase, enolase, pyruvate kinase and malate dehydro-
genase that are active in both the chloroplast and cytosol. Presence of these reactions in
the model will enable us not only to identify their distribution between the compartments
but also to distinguish isoforms of genes that code for same reactions in both the com-
partments. This model is publically available as SBML or in the ScrumPy ‘.spy’ format
(http://mudshark.brookes.ac.uk/index.php/User:Cbaunni).

2.2 Expression data analysis of genes coding for reactions in the model

The gene to reaction associations describe the dependence of reactions on genes. The gene
to reaction associations in the model were mapped using the AraCyc [ZFT+05] database
(http://www.arabidopsis.org/biocyc/index.jsp). The result is a set of genes that potentially
code for all the reactions in the model.



The expression data for analysing these genes were obtained from the Nottingham Ara-
bidopsis Stock Centre’s (NASC) microarray database (http://affymetrix.arabidopsis.info/).
The ‘super bulk gene’ file containing nearly 3500 hybridisations, each with expression
level measurements for over 22000 genes represented on the ATH1 array was downloaded
(http://affymetrix.arabidopsis.info/narrays/help/usefulfiles.html, March 2009). Expression
data from individual experiments were log-transformed; no further modification or scal-
ing was made on the data unless otherwise specified. All microarray data analysis was
performed using custom modules designed for ScrumPy.

Expression data for genes ultimately coding for reactions in the model were extracted and a
large-scale correlation analysis of expression values between these genes were performed
essentially as described by Causton et al. [CQB03] by calculating the Pearson’s correlation
coefficient.

2.3 Clustering and analysis of the correlation matrix

A metabolic tree was generated from the model using the method described in [PSPF07]
(Figure 2). The order of the reactions in this tree was used to sort the genes along the rows
of the correlation matrix.

The columns of the matrix were hierarchically clustered based on the Pearson’s correlation
coefficient and an expression correlation tree was generated (Figure 3). Leaves of this tree
represent genes in the model and the intermediate nodes are clusters that represent genes
sharing similar functions. The columns of the correlation matrix were then sorted in the
order of the leaves of the expression correlation tree.

The correlation matrix was imported into TM4-MeV (http://www.tm4.org/mev.html) for
visualisation as heatmap [ESBB98]. The metabolic trees were visualised using MEGA
phylogenetic tree editor (http://www.megasoftware.net/) [KNDT08].

3 Results and Discussion

3.1 Identification of correlated genes sharing similar flux

Metabolic tree generated from the model contain four separate clusters, each representing
reactions capable of net interconversion of metabolites (Figure 2). It is notable that re-
actions of the Calvin cycle and glycolysis are represented as separate nodes on the tree.
Clustering the rows of the correlation matrix based on the genes coding for reactions rep-
resented in these nodes can rearrange the heatmap vertically based on the similarities in
flux. On the other hand, hierarchically clustering the columns of the correlation matrix
grouped genes horizontally depending on their levels of expression. Doing so resulted in
the formation of clusters in the heatmap representing genes that are expressed together and
code for enzymes that share a similar flux (Figure 4).



Figure 3: Expression correlation tree generated by hierarchically clustering correlation coefficients
of genes coding for reactions in the model showing two separate clusters. A. Genes that predomi-
nantly code for reactions in the cytosol correlate with each other B. Genes coding for Calvin cycle
intermediates cluster together. ‘ ’ is used to separate genes from reactions and ‘&’ is used to distin-
guish reactions that the gene code for. ‘ str’ and ‘ cyt’ represent the compartments chloroplast and
cytosol, respectively.



Figure 4: Correlation matrix generated from the expression values of genes coding for reactions in
the steady state model. The correlation coefficient ranges from -1 (green) for perfect anticorrelation
to +1 (red) for perfect correlation, with zero (black) indicating no relationship. Columns were sorted
based on the clustering expression correlation coefficient and rows sorted by clustering based on
reaction correlation coefficient. ‘A’ and ‘B’ represent two distinct clusters observed in the correlation
matrix (Figure 3). Correlated genes in cluster ‘A’ were found to be highly correlated with reference
genes known to be localised in the chloroplast. Whereas correlated genes in cluster ‘B’ showed
higher correlation with genes localised in the cytoplasm. 1, 2, 3 and 4 represent clusters in the
metabolic tree representing reactions capable of net interconversion of metabolites (Figure 2).



We found that genes coding for reactions in the Calvin cycle are found to be tightly corre-
lated between each other and they cluster together. The same holds true for genes coding
for glycolysis reactions. Isoforms of some Calvin cycle genes anticorrelate with other
genes coding for reactions of the Calvin cycle. However, those genes that were anticorre-
lated with the genes of Calvin cycle reactions are found to be tightly correlated with genes
of the glycolysis reactions, and vice versa. Similar cases can also be observed in case of
the isoforms of glycolytic genes.

A previous study on the transcriptional coordination of metabolic network in Arabidopsis
suggested that genes coding for reactions in a pathway show tighter levels of correla-
tion [WPM+06]. Results from our study correlates with the above observation and also
suggests that the expression profiles of genes can be used to distinguish their compartmen-
tation.

3.2 Identifying compartmentation of genes

Though, this technique is efficient in clustering genes based on their compartmentation,
identification of the compartment itself requires a reference gene whose localisation is al-
ready known. For example, the plastidic ribulose biphosphate carboxylase (Rubisco) gene
ATCG00490 was used as the reference to identify genes localised in the chloroplast. Com-
partments are identified by filtering out genes that are highly correlated with the reference
gene.

The results were compared with the various bioinformatic tools described in Section 1.
Comparison with predictions made by bioinformatic tools as a whole was not possible as
many of these tools were directed towards particular compartments. Compartmentation of
genes that were predicted to be in the chloroplast showed good agreement with tools such
as TargetP and Predotar, whereas mitochondrial predictions correlated with MITOPRED
and MitoProt II predictions.

This approach was used to predict the localisation of the complete set of genes coding for
the reactions in a model containing reactions of the chloroplast, cytosol and mitochon-
dria. Given a good quality microarray expression data containing sufficient experiments
that allow reliable statistical analysis, this technique can be used more generically. With
the large number of publically available metabolic networks and expression data, this ap-
proach may significantly contribute to the identification of enzyme localisation in many
different eukaryotic systems.
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