Matrices and Vectors

David Fell
OXFORD
BROOKES
UNIVERSITY
dfell@brookes.ac.uk
http://mudshark.brookes.ac.uk

OXFORD BROOKES

UNIVERSITY

Nomenclature

- Matrix

- Vector
- Matrix Notation Makes

Equations Compact

- Matrix multiplication
- Special Matrices 1: Identity
- Special Matrices 2: Null

Matrix

- Special Matrices 3: Inverse Matrix

Nomenclature

Nomenclature

O Matrix

- Matrix Notation Makes

Equations Compact

- Matrix multiplication
- Special Matrices 1: Identity
- Special Matrices 2: Null Matrix
- Special Matrices 3: Inverse Matrix
- A matrix is an array of symbols arranged in rows and columns.
- An $m \times n$ matrix has m rows and n columns. For example, the 3×4 matrix \mathbf{A} :

$$
\mathbf{A}=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]
$$

- The transpose of \mathbf{A}, the 4×3 matrix $\mathbf{A}^{\mathbf{T}}$ has the rows and columns exchanged, i.e. element $a_{i j}$ becomes element $a_{j i}$ in the transpose

BROOKES Vector

Nomenclature

- Matrix
- Matrix Notation Makes

Equations Compact

- Matrix multiplication
- Special Matrices 1: Identity
- A single column array is termed a vector.
- For example, the 3×1 vector \mathbf{x} :

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

- The transpose of x is the 1×3 row vector x^{T} :

$$
\mathbf{x}=\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4}
\end{array}\right]
$$

BROOKES Matrix Notation Makes Equations Compact
 \section*{UNIVERSITY}

Nomenclature

- Matrix
- Vector
- Matrix Notation Makes

Equations Compact

- Matrix multiplication
- Special Matrices 1: Identity

Matrix

- Special Matrices 2: Null

Matrix

- Special Matrices 3: Inverse Matrix
- Suppose you have a solution containing a mixture of three different cytochromes at concentrations x_{1}, x_{2} and x_{3}.
- You measure the absorbance of the solution at three different wavelengths $\lambda_{1} \ldots \lambda_{3}$, obtaining results $y_{1} \ldots y_{3}$.
- Let the absorption coefficient of cytochrome j at wavelength λ_{i} be $a_{i j}$.
- Then by Beer's Law we can write:

$$
\begin{aligned}
& y_{1}=a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3} \\
& y_{2}=a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3} \\
& y_{3}=a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}
\end{aligned}
$$

which can be written in matrix notation as:

$$
\mathbf{y}=\mathbf{A x}
$$

BROOKES Matrix multiplication

Nomenclature

- Matrix
- Vector
- Matrix Notation Makes

The previous slide showed you that matrix multiplication works like this:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}
\end{aligned}
$$

■ Note that multiplying a 3×3 matrix by a 3×1 vector produces a 3×1 result. For the result of matrix multiplication to be defined (conformable), the number of columns in the first term must be the same as the number of rows in the second term.
$■$ Hence $\mathbf{x A}$ is not allowed, but $\mathbf{x}^{\mathbf{T}} \mathbf{A}$ is.

- What is the result of $\mathrm{x}^{\mathrm{T}} \mathbf{A}$, and is it equal to $\mathbf{A x}$?

BROOKES Special Matrices 1: Identity Matrix

Nomenclature

- Matrix

- Vector
- Matrix Notation Makes

Equations Compact

This is a square n-dimensional matrix, $\mathbf{I}_{\mathbf{n}}$, or simply \mathbf{I}, with 1 s on the diagonal and zeroes elsewhere:

$$
\mathbf{I}_{\mathbf{3}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Multiplication of, or by an identity matrix leaves the other multiplicand unchanged:

$$
\mathbf{I x}=\mathbf{x} ; \mathbf{A I}=\mathbf{A}
$$

BROOKES Special Matrices 2: Null Matrix

Nomenclature

- Matrix

- Vector
- Matrix Notation Makes

Equations Compact

- Matrix multiplication
- Special Matrices 1: Identity Matrix
- Special Matrices 2: Null

The null matrix, $\mathbf{0}$, is any matrix (or vector) all of whose elements are 0.

BROOKES Special Matrices 3: Inverse Matrix
 \section*{UNIVERSITY}

Nomenclature

- Matrix
- Vector
- Matrix Notation Makes

Equations Compact

The identity matrix is involved in the definition of the inverse, denoted \mathbf{A}^{-1}, of a square matrix \mathbf{A} :

$$
\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}
$$

Being square is a necessary, but not sufficient, condition for a matrix to have an inverse; if it does not have an inverse, it is said to be singular. If the inverse exists, it is unique. The inverse is related to the solution of sets of equations. Returning to our three absorbance values measured at three wavelengths:

$$
\mathrm{y}=\mathbf{A x}
$$

If we premultiply both sides of the equation by \mathbf{A}^{-1}, we get:

$$
\mathbf{A}^{-1} \mathbf{y}=\mathbf{A}^{-1} \mathbf{A x}=\mathbf{I x}=\mathbf{x}
$$

As the inverse is unique, the solutions x are also unique.

OXFORD BROOKES

UNIVERSITY

Rank

- Problem: Analysing an Enzyme Mixture
- Solutions of Linear Equation Systems

Solutions of Linear Equation Systems

BROOKES Solution by Gauss-Jordan Elimination

Returning to:

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]
$$

We can start converting to row-echelon form by eliminating a_{21} and a_{31}.
First multiply every term in row 2 of \mathbf{A} and y by a_{11} / a_{21}, and subtract the corresponding terms from row 1 . This gives:

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} \\
0 & a_{32}^{\prime} & a_{33}^{\prime}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2}^{\prime} \\
y_{3}^{\prime}
\end{array}\right]
$$

Where the primes indicate terms whose values have been altered in the process.

BROOKES Solution by Gauss-Jordan Elimination 2

Nomenclature
Solutions of Linear Equation Systems

- Solution by Gauss-Jordan Elimination
- Solution by Gauss-Jordan

Elimination 2

- Dependencies and Matrix

Rank

- Problem: Analysing an

Enzyme Mixture

- Solutions of Linear Equation Systems

Answers

Next multiply every term in row 3 of A and \mathbf{y} by a_{22} / a_{32}, and subtract the corresponding terms from row 2. This gives:

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} \\
0 & 0 & a_{33}^{\prime \prime}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2}^{\prime} \\
y_{3}^{\prime \prime}
\end{array}\right]
$$

This is row echelon form, and it tells us $x_{3}=y_{3}^{\prime \prime} / a_{33}^{\prime \prime}$, from which we can use row 2 to evaluate x_{2} (by back substitution of x_{3}), and so on.

BROOKES Dependencies and Matrix Rank

Nomenclature

Solutions of Linear Equation Systems

- Solution by Gauss-Jordan

Elimination

- Solution by Gauss-Jordan

Elimination 2

- Dependencies and Matrix

Rank

- Problem: Analysing an

Enzyme Mixture

- Solutions of Linear Equation

Systems

Answers

Suppose at the last step of making the row echelon form, when eliminating a_{32}, a_{33} and y_{3} disappeared at the same time, giving:

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2}^{\prime} \\
0
\end{array}\right]
$$

What would this mean?
Forward to answer

BROOKES Problem: Analysing an Enzyme Mixture

Solutions of Linear Equation

Systems

- Solution by Gauss-Jordan

Elimination

- Solution by Gauss-Jordan

Elimination 2

- Dependencies and Matrix

A cell sample contains three isoenzymes for the same reaction that differ in their K_{m} values such that when assayed at 0.5, 2.5 and 25 mM :

■ E_{1} gives $0.33,0.71$ and 0.96 of its V_{1};
■ E_{2} gives $0.17,0.50$ and 0.91 of its V_{2}, and

- E_{3} gives 0.02, 0.11 and 0.55 of its V_{3}.

When the sample was assayed, the measured rates of reaction were 5.1, 13.7 and 32.2 nmol.min ${ }^{-1}$
Follow the instructions on the web site for solving:

$$
\mathbf{A}^{-1} \mathbf{y}=\mathbf{x}
$$

to answer the following:

1. What are the V values of the three enzymes in the sample?
2. Assuming the error on a rate measurement is 2%, what is the impact on the results?
3. What could be done to improve the estimates?

Forward to answer

BROOKES Solutions of Linear Equation Systems
 UNIVERSITY

$$
A x=y
$$

	$\mathbf{y} \neq 0$	$\mathbf{y}=0$
A is non-singular; rank equals di- mension.	Unique non-trivial solution	Unique trivial solu- tion; $\mathbf{x}=0$.
A singular; rank less than dimen- sion.	Infinite solutions, not including $\mathbf{x}=0$, but depen- dencies between the x_{i}, provided equations are consistent	Infinite solutions, with dependen- cies, and including $\mathbf{x}=0$.

BROOKES

UNIVERSITY

Nomenclature

Solutions of Linear Equation
Systems
Answers

- Matrix multiplication
- Dependencies and Matrix Rank
- Answer: Analysing an Enzyme Mixture

BROOKES Matrix multiplication

UNIVERSITY

Given A:

$$
\mathbf{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

and a 3×1 vector x , what is the result of $\mathrm{x}^{\mathrm{T}} \mathbf{A}$, and is it equal to Ax?
Answer:

$$
\begin{aligned}
& a_{11} x_{1}+a_{21} x_{2}+a_{31} x_{3} \\
& a_{12} x_{1}+a_{22} x_{2}+a_{32} x_{3} \\
& a_{13} x_{1}+a_{23} x_{2}+a_{33} x_{3}
\end{aligned}
$$

which is not equal to:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}
\end{aligned}
$$

Back to question

BROOKES Dependencies and Matrix Rank

Nomenclature
Solutions of Linear Equation Systems

Answers

- Matrix multiplication
- Dependencies and Matrix

Rank
Answer: Analysing an
Enzyme Mixture

Suppose at the last step of making the row echelon form, when eliminating a_{32}, a_{33} and y_{3} disappeared at the same time, giving:

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2}^{\prime} \\
0
\end{array}\right]
$$

What would this mean?
The three rows of A are not independent; row 3 is some linear combination of rows 1 and 2.
Although A was a 3×3 matrix, its rank was only 2 , and we can now no longer obtain a unique solution for x .
This corresponds to A being singular and not having an inverse.

Back to question

OXFORD

BROOKES Answer: Analysing an Enzyme Mixture

The answers are:

1. The three enzyme values are 11.2, 4.7 and 32.2 nmol.min $^{-1}$ respectively.
2. The values of E_{1} and E_{2} in particular are very sensitive to the errors in the measurement.
3. Improvements might include:

■ Trying to find a set of substrate concentrations that gave better resolution.
■ Making measurements at additional concentrations. As there would then be more measurements than variables, a least squares solution would be necessary, as the experimental error would make the equation set inconsistent.

- Make the measurement a different way, as the dependencies of the three enzymes on substrate, though different, are quite strongly correlated.
Back to question

