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« Vil Biochemisiry almost before conception for an enormous range of attributes,
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From Biochemisty to Model = Metabolism can go wrong: single gene metabolic diseases;
Formal Represeniaton - obesity, diabetes, heart disease, even cancer, are
multi-factorial diseases with a metabolic component.

= \We understand how the genes encode metabolism. But how
do we exploit that understanding to predict metabolic
responses?
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It came first!

Metabolism is essential: it is a fundamental process of all
living organisms, encompassing all the chemical conversions
that convert nutrients into new cellular materials and provide
energy for other processes such as movement.

Metabolism can be useful: bread, alcoholic drinks, cheese,
yoghurt, monosodium glutamate, biofuels.

Metabolism can go wrong: single gene metabolic diseases;
obesity, diabetes, heart disease, even cancer, are
multi-factorial diseases with a metabolic component.

We understand how the genes encode metabolism. But how
do we exploit that understanding to predict metabolic
responses?

One application area: metabolic engineering.
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= Metabolism is essential: it is a fundamental process of all
Preanble ___ living organisms, encompassing all the chemical conversions
* Virtual Biochemistry that convert nutrients into new cellular materials and provide
e Simulated Life
energy for other processes such as movement.
e The Metabolic Network
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Metabolic Model

From Biochemisty to Model = Metabolism can go wrong: single gene metabolic diseases;
Formal Represeniaton - obesity, diabetes, heart disease, even cancer, are
multi-factorial diseases with a metabolic component.

= \We understand how the genes encode metabolism. But how
do we exploit that understanding to predict metabolic
responses?

= One application area: metabolic engineering.
= Another: design of effective drug therapies.

= Other cell processes should yield to a similar approach:
signal transduction; cell cycle; apoptosis.
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Summary of Types of Metabolic Model

= Structural — needs reaction list; gives existence and number
of routes; optimal stoichiometries; network flux values.

= Dynamic or Kinetic — needs full kinetic description of each
enzyme/step; predicts time—courses, steady—states,
sensitivity analysis or control distribution ... Can be
deterministic or stochastic.

= Stochastic — a type of kinetic model where numbers of
molecules are counted rather than concentrations, and
Individual reaction events are simulated.

= Sensitivity analysis / Control analysis / S—systems — needs
effective kinetics near steady—state; predicts control
distribution, response of steady state to perturbations.
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A Metabolic ‘Pathway’

hexokinase

Glucose
l glucose 6-phosphatase
Glucose G-phnsphate

phosphohexose isomerase

Fructose ﬁ—phosphate

phospho-
fructokinase-1

fructose
1,6-bisphosphatase

Fructose 1,6-bisphosphate

Dihydroxyacetone

phosphate é-/

triose phos phat\
isomerase L

Glycolysis

¥

o

b

(2) Glyceraldehyde 3-phosphate

aldolase
\_ Dihydroxyacetone
phosphate

/rins& phosphate A
isomerase - ;
Gluconeagenesis

|
glyceraldehyde phosphate
dehydrogenase

(2) 1,3-Bisphosphoglycerate
a

phosphoglycerate kinase

(2) 3-Phosphoglycerate

(2) 2-Phosp

.
phosphoglycerate mutase

hoglycerate
a
enolase

b
{2) Phosphoenolpyruvate

pyruvate kinase

PEP carboxykinase

{2) Oxaloacetate

pyruvate carboxylase

(2} Pyruvate

From Nelson & Cox, Lehninbger’s Biochemistry, 4th ed.
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Michaelis—Menten Enzyme Kinetics

1.0

0.0

5
Substrate concentration

10

The Ky and V' have arbitarily been set to 1, where V' is the limiting rate (or maximum velocity, V11,) and K, is the

Michaelis constant.
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The Reversible M—M Eqn.

(Vi/Em,s) (S — P/ Keq)

Unet — or ”UIf(S,P)

1+S/Kms+ P/Knp

rate

10

Simultaneous dependence of enzyme rate on both substrate and product. The parameters have been setto: K, g =1;
)

V]

m
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Steady state

In a metabolic network there is a flow of matter from the source
to the sink. At steady state, the concentrations of the
Intermediates remain constant because their rates of formation
exactly equal their rates of degradation. The flow through the
pathway also remains constant.

If there are very slow changes in the concentrations of
metabolites, or the pathway flux, because of slow changes in
the source or sink, the pathway may be regarded as being in
guasi steady state provided the time scale of the changes is
very much longer than the time taken by the pathway to
approach steady state.
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Consider a simple metabolic network, e.g.:
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Kinetics of the Metabolites

By inspection of the diagram:

ds,
dt
dsS;
dt
dsSs
dt

= V1 — V2 + U3
= V2 — VU3 — Vg4 — Vs

How can we generalize this?
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The rate at which the substrate concentrations are changing is
given by N.v, where N is the stoichiometry matrix, and v is a
vector of enzyme kinetic functions. So for our substrate cycle
network:

U1

— 1 -1 1 0 0 Vo

2 =10 1 -1 =1 =1 /|-| v

s 0 0 0 0 1 V4
| U5 |

where each v; is the rate function for enzyme ¢, depending on
the variable metabolites and the parameters V,,, ;, K., ; etc, as
fi(8).

Integrating this set of non—linear differential equations gives a
dynamic model Of our network. The steady state is a set of
non-linear simultaneous equations that can be solved for the
steady state values of S.
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1

N.v = 0, where N is the stoichiometry matrix, exemplified by
our model network:
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combination of a set of vectors K referred to as a basis for the
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_ O = =

o O = = O

The null space can be computed from the stoichiometry matrix

using standard algorithms.
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Any feasible set of velocities at steady state is a linear

combination of these null space vectors, e.g.:

S = O = =

S O = = O
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Any feasible set of velocities at steady state is a linear

combination of these null space vectors, e.g.:
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o By o o but the set of basis vectors has shortcomings as metabolic
. | routes:
ormal epresentatlon- . .
SIEE = |s not a unique solution.
e Structural Analysis: Null
Space Vectors
e R = May not respect thermodynamic direction.
e The Null Space and Pathway
Fluxes . .
* Null Space Analysis = Not necessarily 'simple’.
e Null Spac§ - Geometrical
e mm s ™ C@N MiSlead about the impact of enzyme deletion.
° Enzear Programming Solution B Ut
« Advantages of Stucural = Computation is rapid, even for genome scale networks.

Analysis

s Reactions or routes shown to be 'dead’ will not be found ’live
by any other approach.

Elementary modes analysis and linear programming (Flux
Balance Analysis) have a similar basis but avoid the limitations.
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e e analysis involves non-linear enzyme kinetic functions.
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mepeion metabolic products;
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TR 0 Whether some routes remain after deletion (knock—out
mutation) of the steps catalysed by a particular enzyme;
e 0 What the maximum obtainable conversion yield is for
formation of any metabolite from a given set of sources,
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Preamble = Knowledge is more complete for network structure than for
From Biochemistry to Model enzyme klnetICS
e = Structural analysis involves simple linear equations; dynamic
e e analysis involves non-linear enzyme kinetic functions.
e Null Space Vectors as . . . .
s = The network structure places limitations that constrain the
° e NU pace an athway B . . . .
e network dynamics, irrespective of the kinetics, e.g.:
- imatrs o e Nl Space 0 Whether viable routes exist from nutrients to stated
o Null Space - Geometrical .
mepeion metabolic products;
e Linear Programming Solution . .
TR 0 Whether some routes remain after deletion (knock—out
mutation) of the steps catalysed by a particular enzyme;
e 0 What the maximum obtainable conversion yield is for
formation of any metabolite from a given set of sources,
and

= Structural models underlie kinetic models, and other
techniques such as Metabolic Flux Analysis and Metabolic
Control Analysis.
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