Differences between revisions 111 and 131 (spanning 20 versions)
Revision 111 as of 2016-09-27 17:37:40
Size: 3705
Editor: mark
Comment:
Revision 131 as of 2018-10-03 11:03:13
Size: 4769
Editor: david
Comment: Hasty updating with recent publications. Needs completing.
Deletions are marked like this. Additions are marked like this.
Line 4: Line 4:
=== News ===
'''Following a recent office move there may be some instability in these pages - please be patient !'''
== News ==
== Metabolic Pathway Analysis 2019 ==
This will be held in Riga, Latvia, 12-16 August. Details to follow.
Line 7: Line 8:
'''International Study Group for Systems Biology: ''' the next meeting will be 4-7 October 2016 in Jena, Germany. [[http://sysbio.brookes.ac.uk/|More details here]] and at the [[http://isgsb-2016.bioinf.uni-jena.de/|meeting website]] == International Study Group for Systems Biology, 2018 ==
 . The 18th ISGSB meeting was held in Tromsø/Norway, 24-28 September 2018. The meeting was be preceded by the Young ISGSB meeting, providing an introductory workshop for PhD students. The meeting web site is at https://site.uit.no/isgsb2018/

== Publications from Metabolic Pathway Analysis, Montana 2017 ==
Mini reviews based on material presented at the meeting are now starting to appear in [[http://www.biochemsoctrans.org/|Biochemical Society Transactions]].

== Understanding the Control of Metabolism ==
 . David Fell's 1997 book is now available via !ResearchGate.
Line 10: Line 18:
'''Latest papers:''' Near-dead heat between: == Latest papers: ==
 1. Huma, Benazir; Kundu, Sudip; Poolman, Mark; Kruger, Nicholas; Fell, David. ''Stoichiometric analysis of the energetics and metabolic impact of photorespiration in C3 plants. ''The Plant Journal, [[https://doi.org/10.1111/tpj.14105|DOI]]
 1. Pfau, Christian, Masakapalli, Poolman, Sweetlove & Ebenhoe. ''The intertwined metabolism during symbiotic nitrogen fixation elucidated by metabolic modelling. ''Nature Scientific Reports, https://www.nature.com/articles/s41598-018-30884-x
Line 12: Line 22:
 1.
 Diplai Singh, Ross Carlson, David Fell and Mark Poolman. Modelling Metabolism of the Diatom ''Phaeodactylum tricornutum''. Biochem. Soc. Trans. 43, 1182- (2015) [[http://www.biochemsoctrans.org/content/43/6/1182|PDF]] doi:10.1042/BST20150152

 1.
 Huili Yuan, C. Y. Maurice Cheung, Mark G. Poolman, Peter A.J. Hilbers and Natal A.W. van Riel. A genome-scale metabolic network reconstruction of tomato (Solanum lycopersicum L.) and its application to photorespiratory metabolism. The Plant Journal, accepted m/s DOI: 10.1111/tpj.13075 [[http://onlinelibrary.wiley.com/doi/10.1111/tpj.13075/abstract|abstract]]


'''Previous paper:''' Mark G. Poolman, Sudip Kundu, Rahul Shaw and David A. Fell. Metabolic Trade-offs between Biomass Synthesis and Photosynthate Export at Different Light Intensities in a Genome–Scale Metabolic Model of Rice. Frontiers in Plant Science, 00656 (2014) [[http://journal.frontiersin.org/Journal/10.3389/fpls.2014.00656/abstract|PDF]]
== Previous papers: ==
 * Zia Fatma, Hassan Hartman, Mark G. Poolman, David A. Fell, Shireesh Srivastava , Tabinda Shakeela and Syed Shams ⁠Yazdani. ''Model-assisted metabolic engineering of Escherichia coli for long chain alkane and alcohol production'', Metabolic Engineering, 45, 134-141 (2018). [[https://doi.org/10.1016/j.ymben.2018.01.002|DOI]] Available [[https://authors.elsevier.com/c/1WYUR_OxxoPbi~|here]] without subscription until 3 April 2018.
 * Ahmad Ahmad, Hassan B. Hartman , S. Krishnakumar, David A. Fell , Mark G. Poolman , Shireesh Srivastava. ''A Genome Scale Model of ''Geobacillus thermoglucosidasius'' (C56-YS93) reveals its biotechnological potential on rice straw hydrolysate''. J. Biotech. '''251,''' 30-37 (2017) [[http://dx.doi.org/10.1016/j.jbiotec.2017.03.031|DOI]] (This work was part of the [[http://www.ricefuel.net/index.html|Ricefuel]] project funded by the BBSRC and the DBT, India). <<BR>>
 * Pentjuss A., Stalidzans E., Liepins J., Kokina A., Martynova J., Zikmanis P., Mozga I., Scherbaka R., Hartman H., Poolman M. G., Fell D. A., Vigants A. '' Model based biotechnological potential analysis of ''Kluyveromyces marxianus'' central metabolism''. J. Industrial Microbiology and Biotechnology, '''44''', 1177-1190 (2017). [[http://mudshark.brookes.ac.uk/Publications/10.1007/s10295-017-1946-8|DOI]]
Line 32: Line 38:
 *
[[http://sysbio.brookes.ac.uk|The website of the International Study Group for Systems Biology]]
 * [[http://sysbio.brookes.ac.uk|The website of the International Study Group for Systems Biology]]
Line 35: Line 40:

*
[[http://mpa.brookes.ac.uk|The website for the Metabolic Pathways Analysis series of meetings]]


 *
 [[http://mitoscop.brookes.ac.uk|The website for the BBSRC-ANR project MitoScoP]]


 *
 [[http://frim.brookes.ac.uk|The website for the EraSysBio+ project Fruit Integrative Modelling]]
 * [[http://mpa.brookes.ac.uk|The website for the Metabolic Pathways Analysis series of meetings]]

cell systems group banner


News

Metabolic Pathway Analysis 2019

This will be held in Riga, Latvia, 12-16 August. Details to follow.

International Study Group for Systems Biology, 2018

  • The 18th ISGSB meeting was held in Tromsø/Norway, 24-28 September 2018. The meeting was be preceded by the Young ISGSB meeting, providing an introductory workshop for PhD students. The meeting web site is at https://site.uit.no/isgsb2018/

Publications from Metabolic Pathway Analysis, Montana 2017

Mini reviews based on material presented at the meeting are now starting to appear in Biochemical Society Transactions.

Understanding the Control of Metabolism

  • David Fell's 1997 book is now available via ResearchGate.


Latest papers:

  1. Huma, Benazir; Kundu, Sudip; Poolman, Mark; Kruger, Nicholas; Fell, David. Stoichiometric analysis of the energetics and metabolic impact of photorespiration in C3 plants. The Plant Journal, DOI

  2. Pfau, Christian, Masakapalli, Poolman, Sweetlove & Ebenhoe. The intertwined metabolism during symbiotic nitrogen fixation elucidated by metabolic modelling. Nature Scientific Reports, https://www.nature.com/articles/s41598-018-30884-x

Previous papers:

  • Zia Fatma, Hassan Hartman, Mark G. Poolman, David A. Fell, Shireesh Srivastava , Tabinda Shakeela and Syed Shams ⁠Yazdani. Model-assisted metabolic engineering of Escherichia coli for long chain alkane and alcohol production, Metabolic Engineering, 45, 134-141 (2018). DOI Available here without subscription until 3 April 2018.

  • Ahmad Ahmad, Hassan B. Hartman , S. Krishnakumar, David A. Fell , Mark G. Poolman , Shireesh Srivastava. A Genome Scale Model of Geobacillus thermoglucosidasius (C56-YS93) reveals its biotechnological potential on rice straw hydrolysate. J. Biotech. 251, 30-37 (2017) DOI (This work was part of the Ricefuel project funded by the BBSRC and the DBT, India).

  • Pentjuss A., Stalidzans E., Liepins J., Kokina A., Martynova J., Zikmanis P., Mozga I., Scherbaka R., Hartman H., Poolman M. G., Fell D. A., Vigants A. Model based biotechnological potential analysis of Kluyveromyces marxianus central metabolism. J. Industrial Microbiology and Biotechnology, 44, 1177-1190 (2017). DOI

Background

Our group began nearly thirty years ago with initial interests in computer simulation of metabolism and the theoretical analysis of metabolic control and regulation. Whilst these still remain areas of interest, we have since developed interests in modelling signal transduction, in various different approaches to network analysis of metabolism, and in reconstructing metabolic networks from genomic data. In the course of this research, we have addressed problems in microbial, plant and mammalian metabolism, often in conjunction with collaborators who have contributed experimental results.

Our current work centres on modelling the networks of reactions in cells, with particular emphasis on metabolism. It forms part of the emerging field of Systems Biology, in that we are concerned with understanding how biological function arises from the interactions between many components, and with building predictive models. We have to develop and apply suitable theoretical tools, including metabolic control analysis, computer simulation and other forms of algebraic and numerical analysis. In addition, we are investigating how to decipher the metabolic information contained in genome sequences. We are involved in projects on microbial, plant and animal metabolism, each in collaboration with an experimental team.

Potential applications of our work include the design of changes in cellular metabolism to improve the output of product such as antibiotics, detecting vulnerable sites in cellular networks that could be targets for drugs to control disease-causing organisms, and improved understanding of how organisms manage to adjust their metabolism in response to environmental changes and other signals.


Related Sites

We also host the following web sites related to our research:

None: Home (last edited 2024-02-21 15:03:28 by david)