Differences between revisions 25 and 92 (spanning 67 versions)
Revision 25 as of 2010-11-03 14:15:31
Size: 2256
Editor: sxc538b8
Comment:
Revision 92 as of 2014-05-18 09:47:30
Size: 4220
Editor: david
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
#format bibtex {{attachment:csmgbanner.png|cell systems group banner}}
Line 3: Line 3:
'''News:''' -----
=== News ===
'''PhD studentship applications now open.''': The group has a BBSRC iCASE studentship on '''Modelling acetogen metabolism''' to start in September/October 2014. See the [[AcetoGen|project page]] for details of the research, how to apply details and important eligibility information. Deadline 30 May 2014.
Line 5: Line 7:
'''Advance notice. The Biochemical Society has approved plans for the 71st Harden Conference 19-23 September 2011: Metabolic Pathway Analysis 3.''' '''RICEFUEL''': The group is following up its [[UKIPA|existing interests]] in bioenergy research by participating in the UK-India project RICEFUEL coordinated by Nigel Minton at the University of Nottingham. See the [[http://www.bbsrc.ac.uk/news/industrial-biotechnology/2013/131113-pr-sustainable-fuels.aspx|BBSRC News]] for a report of the official announcement. Our project page is under construction at RiceFuel.
Line 7: Line 9:
'''BBSRC Network in Industrial Biotechnology and Bioenergy''' (NIBB): David Fell will also be assisting Nigel Minton in running the ''C1NET: Chemicals from C1 gas'' NIBB. See the [[http://www.bbsrc.ac.uk/news/industrial-biotechnology/2013/131218-pr-unique-industry-academia-nibbs.aspx|BBSRC]] and [[http://www.brookes.ac.uk/about-brookes/news/%C2%A31-8-million-funding-to-turn-carbon-monoxide-into-useful-chemicals/|Oxford Brookes University]] announcements.

-----
'''Latest paper:''' Uldis Kalnenieks, Agris Pentjuss, Reinis Rutkis, Egils Stalidzans and David A. Fell. Modeling of ''Zymomonas mobilis'' central metabolism for novel metabolic engineering strategies. Front. Microbiol. 5:42. [[http://dx.doi.org/10.3389/fmicb.2014.00042|doi: 10.3389/fmicb.2014.00042]] (Open access)

'''Previous paper:''' Reinis Rutkis, Uldis Kalnenieks,Egils Stalidzans and David A. Fell. Kinetic modeling of ''Zymomonas mobilis'' Entner-Doudoroff pathway: insights into control and functionality. Microbiology (2013) [[http://dx.doi.org/10.1099/mic.0.071340-0|DOI 10.1099/mic.0.071340-0]] [[http://mic.sgmjournals.org/content/early/2013/10/01/mic.0.071340-0|PDF]]


= Background =
Line 13: Line 24:
<<latex($a^2 \frac{1}{2}$)>> -----
= Related Sites =
We also host the following web sites related to our research:
Line 15: Line 28:
{ { {  *
 [[http://sysbio.brookes.ac.uk|The website of the International Study Group for Systems Biology]]
Line 17: Line 31:
#!bibtex @INCOLLECTION{Hu82,
  author = {L. Hue},
  title = {Futile Cycles and Regulation of Metabolism.},
  booktitle = {Metabolic Compartmentation},
  publisher = {Academic Press},
  year = {1982},
  editor = {Sies, H.},
  pages = {71-97},
  address = {London},
  crossref = {Si82}
}
} } }

 *
 [[http://mpa.brookes.ac.uk|The website for the Metabolic Pathways Analysis series of meetings]]


 *
 [[http://mitoscop.brookes.ac.uk|The website for the BBSRC-ANR project MitoScoP]]


 *
 [[http://frim.brookes.ac.uk|The website for the EraSysBio+ project Fruit Integrative Modelling]]

cell systems group banner


News

PhD studentship applications now open.: The group has a BBSRC iCASE studentship on Modelling acetogen metabolism to start in September/October 2014. See the project page for details of the research, how to apply details and important eligibility information. Deadline 30 May 2014.

RICEFUEL: The group is following up its existing interests in bioenergy research by participating in the UK-India project RICEFUEL coordinated by Nigel Minton at the University of Nottingham. See the BBSRC News for a report of the official announcement. Our project page is under construction at RiceFuel.

BBSRC Network in Industrial Biotechnology and Bioenergy (NIBB): David Fell will also be assisting Nigel Minton in running the C1NET: Chemicals from C1 gas NIBB. See the BBSRC and Oxford Brookes University announcements.


Latest paper: Uldis Kalnenieks, Agris Pentjuss, Reinis Rutkis, Egils Stalidzans and David A. Fell. Modeling of Zymomonas mobilis central metabolism for novel metabolic engineering strategies. Front. Microbiol. 5:42. doi: 10.3389/fmicb.2014.00042 (Open access)

Previous paper: Reinis Rutkis, Uldis Kalnenieks,Egils Stalidzans and David A. Fell. Kinetic modeling of Zymomonas mobilis Entner-Doudoroff pathway: insights into control and functionality. Microbiology (2013) DOI 10.1099/mic.0.071340-0 PDF

Background

Our group began nearly thirty years ago with initial interests in computer simulation of metabolism and the theoretical analysis of metabolic control and regulation. Whilst these still remain areas of interest, we have since developed interests in modelling signal transduction, in various different approaches to network analysis of metabolism, and in reconstructing metabolic networks from genomic data. In the course of this research, we have addressed problems in microbial, plant and mammalian metabolism, often in conjunction with collaborators who have contributed experimental results.

Our current work centres on modelling the networks of reactions in cells, with particular emphasis on metabolism. It forms part of the emerging field of Systems Biology, in that we are concerned with understanding how biological function arises from the interactions between many components, and with building predictive models. We have to develop and apply suitable theoretical tools, including metabolic control analysis, computer simulation and other forms of algebraic and numerical analysis. In addition, we are investigating how to decipher the metabolic information contained in genome sequences. We are involved in projects on microbial, plant and animal metabolism, each in collaboration with an experimental team.

Potential applications of our work include the design of changes in cellular metabolism to improve the output of product such as antibiotics, detecting vulnerable sites in cellular networks that could be targets for drugs to control disease-causing organisms, and improved understanding of how organisms manage to adjust their metabolism in response to environmental changes and other signals.


Related Sites

We also host the following web sites related to our research:

None: Home (last edited 2024-02-21 15:03:28 by david)