Differences between revisions 4 and 76 (spanning 72 versions)
Revision 4 as of 2010-06-14 13:22:47
Size: 1891
Editor: localhost
Comment:
Revision 76 as of 2013-08-02 10:19:14
Size: 3205
Editor: david
Comment: removed abstract submission; added NSF travel grants.
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
'''News:''' {{attachment:csmgbanner.png|cell systems group banner}}
Line 3: Line 3:
'''Advance notice. The Biochemical Society has approved plans for the 71st Harden Conference 19-23 September 2011: Metabolic Pathway Analysis 3.''' -----
=== Meeting news ===
'''Metabolic Pathway Analysis 2013''' will be held in Oxford, 16-20 September. See its [[http://www.accliphot.eu/mpa-2013/|website]] for details.
Line 5: Line 7:
'''News:''' NSF has funded some travel grants for US attendees.
-----
'''New paper online ahead of print:''' Maurice Cheung et al, A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions. The Plant Journal .[[http://onlinelibrary.wiley.com/doi/10.1111/tpj.12252/abstract|accepted manuscript]]

'''Previous paper: '''Mark G. Poolman, Sudip Kundu, Rahul Shaw and David A Fell. Responses to Light Intensity in a Genome–Scale Model of Rice Metabolism. ''Plant Physiology'', 162, 1060-1072, 2013, [[./Publications/articles|PDF]] available. [ [[http://dx.doi.org/10.1104/pp.113.216762|DOI: 10.1104/pp.113.216762]] ]
-----
= Background =
Line 10: Line 19:

-----
= Related Sites =
We also host the following web sites related to our research:

 *
 [[http://sysbio.brookes.ac.uk|The website of the International Study Group for Systems Biology]]


 *
 [[http://mpa.brookes.ac.uk|The website for the Metabolic Pathways Analysis series of meetings]]


 *
 [[http://mitoscop.brookes.ac.uk|The website for the BBSRC-ANR project MitoScoP]]


 *
 [[http://frim.brookes.ac.uk|The website for the EraSysBio+ project Fruit Integrative Modelling]]

cell systems group banner


Meeting news

Metabolic Pathway Analysis 2013 will be held in Oxford, 16-20 September. See its website for details.

News: NSF has funded some travel grants for US attendees.


New paper online ahead of print: Maurice Cheung et al, A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions. The Plant Journal .accepted manuscript

Previous paper: Mark G. Poolman, Sudip Kundu, Rahul Shaw and David A Fell. Responses to Light Intensity in a Genome–Scale Model of Rice Metabolism. Plant Physiology, 162, 1060-1072, 2013, PDF available. [ DOI: 10.1104/pp.113.216762 ]


Background

Our group began nearly thirty years ago with initial interests in computer simulation of metabolism and the theoretical analysis of metabolic control and regulation. Whilst these still remain areas of interest, we have since developed interests in modelling signal transduction, in various different approaches to network analysis of metabolism, and in reconstructing metabolic networks from genomic data. In the course of this research, we have addressed problems in microbial, plant and mammalian metabolism, often in conjunction with collaborators who have contributed experimental results.

Our current work centres on modelling the networks of reactions in cells, with particular emphasis on metabolism. It forms part of the emerging field of Systems Biology, in that we are concerned with understanding how biological function arises from the interactions between many components, and with building predictive models. We have to develop and apply suitable theoretical tools, including metabolic control analysis, computer simulation and other forms of algebraic and numerical analysis. In addition, we are investigating how to decipher the metabolic information contained in genome sequences. We are involved in projects on microbial, plant and animal metabolism, each in collaboration with an experimental team.

Potential applications of our work include the design of changes in cellular metabolism to improve the output of product such as antibiotics, detecting vulnerable sites in cellular networks that could be targets for drugs to control disease-causing organisms, and improved understanding of how organisms manage to adjust their metabolism in response to environmental changes and other signals.


Related Sites

We also host the following web sites related to our research:

None: Home (last edited 2024-02-21 15:03:28 by david)