Differences between revisions 57 and 85 (spanning 28 versions)
Revision 57 as of 2012-10-22 15:18:09
Size: 2368
Editor: david
Comment:
Revision 85 as of 2013-12-09 13:04:02
Size: 3840
Editor: david
Comment: Added iCASE studentship to News.
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
=== Latest grant === {{attachment:csmgbanner.png|cell systems group banner}}
Line 3: Line 3:
An EU ITN, AccliPhot. Recruitment for a postgraduate research assistant will be announced here shortly. -----
=== News ===
=== 6/12/13 - Due to a minor hardware problem, some of the services on this site are temporarily unavailable. We hope to restore normality on Monday. ===

'''PhD studentship available for September 2014''': The group has a BBSRC iCASE studentship on '''Modelling acetogen metabolism'''. See the [[AcetoGen|project page]] for details of the research and important eligibility information.

'''RICEFUEL''': The group is following up its [[UKIPA|existing interests]] in bioenergy research by participating in the UK-India project RICEFUEL coordinated by Nigel Minton at the University of Nottingham. See the [[http://www.bbsrc.ac.uk/news/industrial-biotechnology/2013/131113-pr-sustainable-fuels.aspx|BBSRC News]] for a report of the official announcement. Our project page is under construction at [[RiceFuel]].

-----
'''Latest paper:''' Reinis Rutkis, Uldis Kalnenieks,Egils Stalidzans and David A. Fell. Kinetic modeling of ''Zymomonas mobilis'' Entner-Doudoroff pathway: insights into control and functionality. Microbiology (2013) [[http://dx.doi.org/10.1099/mic.0.071340-0|DOI 10.1099/mic.0.071340-0]] [[http://mic.sgmjournals.org/content/early/2013/10/01/mic.0.071340-0|PDF]]

'''Previous paper:''' Maurice Cheung et al, A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions. The Plant Journal 75, 1050-1061 (2013) [[http://onlinelibrary.wiley.com/doi/10.1111/tpj.12252/abstract|online]]
Line 15: Line 26:
We also host the following web sites related to our research:
Line 16: Line 28:
We also host the following web sites related to our research:
 * [[http://sysbio.brookes.ac.uk | The website of the International Study Group for Systems Biology]]
 * [[http://mpa.brookes.ac.uk | The website for the Metabolic Pathways Analysis series of meetings]]
 * [[http://mitoscop.brookes.ac.uk | The website for the BBSRC-ANR project MitoScoP]]
 * [[http://frim.brookes.ac.uk | The website for the EraSysBio+ project Fruit Integrative Modelling]]
 *
 [[http://sysbio.brookes.ac.uk|The website of the International Study Group for Systems Biology]]


 *
 [[http://mpa.brookes.ac.uk|The website for the Metabolic Pathways Analysis series of meetings]]


 *
 [[http://mitoscop.brookes.ac.uk|The website for the BBSRC-ANR project MitoScoP]]


 *
 [[http://frim.brookes.ac.uk|The website for the EraSysBio+ project Fruit Integrative Modelling]]

cell systems group banner


News

6/12/13 - Due to a minor hardware problem, some of the services on this site are temporarily unavailable. We hope to restore normality on Monday.

PhD studentship available for September 2014: The group has a BBSRC iCASE studentship on Modelling acetogen metabolism. See the project page for details of the research and important eligibility information.

RICEFUEL: The group is following up its existing interests in bioenergy research by participating in the UK-India project RICEFUEL coordinated by Nigel Minton at the University of Nottingham. See the BBSRC News for a report of the official announcement. Our project page is under construction at RiceFuel.


Latest paper: Reinis Rutkis, Uldis Kalnenieks,Egils Stalidzans and David A. Fell. Kinetic modeling of Zymomonas mobilis Entner-Doudoroff pathway: insights into control and functionality. Microbiology (2013) DOI 10.1099/mic.0.071340-0 PDF

Previous paper: Maurice Cheung et al, A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions. The Plant Journal 75, 1050-1061 (2013) online


Background

Our group began nearly thirty years ago with initial interests in computer simulation of metabolism and the theoretical analysis of metabolic control and regulation. Whilst these still remain areas of interest, we have since developed interests in modelling signal transduction, in various different approaches to network analysis of metabolism, and in reconstructing metabolic networks from genomic data. In the course of this research, we have addressed problems in microbial, plant and mammalian metabolism, often in conjunction with collaborators who have contributed experimental results.

Our current work centres on modelling the networks of reactions in cells, with particular emphasis on metabolism. It forms part of the emerging field of Systems Biology, in that we are concerned with understanding how biological function arises from the interactions between many components, and with building predictive models. We have to develop and apply suitable theoretical tools, including metabolic control analysis, computer simulation and other forms of algebraic and numerical analysis. In addition, we are investigating how to decipher the metabolic information contained in genome sequences. We are involved in projects on microbial, plant and animal metabolism, each in collaboration with an experimental team.

Potential applications of our work include the design of changes in cellular metabolism to improve the output of product such as antibiotics, detecting vulnerable sites in cellular networks that could be targets for drugs to control disease-causing organisms, and improved understanding of how organisms manage to adjust their metabolism in response to environmental changes and other signals.


Related Sites

We also host the following web sites related to our research:

None: Home (last edited 2024-02-21 15:03:28 by david)