Differences between revisions 62 and 77 (spanning 15 versions)
Revision 62 as of 2012-12-19 00:02:02
Size: 2482
Editor: david
Comment:
Revision 77 as of 2013-08-05 16:25:53
Size: 3335
Editor: david
Comment: Added link to US travel grant procedure.
Deletions are marked like this. Additions are marked like this.
Line 4: Line 4:
=== Latest grant ===
An EU ITN, AccliPhot. Applications for a postgraduate research assistant on this project are currently open; see the [[AccliPhot]] page for details.
=== Meeting news ===
'''Metabolic Pathway Analysis 2013''' will be held in Oxford, 16-20 September. See its [[http://www.accliphot.eu/mpa-2013/|website]] for details.
Line 7: Line 7:
'''News:''' NSF has funded some travel grants for US attendees. The application procedure is given on the [[http://www.accliphot.eu/mpa-2013/|conference website]], closing date 15 August 2013.
-----
'''New paper online ahead of print:''' Maurice Cheung et al, A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions. The Plant Journal .[[http://onlinelibrary.wiley.com/doi/10.1111/tpj.12252/abstract|accepted manuscript]]

'''Previous paper: '''Mark G. Poolman, Sudip Kundu, Rahul Shaw and David A Fell. Responses to Light Intensity in a Genome–Scale Model of Rice Metabolism. ''Plant Physiology'', 162, 1060-1072, 2013, [[./Publications/articles|PDF]] available. [ [[http://dx.doi.org/10.1104/pp.113.216762|DOI: 10.1104/pp.113.216762]] ]
Line 22: Line 27:
Line 24: Line 30:
Line 28: Line 35:

cell systems group banner


Meeting news

Metabolic Pathway Analysis 2013 will be held in Oxford, 16-20 September. See its website for details.

News: NSF has funded some travel grants for US attendees. The application procedure is given on the conference website, closing date 15 August 2013.


New paper online ahead of print: Maurice Cheung et al, A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions. The Plant Journal .accepted manuscript

Previous paper: Mark G. Poolman, Sudip Kundu, Rahul Shaw and David A Fell. Responses to Light Intensity in a Genome–Scale Model of Rice Metabolism. Plant Physiology, 162, 1060-1072, 2013, PDF available. [ DOI: 10.1104/pp.113.216762 ]


Background

Our group began nearly thirty years ago with initial interests in computer simulation of metabolism and the theoretical analysis of metabolic control and regulation. Whilst these still remain areas of interest, we have since developed interests in modelling signal transduction, in various different approaches to network analysis of metabolism, and in reconstructing metabolic networks from genomic data. In the course of this research, we have addressed problems in microbial, plant and mammalian metabolism, often in conjunction with collaborators who have contributed experimental results.

Our current work centres on modelling the networks of reactions in cells, with particular emphasis on metabolism. It forms part of the emerging field of Systems Biology, in that we are concerned with understanding how biological function arises from the interactions between many components, and with building predictive models. We have to develop and apply suitable theoretical tools, including metabolic control analysis, computer simulation and other forms of algebraic and numerical analysis. In addition, we are investigating how to decipher the metabolic information contained in genome sequences. We are involved in projects on microbial, plant and animal metabolism, each in collaboration with an experimental team.

Potential applications of our work include the design of changes in cellular metabolism to improve the output of product such as antibiotics, detecting vulnerable sites in cellular networks that could be targets for drugs to control disease-causing organisms, and improved understanding of how organisms manage to adjust their metabolism in response to environmental changes and other signals.


Related Sites

We also host the following web sites related to our research:

None: Home (last edited 2024-02-21 15:03:28 by david)