Differences between revisions 76 and 109 (spanning 33 versions)
Revision 76 as of 2013-08-02 10:19:14
Size: 3205
Editor: david
Comment: removed abstract submission; added NSF travel grants.
Revision 109 as of 2015-11-29 13:37:51
Size: 3196
Editor: david
Comment: Added Biochem Soc Trans
Deletions are marked like this. Additions are marked like this.
Line 4: Line 4:
=== Meeting news ===
'''Metabolic Pathway Analysis 2013''' will be held in Oxford, 16-20 September. See its [[http://www.accliphot.eu/mpa-2013/|website]] for details.
=== News ===
Line 7: Line 6:
'''News:''' NSF has funded some travel grants for US attendees. '''International Study Group for Systems Biology: ''' the next meeting will be 4-7 October 2016 in Jena, Germany. [[http://sysbio.brookes.ac.uk/|More details here]] and at the [[http://isgsb-2016.bioinf.uni-jena.de/|meeting website]]
Line 9: Line 9:
'''New paper online ahead of print:''' Maurice Cheung et al, A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions. The Plant Journal .[[http://onlinelibrary.wiley.com/doi/10.1111/tpj.12252/abstract|accepted manuscript]] '''Latest paper:''' Diplai Singh, Ross Carlson, David Fell and Mark Poolman. Modelling Metabolism of the Diatom ''Phaeodactylum tricornutum''. Biochem. Soc. Trans. 43, 1182- (2015) [[http://www.biochemsoctrans.org/content/43/6/1182|PDF]] doi:10.1042/BST20150152
Line 11: Line 11:
'''Previous paper: '''Mark G. Poolman, Sudip Kundu, Rahul Shaw and David A Fell. Responses to Light Intensity in a Genome–Scale Model of Rice Metabolism. ''Plant Physiology'', 162, 1060-1072, 2013, [[./Publications/articles|PDF]] available. [ [[http://dx.doi.org/10.1104/pp.113.216762|DOI: 10.1104/pp.113.216762]] ]
-----


'''Previous paper:''' Mark G. Poolman, Sudip Kundu, Rahul Shaw and David A. Fell. Metabolic Trade-offs between Biomass Synthesis and Photosynthate Export at Different Light Intensities in a Genome–Scale Metabolic Model of Rice. Frontiers in Plant Science, 00656 (2014) [[http://journal.frontiersin.org/Journal/10.3389/fpls.2014.00656/abstract|PDF]]

cell systems group banner


News

International Study Group for Systems Biology: the next meeting will be 4-7 October 2016 in Jena, Germany. More details here and at the meeting website


Latest paper: Diplai Singh, Ross Carlson, David Fell and Mark Poolman. Modelling Metabolism of the Diatom Phaeodactylum tricornutum. Biochem. Soc. Trans. 43, 1182- (2015) PDF doi:10.1042/BST20150152

Previous paper: Mark G. Poolman, Sudip Kundu, Rahul Shaw and David A. Fell. Metabolic Trade-offs between Biomass Synthesis and Photosynthate Export at Different Light Intensities in a Genome–Scale Metabolic Model of Rice. Frontiers in Plant Science, 00656 (2014) PDF

Background

Our group began nearly thirty years ago with initial interests in computer simulation of metabolism and the theoretical analysis of metabolic control and regulation. Whilst these still remain areas of interest, we have since developed interests in modelling signal transduction, in various different approaches to network analysis of metabolism, and in reconstructing metabolic networks from genomic data. In the course of this research, we have addressed problems in microbial, plant and mammalian metabolism, often in conjunction with collaborators who have contributed experimental results.

Our current work centres on modelling the networks of reactions in cells, with particular emphasis on metabolism. It forms part of the emerging field of Systems Biology, in that we are concerned with understanding how biological function arises from the interactions between many components, and with building predictive models. We have to develop and apply suitable theoretical tools, including metabolic control analysis, computer simulation and other forms of algebraic and numerical analysis. In addition, we are investigating how to decipher the metabolic information contained in genome sequences. We are involved in projects on microbial, plant and animal metabolism, each in collaboration with an experimental team.

Potential applications of our work include the design of changes in cellular metabolism to improve the output of product such as antibiotics, detecting vulnerable sites in cellular networks that could be targets for drugs to control disease-causing organisms, and improved understanding of how organisms manage to adjust their metabolism in response to environmental changes and other signals.


Related Sites

We also host the following web sites related to our research:

None: Home (last edited 2024-02-21 15:03:28 by david)