Differences between revisions 88 and 124 (spanning 36 versions)
Revision 88 as of 2013-12-20 11:42:08
Size: 3991
Editor: david
Comment:
Revision 124 as of 2017-06-05 18:18:28
Size: 4109
Editor: david
Comment: Added link to book pdf.
Deletions are marked like this. Additions are marked like this.
Line 4: Line 4:
=== News ===
'''PhD studentship available for September 2014''': The group has a BBSRC iCASE studentship on '''Modelling acetogen metabolism'''. See the [[AcetoGen|project page]] for details of the research and important eligibility information.
== News ==
=== Metabolic Pathways Analysis 2017 - UPDATE ===
Bozeman, Montana USA, 24-28 July, 2017. '''Registration now open'''. See the [[http://www.chbe.montana.edu/biochemenglab/MPA2017.html|conference website]] and the the [[http://mpa.brookes.ac.uk|MPA website]] for more information. Abstract submission deadline: 21 April 2017.
Line 7: Line 8:
'''RICEFUEL''': The group is following up its [[UKIPA|existing interests]] in bioenergy research by participating in the UK-India project RICEFUEL coordinated by Nigel Minton at the University of Nottingham. See the [[http://www.bbsrc.ac.uk/news/industrial-biotechnology/2013/131113-pr-sustainable-fuels.aspx|BBSRC News]] for a report of the official announcement. Our project page is under construction at RiceFuel.

'''BBSRC Network in Industrial Biotechnology and Bioenergy''' (NIBB): David Fell will also be assisting Nigel Minton in running the ''C1NET: Chemicals from C1 gas'' NIBB. See the [[http://www.bbsrc.ac.uk/news/industrial-biotechnology/2013/131218-pr-unique-industry-academia-nibbs.aspx|BBSRC announcement]].
=== Understanding the Control of Metabolism ===
David Fell's 1997 book is now available as a [[Publications/UCM|downloadable pdf]] on this website.
Line 12: Line 12:
'''Latest paper:''' Reinis Rutkis, Uldis Kalnenieks,Egils Stalidzans and David A. Fell. Kinetic modeling of ''Zymomonas mobilis'' Entner-Doudoroff pathway: insights into control and functionality. Microbiology (2013) [[http://dx.doi.org/10.1099/mic.0.071340-0|DOI 10.1099/mic.0.071340-0]] [[http://mic.sgmjournals.org/content/early/2013/10/01/mic.0.071340-0|PDF]] === Latest papers: ===
 * Ahmad Ahmad, Hassan B. Hartman , S. Krishnakumar, David A. Fell , Mark G. Poolman , Shireesh Srivastava. ''A Genome Scale Model of ''Geobacillus thermoglucosidasius'' (C56-YS93) reveals its biotechnological potential on rice straw hydrolysate''. J. Biotech (in press, 2017). [[http://dx.doi.org/10.1016/j.jbiotec.2017.03.031|DOI]]<<BR>><<BR>>This work was part of the [[http://www.ricefuel.net/index.html|Ricefuel]] project funded by the BBSRC and the DBT (India). <<BR>>
 * Pentjuss A., Stalidzans E., Liepins J., Kokina A., Martynova J., Zikmanis P., Mozga I., Scherbaka R., Hartman H., Poolman M. G., Fell D. A., Vigants A. '' Model based biotechnological potential analysis of ''Kluyveromyces marxianus'' central metabolism''. J. Industrial Microbiology and Biotechnology (in press, 2017).
Line 14: Line 16:
'''Previous paper:''' Maurice Cheung et al, A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions. The Plant Journal 75, 1050-1061 (2013) [[http://onlinelibrary.wiley.com/doi/10.1111/tpj.12252/abstract|online]] === Previous papers: ===
Near-dead heat between:
Line 16: Line 19:
-----  1. Dipali Singh, Ross Carlson, David Fell and Mark Poolman. Modelling Metabolism of the Diatom ''Phaeodactylum tricornutum''. Biochem. Soc. Trans. 43, 1182- (2015) [[http://www.biochemsoctrans.org/content/43/6/1182|PDF]] doi:10.1042/BST20150152

 1. Huili Yuan, C. Y. Maurice Cheung, Mark G. Poolman, Peter A.J. Hilbers and Natal A.W. van Riel. A genome-scale metabolic network reconstruction of tomato (Solanum lycopersicum L.) and its application to photorespiratory metabolism. The Plant Journal, accepted m/s DOI: 10.1111/tpj.13075 [[http://onlinelibrary.wiley.com/doi/10.1111/tpj.13075/abstract|abstract]]
Line 28: Line 34:
 *
[[http://sysbio.brookes.ac.uk|The website of the International Study Group for Systems Biology]]
 * [[http://sysbio.brookes.ac.uk|The website of the International Study Group for Systems Biology]]
Line 31: Line 36:

*
[[http://mpa.brookes.ac.uk|The website for the Metabolic Pathways Analysis series of meetings]]


 *
 [[http://mitoscop.brookes.ac.uk|The website for the BBSRC-ANR project MitoScoP]]


 *
 [[http://frim.brookes.ac.uk|The website for the EraSysBio+ project Fruit Integrative Modelling]]
 * [[http://mpa.brookes.ac.uk|The website for the Metabolic Pathways Analysis series of meetings]]

cell systems group banner


News

Metabolic Pathways Analysis 2017 - UPDATE

Bozeman, Montana USA, 24-28 July, 2017. Registration now open. See the conference website and the the MPA website for more information. Abstract submission deadline: 21 April 2017.

Understanding the Control of Metabolism

David Fell's 1997 book is now available as a downloadable pdf on this website.


Latest papers:

  • Ahmad Ahmad, Hassan B. Hartman , S. Krishnakumar, David A. Fell , Mark G. Poolman , Shireesh Srivastava. A Genome Scale Model of Geobacillus thermoglucosidasius (C56-YS93) reveals its biotechnological potential on rice straw hydrolysate. J. Biotech (in press, 2017). DOI

    This work was part of the Ricefuel project funded by the BBSRC and the DBT (India).

  • Pentjuss A., Stalidzans E., Liepins J., Kokina A., Martynova J., Zikmanis P., Mozga I., Scherbaka R., Hartman H., Poolman M. G., Fell D. A., Vigants A. Model based biotechnological potential analysis of Kluyveromyces marxianus central metabolism. J. Industrial Microbiology and Biotechnology (in press, 2017).

Previous papers:

Near-dead heat between:

  1. Dipali Singh, Ross Carlson, David Fell and Mark Poolman. Modelling Metabolism of the Diatom Phaeodactylum tricornutum. Biochem. Soc. Trans. 43, 1182- (2015) PDF doi:10.1042/BST20150152

  2. Huili Yuan, C. Y. Maurice Cheung, Mark G. Poolman, Peter A.J. Hilbers and Natal A.W. van Riel. A genome-scale metabolic network reconstruction of tomato (Solanum lycopersicum L.) and its application to photorespiratory metabolism. The Plant Journal, accepted m/s DOI: 10.1111/tpj.13075 abstract

Background

Our group began nearly thirty years ago with initial interests in computer simulation of metabolism and the theoretical analysis of metabolic control and regulation. Whilst these still remain areas of interest, we have since developed interests in modelling signal transduction, in various different approaches to network analysis of metabolism, and in reconstructing metabolic networks from genomic data. In the course of this research, we have addressed problems in microbial, plant and mammalian metabolism, often in conjunction with collaborators who have contributed experimental results.

Our current work centres on modelling the networks of reactions in cells, with particular emphasis on metabolism. It forms part of the emerging field of Systems Biology, in that we are concerned with understanding how biological function arises from the interactions between many components, and with building predictive models. We have to develop and apply suitable theoretical tools, including metabolic control analysis, computer simulation and other forms of algebraic and numerical analysis. In addition, we are investigating how to decipher the metabolic information contained in genome sequences. We are involved in projects on microbial, plant and animal metabolism, each in collaboration with an experimental team.

Potential applications of our work include the design of changes in cellular metabolism to improve the output of product such as antibiotics, detecting vulnerable sites in cellular networks that could be targets for drugs to control disease-causing organisms, and improved understanding of how organisms manage to adjust their metabolism in response to environmental changes and other signals.


Related Sites

We also host the following web sites related to our research:

None: Home (last edited 2024-02-21 15:03:28 by david)