4146
Comment: Changed recent papers
|
3439
|
Deletions are marked like this. | Additions are marked like this. |
Line 5: | Line 5: |
'''PhD studentship available for September 2014''': The group has a BBSRC iCASE studentship on '''Modelling acetogen metabolism'''. See the [[AcetoGen|project page]] for details of the research and important eligibility information. | |
Line 7: | Line 6: |
'''RICEFUEL''': The group is following up its [[UKIPA|existing interests]] in bioenergy research by participating in the UK-India project RICEFUEL coordinated by Nigel Minton at the University of Nottingham. See the [[http://www.bbsrc.ac.uk/news/industrial-biotechnology/2013/131113-pr-sustainable-fuels.aspx|BBSRC News]] for a report of the official announcement. Our project page is under construction at RiceFuel. | '''Metabolic Pathway Analysis 2015.''' The dates (8-12 June 2015) and the location near Braga, Portugal, have been fixed. More information and links are on our [[Meetings]] page. ----- '''Latest paper:''' Mark G. Poolman, Sudip Kundu, Rahul Shaw and David A. Fell. Metabolic Trade-offs between Biomass Synthesis and Photosynthate Export at Different Light Intensities in a Genome–Scale Metabolic Model of Rice. Frontiers in Plant Science, 00656 (2014) [[http://journal.frontiersin.org/Journal/10.3389/fpls.2014.00656/abstract|Provisional PDF]] |
Line 9: | Line 10: |
'''BBSRC Network in Industrial Biotechnology and Bioenergy''' (NIBB): David Fell will also be assisting Nigel Minton in running the ''C1NET: Chemicals from C1 gas'' NIBB. See the [[http://www.bbsrc.ac.uk/news/industrial-biotechnology/2013/131218-pr-unique-industry-academia-nibbs.aspx|BBSRC]] and [[http://www.brookes.ac.uk/about-brookes/news/%C2%A31-8-million-funding-to-turn-carbon-monoxide-into-useful-chemicals/|Oxford Brookes University]] announcements. | |
Line 11: | Line 11: |
----- '''Latest paper:''' Uldis Kalnenieks, Agris Pentjuss, Reinis Rutkis, Egils Stalidzans and David A. Fell. Modeling of ''Zymomonas mobilis'' central metabolism for novel metabolic engineering strategies. Front. Microbiol. 5:42. [[http://dx.doi.org/10.3389/fmicb.2014.00042|doi: 10.3389/fmicb.2014.00042]] (Open access) |
|
Line 14: | Line 12: |
'''Previous paper:''' Reinis Rutkis, Uldis Kalnenieks,Egils Stalidzans and David A. Fell. Kinetic modeling of ''Zymomonas mobilis'' Entner-Doudoroff pathway: insights into control and functionality. Microbiology (2013) [[http://dx.doi.org/10.1099/mic.0.071340-0|DOI 10.1099/mic.0.071340-0]] [[http://mic.sgmjournals.org/content/early/2013/10/01/mic.0.071340-0|PDF]] | '''Previous paper:''' Hassan B. Hartman, David A. Fell, Sergio Rossell, Peter Ruhdal Jensen, Martin J. Woodward, Lotte Thorndahl, Lotte Jelsbak, John Elmerdahl Olsen, Anu Raghunathan, Simon Daefler,and Mark G. Poolman. Identification of potential drug targets in ''Salmonella enterica'' sv. Typhimurium using metabolic modelling and experimental validation. Microbiology 160:1252-1266 (2014) [[http://dx.doi.org/10.1099/mic.0.076091-0|DOI:10.1099/mic.0.076091-0]] This article was the Editor's Choice article for the June issue of Microbiology. |
News
Metabolic Pathway Analysis 2015. The dates (8-12 June 2015) and the location near Braga, Portugal, have been fixed. More information and links are on our Meetings page.
Latest paper: Mark G. Poolman, Sudip Kundu, Rahul Shaw and David A. Fell. Metabolic Trade-offs between Biomass Synthesis and Photosynthate Export at Different Light Intensities in a Genome–Scale Metabolic Model of Rice. Frontiers in Plant Science, 00656 (2014) Provisional PDF
Previous paper: Hassan B. Hartman, David A. Fell, Sergio Rossell, Peter Ruhdal Jensen, Martin J. Woodward, Lotte Thorndahl, Lotte Jelsbak, John Elmerdahl Olsen, Anu Raghunathan, Simon Daefler,and Mark G. Poolman. Identification of potential drug targets in Salmonella enterica sv. Typhimurium using metabolic modelling and experimental validation. Microbiology 160:1252-1266 (2014) DOI:10.1099/mic.0.076091-0 This article was the Editor's Choice article for the June issue of Microbiology.
Background
Our group began nearly thirty years ago with initial interests in computer simulation of metabolism and the theoretical analysis of metabolic control and regulation. Whilst these still remain areas of interest, we have since developed interests in modelling signal transduction, in various different approaches to network analysis of metabolism, and in reconstructing metabolic networks from genomic data. In the course of this research, we have addressed problems in microbial, plant and mammalian metabolism, often in conjunction with collaborators who have contributed experimental results.
Our current work centres on modelling the networks of reactions in cells, with particular emphasis on metabolism. It forms part of the emerging field of Systems Biology, in that we are concerned with understanding how biological function arises from the interactions between many components, and with building predictive models. We have to develop and apply suitable theoretical tools, including metabolic control analysis, computer simulation and other forms of algebraic and numerical analysis. In addition, we are investigating how to decipher the metabolic information contained in genome sequences. We are involved in projects on microbial, plant and animal metabolism, each in collaboration with an experimental team.
Potential applications of our work include the design of changes in cellular metabolism to improve the output of product such as antibiotics, detecting vulnerable sites in cellular networks that could be targets for drugs to control disease-causing organisms, and improved understanding of how organisms manage to adjust their metabolism in response to environmental changes and other signals.
Related Sites
We also host the following web sites related to our research: