4040
Comment: Deleted PhD announcement
|
3812
|
Deletions are marked like this. | Additions are marked like this. |
Line 5: | Line 5: |
'''Salmonella paper is Editor's Choice article for the June issue of Microbiology.''' The group's latest paper (see below) has been selected as the [[http://mic.sgmjournals.org/site/misc/MIC_Editors%20Choice.xhtml|Editor's Choice article]] for June 2014 and will be Open Access for the whole of the month on the [[http://mic.sgmjournals.org/content/current|current issue]] page. | Metabolic Pathways Analysis 2017: 24-28 July, Bozeman, Montana US. See [[http://mpa.brookes.ac.uk/Home|the MPA website]] for more information. |
Line 7: | Line 7: |
'''BBSRC Network in Industrial Biotechnology and Bioenergy''' (NIBB): David Fell is assisting Nigel Minton in running the ''C1NET: Chemicals from C1 gas'' NIBB. Its [[http://www.c1net.co.uk/index.html|website]] has just gone live. See the [[http://www.bbsrc.ac.uk/news/industrial-biotechnology/2013/131218-pr-unique-industry-academia-nibbs.aspx|BBSRC]] and [[http://www.brookes.ac.uk/about-brookes/news/%C2%A31-8-million-funding-to-turn-carbon-monoxide-into-useful-chemicals/|Oxford Brookes University]] announcements. |
'''International Study Group for Systems Biology: ''' the last meeting took place 4-7 October 2016 in Jena, Germany. [[http://sysbio.brookes.ac.uk/|More details here]] and at the [[http://isgsb-2016.bioinf.uni-jena.de/|meeting website]]. Selected highlight will appear in Biochemical Society Transactions in August 2017. |
Line 11: | Line 10: |
'''Latest paper:''' Hassan B. Hartman, David A. Fell, Sergio Rossell, Peter Ruhdal Jensen, Martin J. Woodward, Lotte Thorndahl, Lotte Jelsbak, John Elmerdahl Olsen, Anu Raghunathan, Simon Daefler,and Mark G. Poolman. Identification of potential drug targets in ''Salmonella enterica'' sv. Typhimurium using metabolic modelling and experimental validation. Microbiology 160:1252-1266 (2014) [[http://dx.doi.org/10.1099/mic.0.076091-0|DOI:10.1099/mic.0.076091-0]] | '''Latest papers:''' Near-dead heat between: |
Line 13: | Line 12: |
'''Previous paper:''' Uldis Kalnenieks, Agris Pentjuss, Reinis Rutkis, Egils Stalidzans and David A. Fell. Modeling of ''Zymomonas mobilis'' central metabolism for novel metabolic engineering strategies. Front. Microbiol. 5:42. (2014) [[http://dx.doi.org/10.3389/fmicb.2014.00042|doi: 10.3389/fmicb.2014.00042]] (Open access) | 1. Diplai Singh, Ross Carlson, David Fell and Mark Poolman. Modelling Metabolism of the Diatom ''Phaeodactylum tricornutum''. Biochem. Soc. Trans. 43, 1182- (2015) [[http://www.biochemsoctrans.org/content/43/6/1182|PDF]] doi:10.1042/BST20150152 |
Line 15: | Line 14: |
1. Huili Yuan, C. Y. Maurice Cheung, Mark G. Poolman, Peter A.J. Hilbers and Natal A.W. van Riel. A genome-scale metabolic network reconstruction of tomato (Solanum lycopersicum L.) and its application to photorespiratory metabolism. The Plant Journal, accepted m/s DOI: 10.1111/tpj.13075 [[http://onlinelibrary.wiley.com/doi/10.1111/tpj.13075/abstract|abstract]] '''Previous paper:''' Mark G. Poolman, Sudip Kundu, Rahul Shaw and David A. Fell. Metabolic Trade-offs between Biomass Synthesis and Photosynthate Export at Different Light Intensities in a Genome–Scale Metabolic Model of Rice. Frontiers in Plant Science, 00656 (2014) [[http://journal.frontiersin.org/Journal/10.3389/fpls.2014.00656/abstract|PDF]] |
|
Line 27: | Line 29: |
* [[http://sysbio.brookes.ac.uk|The website of the International Study Group for Systems Biology]] |
* [[http://sysbio.brookes.ac.uk|The website of the International Study Group for Systems Biology]] |
Line 30: | Line 31: |
* [[http://mpa.brookes.ac.uk|The website for the Metabolic Pathways Analysis series of meetings]] | |
Line 31: | Line 33: |
* [[http://mpa.brookes.ac.uk|The website for the Metabolic Pathways Analysis series of meetings]] |
* [[http://mitoscop.brookes.ac.uk|The website for the BBSRC-ANR project MitoScoP]] |
Line 34: | Line 35: |
* [[http://mitoscop.brookes.ac.uk|The website for the BBSRC-ANR project MitoScoP]] * [[http://frim.brookes.ac.uk|The website for the EraSysBio+ project Fruit Integrative Modelling]] |
* [[http://frim.brookes.ac.uk|The website for the EraSysBio+ project Fruit Integrative Modelling]] |
News
Metabolic Pathways Analysis 2017: 24-28 July, Bozeman, Montana US. See the MPA website for more information.
International Study Group for Systems Biology: the last meeting took place 4-7 October 2016 in Jena, Germany. More details here and at the meeting website. Selected highlight will appear in Biochemical Society Transactions in August 2017.
Latest papers: Near-dead heat between:
Diplai Singh, Ross Carlson, David Fell and Mark Poolman. Modelling Metabolism of the Diatom Phaeodactylum tricornutum. Biochem. Soc. Trans. 43, 1182- (2015) PDF doi:10.1042/BST20150152
Huili Yuan, C. Y. Maurice Cheung, Mark G. Poolman, Peter A.J. Hilbers and Natal A.W. van Riel. A genome-scale metabolic network reconstruction of tomato (Solanum lycopersicum L.) and its application to photorespiratory metabolism. The Plant Journal, accepted m/s DOI: 10.1111/tpj.13075 abstract
Previous paper: Mark G. Poolman, Sudip Kundu, Rahul Shaw and David A. Fell. Metabolic Trade-offs between Biomass Synthesis and Photosynthate Export at Different Light Intensities in a Genome–Scale Metabolic Model of Rice. Frontiers in Plant Science, 00656 (2014) PDF
Background
Our group began nearly thirty years ago with initial interests in computer simulation of metabolism and the theoretical analysis of metabolic control and regulation. Whilst these still remain areas of interest, we have since developed interests in modelling signal transduction, in various different approaches to network analysis of metabolism, and in reconstructing metabolic networks from genomic data. In the course of this research, we have addressed problems in microbial, plant and mammalian metabolism, often in conjunction with collaborators who have contributed experimental results.
Our current work centres on modelling the networks of reactions in cells, with particular emphasis on metabolism. It forms part of the emerging field of Systems Biology, in that we are concerned with understanding how biological function arises from the interactions between many components, and with building predictive models. We have to develop and apply suitable theoretical tools, including metabolic control analysis, computer simulation and other forms of algebraic and numerical analysis. In addition, we are investigating how to decipher the metabolic information contained in genome sequences. We are involved in projects on microbial, plant and animal metabolism, each in collaboration with an experimental team.
Potential applications of our work include the design of changes in cellular metabolism to improve the output of product such as antibiotics, detecting vulnerable sites in cellular networks that could be targets for drugs to control disease-causing organisms, and improved understanding of how organisms manage to adjust their metabolism in response to environmental changes and other signals.
Related Sites
We also host the following web sites related to our research: