Differences between revisions 99 and 112 (spanning 13 versions)
Revision 99 as of 2014-11-16 12:26:31
Size: 3914
Editor: david
Comment: Listed latest paper
Revision 112 as of 2016-11-19 22:56:16
Size: 3665
Editor: david
Comment: Brought the news up to dat
Deletions are marked like this. Additions are marked like this.
Line 5: Line 5:
'''BBSRC CASE studentship available to start in January 2015 (re-advertisement).''' For details see [[AcetoGen|the project page]]

'''BBSRC Network in Industrial Biotechnology and Bioenergy''' (NIBB): David Fell is assisting Nigel Minton in running the ''C1NET: Chemicals from C1 gas'' NIBB. Its [[http://www.c1net.co.uk/index.html|website]] has just gone live. See the [[http://www.bbsrc.ac.uk/news/industrial-biotechnology/2013/131218-pr-unique-industry-academia-nibbs.aspx|BBSRC]] and [[http://www.brookes.ac.uk/about-brookes/news/%C2%A31-8-million-funding-to-turn-carbon-monoxide-into-useful-chemicals/|Oxford Brookes University]] announcements.
'''International Study Group for Systems Biology: ''' the last meeting took place 4-7 October 2016 in Jena, Germany. [[http://sysbio.brookes.ac.uk/|More details here]] and at the [[http://isgsb-2016.bioinf.uni-jena.de/|meeting website]]. Selected highlight will appear in Biochemical Society Transactions in August 2017.
Line 10: Line 8:
'''Latest paper:''' Mark G. Poolman, Sudip Kundu, Rahul Shaw and David A. Fell. Metabolic Trade-offs between Biomass Synthesis and Photosynthate Export at Different Light Intensities in a Genome–Scale Metabolic Model of Rice. Frontiers in Plant Science, 00656 (2014) [[http://journal.frontiersin.org/Journal/10.3389/fpls.2014.00656/abstract|Provisional PDF]] '''Latest papers:''' Near-dead heat between:
Line 12: Line 10:
 1. Diplai Singh, Ross Carlson, David Fell and Mark Poolman. Modelling Metabolism of the Diatom ''Phaeodactylum tricornutum''. Biochem. Soc. Trans. 43, 1182- (2015) [[http://www.biochemsoctrans.org/content/43/6/1182|PDF]] doi:10.1042/BST20150152
Line 13: Line 12:
 1. Huili Yuan, C. Y. Maurice Cheung, Mark G. Poolman, Peter A.J. Hilbers and Natal A.W. van Riel. A genome-scale metabolic network reconstruction of tomato (Solanum lycopersicum L.) and its application to photorespiratory metabolism. The Plant Journal, accepted m/s DOI: 10.1111/tpj.13075 [[http://onlinelibrary.wiley.com/doi/10.1111/tpj.13075/abstract|abstract]]
Line 14: Line 14:
'''Previous paper:''' Hassan B. Hartman, David A. Fell, Sergio Rossell, Peter Ruhdal Jensen, Martin J. Woodward, Lotte Thorndahl, Lotte Jelsbak, John Elmerdahl Olsen, Anu Raghunathan, Simon Daefler,and Mark G. Poolman. Identification of potential drug targets in ''Salmonella enterica'' sv. Typhimurium using metabolic modelling and experimental validation. Microbiology 160:1252-1266 (2014) [[http://dx.doi.org/10.1099/mic.0.076091-0|DOI:10.1099/mic.0.076091-0]] This article was the Editor's Choice article for the June issue of Microbiology.
'''Previous paper:''' Mark G. Poolman, Sudip Kundu, Rahul Shaw and David A. Fell. Metabolic Trade-offs between Biomass Synthesis and Photosynthate Export at Different Light Intensities in a Genome–Scale Metabolic Model of Rice. Frontiers in Plant Science, 00656 (2014) [[http://journal.frontiersin.org/Journal/10.3389/fpls.2014.00656/abstract|PDF]]
Line 28: Line 27:
 *
[[http://sysbio.brookes.ac.uk|The website of the International Study Group for Systems Biology]]
 * [[http://sysbio.brookes.ac.uk|The website of the International Study Group for Systems Biology]]
Line 31: Line 29:
 * [[http://mpa.brookes.ac.uk|The website for the Metabolic Pathways Analysis series of meetings]]
Line 32: Line 31:
 *
[[http://mpa.brookes.ac.uk|The website for the Metabolic Pathways Analysis series of meetings]]
 * [[http://mitoscop.brookes.ac.uk|The website for the BBSRC-ANR project MitoScoP]]
Line 35: Line 33:

*
 [[http://mitoscop.brookes.ac.uk|The website for the BBSRC-ANR project MitoScoP]]


 *
[[http://frim.brookes.ac.uk|The website for the EraSysBio+ project Fruit Integrative Modelling]]
 * [[http://frim.brookes.ac.uk|The website for the EraSysBio+ project Fruit Integrative Modelling]]

cell systems group banner


News

International Study Group for Systems Biology: the last meeting took place 4-7 October 2016 in Jena, Germany. More details here and at the meeting website. Selected highlight will appear in Biochemical Society Transactions in August 2017.


Latest papers: Near-dead heat between:

  1. Diplai Singh, Ross Carlson, David Fell and Mark Poolman. Modelling Metabolism of the Diatom Phaeodactylum tricornutum. Biochem. Soc. Trans. 43, 1182- (2015) PDF doi:10.1042/BST20150152

  2. Huili Yuan, C. Y. Maurice Cheung, Mark G. Poolman, Peter A.J. Hilbers and Natal A.W. van Riel. A genome-scale metabolic network reconstruction of tomato (Solanum lycopersicum L.) and its application to photorespiratory metabolism. The Plant Journal, accepted m/s DOI: 10.1111/tpj.13075 abstract

Previous paper: Mark G. Poolman, Sudip Kundu, Rahul Shaw and David A. Fell. Metabolic Trade-offs between Biomass Synthesis and Photosynthate Export at Different Light Intensities in a Genome–Scale Metabolic Model of Rice. Frontiers in Plant Science, 00656 (2014) PDF

Background

Our group began nearly thirty years ago with initial interests in computer simulation of metabolism and the theoretical analysis of metabolic control and regulation. Whilst these still remain areas of interest, we have since developed interests in modelling signal transduction, in various different approaches to network analysis of metabolism, and in reconstructing metabolic networks from genomic data. In the course of this research, we have addressed problems in microbial, plant and mammalian metabolism, often in conjunction with collaborators who have contributed experimental results.

Our current work centres on modelling the networks of reactions in cells, with particular emphasis on metabolism. It forms part of the emerging field of Systems Biology, in that we are concerned with understanding how biological function arises from the interactions between many components, and with building predictive models. We have to develop and apply suitable theoretical tools, including metabolic control analysis, computer simulation and other forms of algebraic and numerical analysis. In addition, we are investigating how to decipher the metabolic information contained in genome sequences. We are involved in projects on microbial, plant and animal metabolism, each in collaboration with an experimental team.

Potential applications of our work include the design of changes in cellular metabolism to improve the output of product such as antibiotics, detecting vulnerable sites in cellular networks that could be targets for drugs to control disease-causing organisms, and improved understanding of how organisms manage to adjust their metabolism in response to environmental changes and other signals.


Related Sites

We also host the following web sites related to our research:

None: Home (last edited 2024-02-21 15:03:28 by david)