Differences between revisions 4 and 7 (spanning 3 versions)
Revision 4 as of 2016-06-10 11:52:12
Size: 13573
Editor: david
Comment: Logos added
Revision 7 as of 2016-06-16 12:56:24
Size: 3784
Editor: kailash
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
= Workshop: Metabolic Modelling and its Applications =
=== 27 - 30 June 2016 ===
== Tribhuvan University, Kirtipur, Kathmandu, Nepal ==
 . The workshop is organised by Tribhuvan University and the Society for Biological Applications Nepal (SBAN).
 .
 .
 {{http://mudsharkstatic.brookes.ac.uk/Graphics/Tribhuvan University.png|University logo|height="250",width="240"}} {{http://mudsharkstatic.brookes.ac.uk/Graphics/SBAN.png|SBAN logo|align="top",height="200",width="393"}}
= Practical ... =
== Analysing a genome scale metabolic model of Arabidopsis thaliana ==
In this practical we (you !) will be replicating some the analysis that was described in the [[http://mudsharkstatic.brookes.ac.uk/C1Net/Wshop1/L10.pdf|previous lecture]] . In order to do this you will need to download the files associated with the model:

 1.
 Download the file [[http://mudsharkstatic.brookes.ac.uk/C1Net/Wshop1/P7.tgz|P7.tgz]] into the area in whch you have been using for your other practicals.
Line 10: Line 9:
 .
 A brief introduction to the workshop is available on the website for the [[http://sbanepal.com/events/|SBAN]].
 1. This is a compressed archive file and you will need to extract the files before they can be used:
 {{{ $ tar -zxf P7.tgz }}}
Line 14: Line 13:
==== Tutors ====
 . The course is presented by:
  * Dr Mark Poolman
  * Prof David Fell
  * Kailash Adhikari, and
  * Dipali Singh all of Oxford Brookes University, Oxford, UK.
  *
  Examples presented in the workshop will include results from their research, which has been funded by the EU via the !AccliPhot project and the BBSRC (UK).
 1. This will generate a directory, S.Typhim, containing two sub-directories: Model and Analysis. Model contains the model definition files and an additional python module (in Model/Tools). Analysis contains the python modules you will need for this practical.
Line 23: Line 15:
  . {{http://mudsharkstatic.brookes.ac.uk/Graphics/brookes.jpg|brookes logo|align="bottom",height="100",width="243"}} {{http://mudsharkstatic.brookes.ac.uk/Graphics/accliphot-logo.png|accliphot logo|align="bottom",height="90",width="352"}} {{http://mudsharkstatic.brookes.ac.uk/Graphics/bbsrc_new.png|bbsrc logo|height="80",width="319"}}  1. For the sake of the practical we have made a few simplifications and the model and results will not be identical to those in the lecture. the aim of the practical is to illustrate the techniques used.

== Part A: Analysing the response to varying ATP demand. ==
 1. Change directory to the relevant area:
  .
  {{{$ cd S.Typhim/Analysis/ATPScan}}}
Line 26: Line 23:
==== Application ====
 .
 To apply for the workshop, complete the registration form an the [[http://sbanepal.com/events/|SBAN website]]. If the workshop is over-subscribed, successful applicants will be selected and notified.

 1.
 Start ScrumPy and load the model:

  .
  {{{ >>> m = ScrumPy.Model("../../Model/MetaSal.spy") }}}
Line 31: Line 31:
==== Instructions for workshop attendees ====
 .
 You are required to bring a laptop to the workshop. The metabolic modelling package used in the course, [[http://mudshark.brookes.ac.uk/ScrumPy|!ScrumPy]], will be made available to you. The two options for installing !ScrumPy on your computer are to directly install the package on a suitable Linux operating system, or to run a virtual machine under other operating system. Instructions are [[Meetings/Pune2016/ScrumPyVM|here]]. (TO BE UPDATED)
  . (If you wish to avoid a bit of typing, leave the model name blank and use the file selector to find the model file instead.)
Line 36: Line 34:
==== Timetable ====
 . To help plan your attendance, the provisional workshop timetable is given below. The precise content and order of topics may be changed - even during the workshop itself!
 1. Examine the files that are now presented - how much can you recognise from previous work in this course?
Line 39: Line 36:
||<tablewidth="870px"width="64px" style="border:none;padding:0cm">'''Day''' ||<width="50px" style="border:none;padding:0cm">'''Time''' ||<width="57px" style="border:none;padding:0cm">'''Room''' ||<width="483px" style="border:none;padding:0cm">'''Activity''' ||<width="92px" style="border:none;padding:0cm">'''Resources''' ||<width="125px" style="border:none;padding:0cm">'''Who''' ||
||<width="64px" style="border:none;padding:0cm;text-align:center" |4>Mon 27th, AM ||<width="50px" style="border:none;padding:0cm">10:30 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">Arrival and registration ||<width="92px" style="border:none;padding:0cm"> ||<width="125px" style="border:none;padding:0cm">SBAN ||
||<width="50px" style="border:none;padding:0cm">11:00 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">Welcome talks ||<width="92px" style="border:none;padding:0cm"> ||<width="125px" style="border:none;padding:0cm">MP + TU ||
||<width="50px" style="border:none;padding:0cm">11:30 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">'''Talk:''' Introductory theory ||<width="92px" style="border:none;padding:0cm">[[http://mudsharkstatic.brookes.ac.uk/Pune2016/L1/Slides.pdf|Slides]] ||<width="125px" style="border:none;padding:0cm">MP ||
||<width="50px" style="border:none;padding:0cm">12:30 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">Lunch ||<width="92px" style="border:none;padding:0cm"> ||<width="125px" style="border:none;padding:0cm">All ||
||<width="64px" height="44px" style="border:none;padding:0cm;text-align:center" |3>Mon 27th, PM ||<width="50px" style="border:none;padding:0cm">14:00 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">'''Talk:''' Python, object-orientation and models. ||<width="92px" style="border:none;padding:0cm">[[http://mudsharkstatic.brookes.ac.uk/Pune2016/L2/Slides.pdf|Slides]] ||<width="125px" style="border:none;padding:0cm">MP ||
||<width="50px" style="border:none;padding:0cm">15:00 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">'''Practical 0:''' Checking !ScrumPy Installation and familiarisation with the Python language. ||<width="92px" style="border:none;padding:0cm">[[http://mudshark.brookes.ac.uk/Meetings/Pune2016/P0|Instructions]] ||<width="125px" style="border:none;padding:0cm">All ||
||<width="50px" style="border:none;padding:0cm">17:30 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">Close ||<width="92px" style="border:none;padding:0cm"> ||<width="125px" style="border:none;padding:0cm"> ||
||<width="64px" style="border:none;padding:0cm;text-align:center" |3>Tue 28th, AM ||<width="50px" style="border:none;padding:0cm">09:30 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">'''Talk:''' Structural analysis of small models. (+ break) ||<width="92px" style="border:none;padding:0cm">[[http://mudsharkstatic.brookes.ac.uk/Pune2016/L3/Slides.pdf|Slides]] ||<width="125px" style="border:none;padding:0cm">DF ||
||<width="50px" style="border:none;padding:0cm">11:00 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">'''Talk: '''Introduction to plant metabolism and its modelling ||<width="92px" style="border:none;padding:0cm">Slides ||<width="125px" style="border:none;padding:0cm">DS, KA and MP ||
||<width="50px" style="border:none;padding:0cm">12:30 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">Lunch ||<width="92px" style="border:none;padding:0cm"> ||<width="125px" style="border:none;padding:0cm"> ||
||<width="64px" style="border:none;padding:0cm;text-align:center" |2>Tue 28th, PM ||<width="50px" style="border:none;padding:0cm">14:00 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">'''Practical 1''': Structural analysis of small models ||<width="92px" style="border:none;padding:0cm">[[http://mudshark.brookes.ac.uk/Meetings/Pune2016/P1|Instructions]] ||<width="125px" style="border:none;padding:0cm">All ||
||<width="50px" style="border:none;padding:0cm">17:00 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">Close ||<width="92px" style="border:none;padding:0cm"> ||<width="125px" style="border:none;padding:0cm"> ||
||<width="64px" style="border:none;padding:0cm;text-align:center" |4>Wed 29th, AM ||<width="50px" style="border:none;padding:0cm">09:30 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">'''Talk:''' Sources of data for metabolic models ||<width="92px" style="border:none;padding:0cm">[[http://mudsharkstatic.brookes.ac.uk/C1Net/Wshop1/L2.pdf|Slides]] ||<width="125px" style="border:none;padding:0cm">DF ||
||<width="50px" style="border:none;padding:0cm">10:15 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">'''Talk:''' Construction of Genome-Scale Models ||<width="92px" style="border:none;padding:0cm">[[http://mudsharkstatic.brookes.ac.uk/C1Net/Wshop1/L7.pdf|Slides]] ||<width="125px" style="border:none;padding:0cm">MP ||
||<width="50px" style="border:none;padding:0cm">11:15 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">'''Talk:''' Linear Programming and Flux Balance Analysis ||<width="92px" style="border:none;padding:0cm">[[http://mudsharkstatic.brookes.ac.uk/Pune2016/L5/Slides.pdf|Slides]] ||<width="125px" style="border:none;padding:0cm">MP ||
||<width="50px" style="border:none;padding:0cm">12:30 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">Lunch ||<width="92px" style="border:none;padding:0cm"> ||<width="125px" style="border:none;padding:0cm"> ||
||<width="64px" style="border:none;padding:0cm;text-align:center" |3>Wed 29th, PM ||<width="50px" style="border:none;padding:0cm">14:00 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">'''Practical 2''''''a:''' Construction of a working !ScrumPy model from databases ||<width="92px" style="border:none;padding:0cm">[[http://mudshark.brookes.ac.uk/Meetings/C1netWork1/Prac5|Instructions]] ||<width="125px" style="border:none;padding:0cm">All ||
||<width="50px" style="border:none;padding:0cm">15:30 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">'''Practical 2''''''a:''' Flux Balance Analysis of a simple model ||<width="92px" style="border:none;padding:0cm">[[http://mudshark.brookes.ac.uk/Meetings/C1netWork1/Prac6|Instructions]] ||<width="125px" style="border:none;padding:0cm">All ||
||<width="50px" style="border:none;padding:0cm">17:00 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">'''Close''' ||<width="92px" style="border:none;padding:0cm"> ||<width="125px" style="border:none;padding:0cm"> ||
||<width="64px" style="border:none;padding:0cm;text-align:center" |4>Thur 30^th^, AM ||<width="50px" style="border:none;padding:0cm">09:30 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">'''Talk:''' Biotechnological Applications of Metabolic Network Analysis ||<width="92px" style="border:none;padding:0cm">[[http://mudsharkstatic.brookes.ac.uk/Pune2016/L6/Slides.pdf|Slides]] ||<width="125px" style="border:none;padding:0cm">DF ||
||<width="50px" style="border:none;padding:0cm">10:30 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">'''Talk:''' Genome scale modelling of Arabidopsis ||<width="92px" style="border:none;padding:0cm">tbp ||<width="125px" style="border:none;padding:0cm">KA ||
||<width="50px" style="border:none;padding:0cm">11:30 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">'''Talk:''' Genome scale modelling of a diatom for oil production ||<width="92px" style="border:none;padding:0cm">tbp ||<width="125px" style="border:none;padding:0cm">DS ||
||<width="50px" style="border:none;padding:0cm">12:30 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">Lunch ||<width="92px" style="border:none;padding:0cm"> ||<width="125px" style="border:none;padding:0cm"> ||
||<width="64px" style="border:none;padding:0cm;text-align:center" |3>Thur 30^th^, PM ||<width="50px" style="border:none;padding:0cm">14:00 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">'''Practical 3: '''GSM of Arabidopsis – metabolic phenotypes of mutants – metabolic responses to light intensity ||<width="92px" style="border:none;padding:0cm">tbp ||<width="125px" style="border:none;padding:0cm">All ||
||<width="50px" style="border:none;padding:0cm">16:30 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">Concluding remarks and presentation of certificates ||<width="92px" style="border:none;padding:0cm"> ||<width="125px" style="border:none;padding:0cm">All ||
||<width="50px" style="border:none;padding:0cm">17:00 ||<width="57px" style="border:none;padding:0cm"> ||<width="483px" style="border:none;padding:0cm">'''Close of the Workshop''' ||<width="92px" style="border:none;padding:0cm"> ||<width="125px" style="border:none;padding:0cm"> ||
 1. Now import the module called ATPScan
  .
  {{{ >>> import ATPScan }}}



 1.
 The module contains a function, also called {{{ATPScan}}} that will generate a data set (as shown in previous lectures) containing the lp solutions over a range of imposed ATP demand values, e.g.:


 1.
 {{{ >>> results = ATPScan.ATPScan(m, 0, 10, 50) }}}


 1. Will generate a dataset containing 50 solutions for the model with the imposed ATPase flux varying between 0 and 10 flux units.

 1. The ATPScan module also contains three functions to aid in the analysis of results:
  .
  {{{ GetChangers(results, tol=1e-6) }}} A list of reactions whose flux value changes by more than tol (default = 1e-6).

  {{{ GetSwitchers(results) }}} A list of reactions that carry no flux at some point.

  {{{ GetRanges(results, tol=1e-6) }}} A dictionary mapping reactions to the amount of change in flux over the range of ATP demand.


  * For example, to plot the reactions that at some point carry no flux:
   .
   {{{ results.AddToPlot(ATPScan.GetSwitchers(results)) }}}



  * Use these functions to identify which fluxes show the greatest response to changes in ATP demand


== Part B: Impact of single and double reaction knockouts ==
 1. cd into Analysis/Knockouts
 1.
 Start ScrumPy and the load the model as before.


 1.
 Import the {{{KnockOutImpacts}}} module.


 1.
 This defines a single function also called {{{KnockOutImpacts}}} that returns a dictionary recording the impact of remove each reaction from the model (relative change in objective value) eg:

  .
  {{{ >>> res = KnockOutImpacts.KnockOutImpacts(m)}}}



 1. Use this to
  . a) Identify the lethal knockouts. b) Identify the non lethal knockouts that have the greatest impact. c) From b investigate the impact of dual knockouts, e.g.:
   .
   {{{ >>> lp.SetFixedFlux({Reac1:0,Reac2:0}) }}} {{{ >>> lp.Solve() }}} etc. Remember to clear the constraint before proceeding:

   {{{ >>> lp.ClearFluxConstraint([Reac1,Reac2]) }}}


   .
   (Generate lp by: {{{>>> lp = KnockOutImpacts.BuildLP.BuildLP(m) }}} )

Practical ...

Analysing a genome scale metabolic model of Arabidopsis thaliana

In this practical we (you !) will be replicating some the analysis that was described in the previous lecture . In order to do this you will need to download the files associated with the model:

  1. Download the file P7.tgz into the area in whch you have been using for your other practicals.

  2. This is a compressed archive file and you will need to extract the files before they can be used:

     $ tar -zxf P7.tgz 

  3. This will generate a directory, S.Typhim, containing two sub-directories: Model and Analysis. Model contains the model definition files and an additional python module (in Model/Tools). Analysis contains the python modules you will need for this practical.
  4. For the sake of the practical we have made a few simplifications and the model and results will not be identical to those in the lecture. the aim of the practical is to illustrate the techniques used.

Part A: Analysing the response to varying ATP demand.

  1. Change directory to the relevant area:
    • $ cd S.Typhim/Analysis/ATPScan

  2. Start ScrumPy and load the model:

    •  >>> m = ScrumPy.Model("../../Model/MetaSal.spy") 

    • (If you wish to avoid a bit of typing, leave the model name blank and use the file selector to find the model file instead.)
  3. Examine the files that are now presented - how much can you recognise from previous work in this course?
  4. Now import the module called ATPScan
    •  >>> import ATPScan 

  5. The module contains a function, also called ATPScan that will generate a data set (as shown in previous lectures) containing the lp solutions over a range of imposed ATP demand values, e.g.:

  6.  >>> results = ATPScan.ATPScan(m, 0, 10, 50) 

  7. Will generate a dataset containing 50 solutions for the model with the imposed ATPase flux varying between 0 and 10 flux units.
  8. The ATPScan module also contains three functions to aid in the analysis of results:
    •  GetChangers(results, tol=1e-6)  A list of reactions whose flux value changes by more than tol (default = 1e-6).

       GetSwitchers(results)           A list of reactions that carry no flux at some point.

       GetRanges(results, tol=1e-6)    A dictionary mapping reactions to the amount of change in flux over the range of ATP demand.

    • For example, to plot the reactions that at some point carry no flux:
      •  results.AddToPlot(ATPScan.GetSwitchers(results)) 

    • Use these functions to identify which fluxes show the greatest response to changes in ATP demand

Part B: Impact of single and double reaction knockouts

  1. cd into Analysis/Knockouts
  2. Start ScrumPy and the load the model as before.

  3. Import the KnockOutImpacts module.

  4. This defines a single function also called KnockOutImpacts that returns a dictionary recording the impact of remove each reaction from the model (relative change in objective value) eg:

    •  >>> res = KnockOutImpacts.KnockOutImpacts(m)

  5. Use this to
    • a) Identify the lethal knockouts. b) Identify the non lethal knockouts that have the greatest impact. c) From b investigate the impact of dual knockouts, e.g.:
      •  >>> lp.SetFixedFlux({Reac1:0,Reac2:0})   >>> lp.Solve()  etc. Remember to clear the constraint before proceeding:

         >>> lp.ClearFluxConstraint([Reac1,Reac2]) 

      • (Generate lp by: >>> lp = KnockOutImpacts.BuildLP.BuildLP(m)  )

None: Meetings/Nepal2016 (last edited 2016-09-16 13:21:02 by mark)